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Abstract

In this paper we classify the temporal relations
between pairs of events on an article-wide ba-
sis. This is in contrast to much of the exist-
ing literature which focuses on just event pairs
which are found within the same or adjacent
sentences. To achieve this, we leverage on dis-
course analysis as we believe that it provides
more useful semantic information than typical
lexico-syntactic features. We propose the use
of several discourse analysis frameworks, in-
cluding 1) Rhetorical Structure Theory (RST),
2) PDTB-styled discourse relations, and 3)
topical text segmentation. We explain how
features derived from these frameworks can be
effectively used with support vector machines
(SVM) paired with convolution kernels. Ex-
periments show that our proposal is effective
in improving on the state-of-the-art signifi-
cantly by as much as 16% in terms of F1, even
if we only adopt less-than-perfect automatic
discourse analyzers and parsers. Making use
of more accurate discourse analysis can fur-
ther boost gains to 35%.

1 Introduction

A good amount of research had been invested in un-
derstanding temporal relationships within text. Par-
ticular areas of interest include determining the re-
lationship between an event mention and a time ex-
pression (timex), as well as determining the relation-
ship between two event mentions. The latter, which
we refer to as event-event (E-E) temporal classifica-
tion is the focus of this work.

For a given event pair which consists of two
events e1 and e2 found anywhere within an article,

we want to be able to determine if e1 happens be-
fore e2 (BEFORE), after e2 (AFTER), or within the
same time span as e2 (OVERLAP).

Consider this sentence1:
At least 19 people were killed and 114 people were
wounded in Tuesday’s southern Philippines airport blast,
officials said, but reports said the death toll could climb
to 30.

(1)

Three event mentions found within the sentence are
bolded. We say that there is an OVERLAP rela-
tionship between the “killed – wounded” event pair
as these two events happened together after the air-
port blast. Similarly there is a BEFORE relationship
between both the “killed – said”, and “wounded –
said” event pairs, as the death and injuries happened
before reports from the officials.

Being able to infer these temporal relationships
allows us to build up a better understanding of the
text in question, and can aid several natural lan-
guage understanding tasks such as information ex-
traction and text summarization. For example, we
can build up a temporal characterization of an article
by constructing a temporal graph denoting the rela-
tionships between all events within an article (Ver-
hagen et al., 2009). This can then be used to help
construct an event timeline which layouts sequen-
tially event mentions in the order they take place (Do
et al., 2012). The temporal graph can also be used
in text summarization, where temporal order can be
used to improve sentence ordering and thereby the
eventual generated summary (Barzilay et al., 2002).

Given the importance and value of temporal re-
lations, the community has organized shared tasks

1From article AFP ENG 20030304.0250 of the ACE 2005
corpus (ACE, 2005).
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to spur research efforts in this area, including the
TempEval-1, -2 and -3 evaluation workshops (Ver-
hagen et al., 2009; Verhagen et al., 2010; Uzzaman
et al., 2012). Most related work in this area have
focused primarily on the task defintitions of these
evaluation workshops. In the task definitions, E-
E temporal classification involves determining the
relationship between events found within the same
sentence, or in adjacent sentences. For brevity we
will refer to this loosely as intra-sentence E-E tem-
poral classification in the rest of this paper.

This definition however is limiting and insuffi-
cient. It was adopted as a trade-off between com-
pleteness, and the need to simplify the evaluation
process (Verhagen et al., 2009). In particular, one
deficiency is that it does not allow us to construct the
complete temporal graph we seek. As illustrated in
Figure 1, being able to perform only intra-sentence
E-E temporal classification may result in a forest of
disconnected temporal graphs. A sentence s3 sepa-
rates events C and D, as such an intra-sentence E-E
classification system will not be able to determine
the temporal relationship between them. While we
can determine the relationship between A and C in
the figure with the use of temporal transitivity rules
(Setzer et al., 2003; Verhagen, 2005), we cannot re-
liably determine the relationship between say A and
D.

A

B C

D E

s1

s2

s3

s4

Figure 1: A disconnected temporal graph of events within
an article. Horizontal lines depict sentences s1 to s4, and
the circles identify events of interest.

In this work, we seek to overcome this limitation,
and study what can enable effective article-wide E-E
temporal classification. That is, we want to be able
to determine the temporal relationship between two
events located anywhere within an article.

The main contribution of our work is going
beyond the surface lexical and syntactic features
commonly adopted by existing state-of-the-art ap-
proaches. We suggest making use of semantically

motivated features derived from discourse analysis
instead, and show that these discourse features are
superior.

While we are just focusing on E-E temporal
classification, our work can complement other ap-
proaches such as the joint inference approach pro-
posed by Do et al. (2012) and Yoshikawa et al.
(2009) which builds on top of event-timex (E-T) and
E-E temporal classification systems. We believe that
improvements to the underlying E-T and E-E classi-
fication systems will help with global inference.

2 Related Work

Many researchers have worked on the E-E temporal
classification problem, especially as part of the Tem-
pEval series of evaluation workshops. Bethard and
Martin (2007) presented one of the earliest super-
vised machine learning systems, making use of sup-
port vector machines (SVM) with a variety of lexical
and syntactic features. Kolya et al. (2010) described
a conditional random field (CRF) based learner mak-
ing use of similar features. Other researchers includ-
ing Uzzaman and Allen (2010) and Ha et al. (2010)
made use of Markov Logic Networks (MLN). By
leveraging on the transitivity properties of temporal
relationships (Setzer et al., 2003), they found that
MLNs are useful in inferring new temporal relation-
ships from known ones.

Recognizing that the temporal relationships be-
tween event pairs and time expressions are related,
Yoshikawa et al. (2009) proposed the use of a joint
inference model and showed that improvements in
performance are obtained. However this gain is at-
tributed to the joint inference model they had devel-
oped, making use of similar surface features.

To the best of our knowledge, the only piece
of work to have gone beyond sentence boundaries
and tackle the problem of article-wide E-E temporal
classification is by Do et al. (2012). Making use of
integer linear programming (ILP), they built a joint
inference model which is capable of classifying tem-
poral relationships between any event pair within
a given document. They also showed that event
co-reference information can be useful in determin-
ing these temporal relationships. However they did
not make use of features directed specifically at de-
termining the temporal relationships of event pairs
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across different sentences. Other than event co-
reference information, they adopted the same mix
of lexico-syntactic features.

Underlying these disparate data-driven methods
for similar temporal processing tasks, the reviewed
works all adopted a similar set of surface fea-
tures including vocabulary features, part-of-speech
tags, constituent grammar parses, governing gram-
mar nodes and verb tenses, among others. We ar-
gue that these features are not sufficiently discrimi-
native of temporal relationships because they do not
explain how sentences are combined together, and
thus are unable to properly differentiate between the
different temporal classifications. Supporting our
argument is the work of Smith (2010), where she
argued that syntax cannot fully account for the un-
derlying semantics beneath surface text. D’Souza
and Ng (2013) found out as much, and showed that
adopting richer linguistic features such as lexical re-
lations from curated dictionaries (e.g. Webster and
WordNet) as well as discourse relations help tempo-
ral classification. They had shown that the Penn Dis-
course TreeBank (PDTB) style (Prasad et al., 2008)
discourse relations are useful. We expand on their
study to assess the utility of adopting additional dis-
course frameworks as alternative and complemen-
tary views.

3 Making Use of Discourse

To highlight the deficiencies of surface features, we
quote here an example from Lascarides and Asher
(1993):

[A] Max opened the door. The room was pitch dark.
[B] Max switched off the light. The room was pitch dark. (2)

The two lines of text A and B in Example 2 have
similar syntactic structure. Given only syntactic fea-
tures, we may be drawn to conclude that they share
similar temporal relationships. However in the first
line of text, the events temporally OVERLAP, while
in the second line they do not. Clearly, syntax alone
is not going to be useful to help us arrive at the cor-
rect temporal relations.

If existing surface features are insufficient, what is
sufficient? Given a E-E pair which crosses sentence
boundaries, how can we determine the temporal re-
lationship between them? We take our cue from the
work of Lascarides and Asher (1993). They sug-

gested instead that discourse relations hold the key
to interpreting such temporal relationships.

Building on their observations, we believe that
discourse analysis is integral to any solution for the
problem of article-wide E-E temporal classification.
We thus seek to exploit a series of different discourse
analysis studies, including 1) the Rhetorical Struc-
ture Theory (RST) discourse framework, 2) Penn
Discourse Treebank (PDTB)-styled discourse rela-
tions based on the lexicalized Tree Adjoining Gram-
mar for Discourse (D-LTAG), and 3) topical text seg-
mentation, and validate their effectiveness for tem-
poral classification.
RST Discourse Framework. RST (Mann and
Thompson, 1988) is a well-studied discourse anal-
ysis framework. In RST, a piece of text is split into a
sequence of non-overlapping text fragments known
as elementary discourse units (EDUs). Neighboring
EDUs are related to each other by a typed relation.
Most RST relations are hypotactic, where one of the
two EDUs participating in the relationship is demar-
cated as a nucleus, and the other a satellite. The nu-
cleus holds more importance, from the point of view
of the writer, while the satellite’s purpose is to pro-
vide more information to help with the understand-
ing of the nucleus. Some RST relations are however
paratactic, where the two participating EDUs are
both marked as nuclei. A discourse tree can be com-
posed by viewing each EDU as a leaf node. Nodes
in the discourse tree are linked to one another via the
discourse relations that hold between the EDUs.

RST discourse relations capture the semantic re-
lation between two EDUs, and these often offer a
clue to the temporal relationship between events in
the two EDUs too. As an example, let us refer once
again to Example 2. Recall that in the second line of
text “switched off” happens BEFORE “dark”. The
RST discourse structure for the second line of text
is shown on the left of Figure 2. We see that the
two sentences are related via a “Result” discourse
relation. This fits our intuition that when there is
causation, there should be a BEFORE/AFTER rela-
tionship. The RST discourse relation in this case is
very useful in helping us determine the relationship
between the two events.
PDTB-styled Discourse Relations. Another widely
adopted discourse relation annotation is the PDTB
framework (Prasad et al., 2008). Unlike the RST
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Max switched off the light. The room was pitch dark.

RESULT

The room was pitch dark.

CONTINGENCY :: CAUSE

arg1 arg2

Max switched off the light.

Figure 2: RST and PDTB discourse structures for the second line of text in Example 2. The structure on the left is the
RST discourse structure, while the structure on the right is for PDTB.

framework, the discourse relations in PDTB build on
the work on D-LTAG by Webber (2004), a lexicon-
grounded approach to discourse analysis. Practi-
cally, this means that instead of starting from a pre-
identified set of discourse relations, PDTB-styled
annotations are more focused on detecting possible
connectives (can be either explicit or implicit) within
the text, before identifying the text fragments which
they connect and how they are related to one another.

Applied again to the second line of text we have in
Example 2, we get a structure as shown on the right
side of Figure 2. From the figure we can see that
the two sentences are related via a “Cause” relation-
ship. Similar to what we have explained earlier for
the case of RST, the presence of a causal effect here
strongly hints to us that events in the two sentences
share a BEFORE/AFTER relationship.

At this point we want to note the differences be-
tween the use of the RST framework and PDTB-
styled discourse relations in the context of our work.
The theoretical underpinnings behind these two dis-
course analysis are very different, and we believe
that they can be complementary to each other. First,
the RST framework breaks up text within an article
linearly into non-overlapping EDUs. Relations can
only be defined between neighboring EDUs. How-
ever this constraint is not found in PDTB-styled re-
lations, where a text fragment can participate in one
discourse relation, and a subsequence of it partic-
ipate in another. PDTB relations are also not re-
stricted only to adjacent text fragments. In this as-
pect, the flexibility of the PDTB relations can com-
plement the seemingly more rigid RST framework.

Second, with PDTB-styled relations not every
sentence needs to be in a relation with another as
the PDTB framework does not aim to build a global
discourse tree that covers all sentence pairs. This is
a problem when we need to do an article-wide anal-
ysis. The RST framework does not suffer from this
limitation however as we can build up a discourse

tree connecting all the text within a given article.
Topical Text Segmentation. A third complemen-
tary type of inter-sentential analysis is topical text
segmentation. This form of segmentation separates
a piece of text into non-overlapping segments, each
of which can span several sentences. Each segment
represents passages or topics, and provides a coarse-
grained study of the linear structure of the text (Sko-
rochod’Ko, 1972; Hearst, 1994). The transition be-
tween segments can represent possible topic shifts
which can provide useful information about tempo-
ral relationships.

Referring to Example 32, we have delimited the
different lines of text into segments with parenthe-
ses along with a subscript. Segment (1) talks about
the casualty numbers seen at a medical centre, while
Segment (2) provides background information that
informs us a bomb explosion had taken place. The
segment boundary signals to us a possible temporal
shift and can help us to infer that the bombing event
took place BEFORE the deaths and injuries had oc-
curred.

(The Davao Medical Center, a regional government hos-
pital, recorded 19 deaths with 50 wounded. Medical
evacuation workers however said the injured list was
around 114, spread out at various hospitals.)1
(A powerful bomb tore through a waiting shed at the
Davao City international airport at about 5.15 pm (0915
GMT) while another explosion hit a bus terminal at the
city.)2

(3)

4 Methodology

Having motivated the use of discourse analysis for
our problem, we now proceed to explain how we can
make use of them for temporal classification. The
different facets of discourse analysis that we are ex-
ploring in this work are structural in nature. RST

2From article AFP ENG 20030304.0250 of the ACE 2005
corpus.
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EDU2 EDU3

r2

r1

EDU1A

B

Figure 3: A possible RST discourse tree. The two circles
denote two events A and B which we are interested in.

t1 t2 t3 t4

r1 r2

r3

BA

Figure 4: A possible PDTB-styled discourse annotation
where the circles represent events we are interested in.

and PDTB discourse relations are commonly repre-
sented as graphs, and we can also view the output
of text segmentation as a graph with individual text
segments forming vertices, and the transitions be-
tween them forming edges.

Considering this, we propose the use of support
vector machines (SVM), adopting a convolution ker-
nel (Collins and Duffy, 2001) for its kernel function
(Vapnik, 1999; Moschitti, 2006). The use of convo-
lution kernels allows us to do away with the exten-
sive feature engineering typically required to gener-
ate flat vectorized representations of features. This
process is time consuming and demands specialized
knowledge to achieve representations that are dis-
criminative, yet are sufficiently generalized. Con-
volution kernels had also previously been shown to
work well for the related problem of E-T temporal
classification (Ng and Kan, 2012), where the fea-
tures adopted are similarly structural in nature.

We now describe our use of the discourse analysis
frameworks to generate appropriate representations
for input to the convolution kernel.
RST Discourse Framework. Recall that the RST
framework provides us with a discourse tree for an
entire input article. In recent years several automatic
RST discourse parsers have been made available. In
our work, we first make use of the parser by Feng
and Hirst (2012) to obtain a discourse tree represen-
tation of our input. To represent the meaningful por-
tion of the resultant tree, we encode path information
between the two sentences of interest.

We illustrate this procedure using the example
discourse tree illustrated in Figure 3. EDUs includ-
ing EDU1 to EDU3 form the vertices while dis-
course relations r1 and r2 between the EDUs form
the edges. For a E-E pair, {A, B}, we can obtain a
feature structure by first locating the EDUs within
which A and B are found. A is found inside EDU1
and B is found within EDU3. We trace the short-

est path between EDU1 and EDU3, and use this
path as the feature structure for the E-E pair, i.e.
{r1 → r2}.
PDTB-styled Discourse Relations. We make use of
the automatic PDTB discourse parser from Lin et al.
(2013) to obtain the discourse relations over an input
article. Similar to how we work with the RST dis-
course framework, for a given E-E pair, we retrieve
the relevant text fragments and use the shortest path
linking the two events as a feature structure for our
convolution kernel classifier.

An example of a possible PDTB-styled discourse
annotation is shown in Figure 4. The horizontal
lines represent different sentences in an article. The
parentheses delimit text fragments, t1 to t4, which
have been identified as arguments participating in
discourse relations, r1 to r3. For a given E-E pair
{A, B}, we use the trace of the shortest path be-
tween them i.e. {r1 → r2} as a feature structure.

We take special care to regularize the input (as,
unlike EDUs in RST, arguments to different PDTB
relations may overlap, as in r2 and r3). We model
each PDTB discourse annotation as a graph and em-
ploy Dijkstra’s shortest path algorithm. The graph
resulting from the annotation in Figure 4 is given in
Figure 5. Each text fragment ti maps to a vertex
ni in the graph. PDTB relations between text frag-
ments form edges between corresponding vertices.
As r2 relates t2 to both t3 and t4, two edges link
up n2 to the corresponding vertices n3 and n4 re-
spectively. By doing this, Dijkstra’s algorithm will
always allow us to find the desired shortest path.

n1 n2 n3 n4
r1 r2 r3

r2

Figure 5: Graph derived from discourse annotation in
Figure 4.
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Topical Text Segmentation. Taking as input a com-
plete text article, we make use of the state-of-the-art
text segmentation system from Kazantseva and Sz-
pakowicz (2011). The output of the system is a se-
ries of non-overlapping, linear text segments, which
we can number sequentially.

In Figure 6 the horizontal lines represent sen-
tences. Parentheses with subscripts mark out the
segment boundaries. We can see two segments s1
and s2 here. Given a target E-E pair {A, B} (repre-
sented as circles inside the figure), we identify the
segment number of the corresponding segment in
which each of A and B is found. We build a fea-
ture structure with the identified segment numbers,
i.e. {s1 → s2} to capture the segmentation.

A

B
s1

s2

Figure 6: A possible segmentation of three sentences into
two segments.

5 Results

We conduct a series of experiments to validate the
utility of our proposed features.
Data Set. We make use of the same data set built
by Do et al. (2012). The data set consists of 20
newswire articles which originate from the ACE
2005 corpus (ACE, 2005). Initially, the data set
consist of 324 event mentions, and a total of 375
annotated E-E pairs. We perform the same temporal
saturation step as described in Do et al. (2012), and
obtained a total of 7,994 E-E pairs3.

A breakdown of the number of instances by each
temporal classes is shown in Table 1. Unlike earlier
data sets such as that for TempEval-2 where more
than half (about 55%) of test instances belong to the

3Though we have obtained the data set from the original au-
thors, there was a discrepancy in the number of E-E pairs. The
original paper reported a total of 376 annotated E-E pairs. Be-
sides this, we also repeated the saturation steps iteratively until
no new relationship pairs are generated. We believe this to be
an enhancement as it ensures that all inferred temporal relation-
ships are generated.

OVERLAP class, OVERLAP instances make up just
10% of the data set.

This difference is due mainly to the fact that our
data set consists not only of intra-sentence E-E pairs,
but also of article-wide E-E pairs. Figure 7 shows
the number of instances for each temporal class bro-
ken down by the number of sentences (i.e. sentence
gap) that separate the events within each E-E pair.
We see that as the sentence gap increases, the pro-
portion of OVERLAP instances decreases. The in-
tuitive explanation for this is that when event men-
tions are very far apart in an article, it becomes more
unlikely that they happen within the same time span.

Class AFTER BEFORE OVERLAP
# E-E pairs 3,588 (45%) 3,589 (45%) 815 (10%)

Table 1: Number of E-E pairs in data set attributable to
each temporal class. Percentages shown in parentheses.

Figure 7: Breakdown of number of E-E pairs for each
temporal class based on sentence gap.

Experiments. The work done in Do et al. (2012) is
highly related to our experiments, and so we have
reported the relevant results for local E-E classifi-
cation in Row 1 of Table 2 as a reference. While
largely comparable, note that a direct comparison is
not possible because 1) the number of E-E instances
we have is slightly different from what was reported,
and 2) we do not have access to the exact partitions
they have created for 5-fold cross-validation.

As such, we have implemented a baseline adopt-
ing similar surface lexico-syntactic features used in
previous work (Mani et al., 2006; Bethard and Mar-
tin, 2007; Ng and Kan, 2012; Do et al., 2012), in-
cluding 1) part-of-speech tags, 2) tenses, 3) depen-
dency parses, 4) relative position of events in article,
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System Precision Recall F1

(1) DO2012 43.86 52.65 47.46
(2) BASE 59.55 38.14 46.50
(3) BASE + RST + PDTB + TOPICSEG 71.89 41.99 53.01
(4) BASE + RST + PDTB + TOPICSEG + COREF 75.23 43.58 55.19
(5) BASE + O-RST + PDTB + O-TOPICSEG + O-COREF 78.35 54.24 64.10

Table 2: Macro-averaged results obtained from our experiments. The difference in F1 scores between each successive
row is statistically significant, but a comparison is not possible between rows (1) and (2).

5) the number of sentences between the target events
and 6) VerbOcean (Chklovski and Pantel, 2004) re-
lations between events. This baseline system, and
the subsequent systems we will describe, comprises
of three separate one-vs-all classifiers for each of the
temporal classes. The result obtained by our base-
line is shown in Row 2 (i.e. BASE) in Table 2. We
note that our baseline is competitive and performs
similarly to the results obtained by Do et al. (2012).
However as we do not have the raw judgements from
Do’s system, we cannot test for statistical signifi-
cance.

We also implemented our proposed features and
show the results obtained in the remaining rows of
Table 2. In Row 3, RST denotes the RST discourse
feature, PDTB denotes the PDTB-styled discourse
features, and TOPICSEG denotes the text segmen-
tation feature. Compared to our own baseline, there
is a relative increase of 14% in F1, which is statis-
tically significant when verified with the one-tailed
Student’s paired t-test (p < 0.01).

In addition, Do et al. (2012) have shown the value
of event co-reference. Therefore we have also in-
cluded this feature by making use of an automatic
event co-reference system by Chen et al. (2011).
The result obtained after adding this feature (de-
noted by COREF) is shown in Row 4. The relative in-
crease in F1 of about 4% from Row 3 is statistically
significant (p < 0.01) and affirms that event co-
reference is a useful feature to have, together with
our proposed features. We note that our complete
system in Row 4 gives a 16% improvement in F1,
relative to the reference system DO2012 in Row 1.

To get a better idea of the performance we can ob-
tain if oracular versions of our features are available,
we also show the results obtained if hand-annotated
RST discourse structures, text segments, as well as
event co-reference information were used. Annota-

tions for the RST discourse structures and text seg-
ments were performed by the first author (RST an-
notations were made following the annotation guide-
lines given by Carlson and Marcu (2001)). Oracular
event co-reference information was included in the
dataset that we have used.

In Row 5 the prefix O denotes oracular versions
of the features we had proposed. From the results
we see that there is a marked increase of over 15%
in F1 relative to Row 4. Compared to Do’s state-of-
the-art system, there is also a relative gain of at least
35%. These oracular results further confirm the im-
portance of non-local discourse analysis for tempo-
ral processing.

6 Discussion

Ablation tests. We performed ablation tests to as-
sess the efficacy of the discourse features used in
our earlier experiments. Starting from the full sys-
tem, we dropped each discourse feature in turn to see
the effect this has on overall system performance.
Our test is performed over the same data set, again
with 5-fold cross-validation. The results in Table 3
show a statistically significant (based on the one-
tailed Student’s paired t-test) drop in F1 in each case,
which proves that each of our proposed features is
useful and required.

From the ablation tests, we also observe that the
RST discourse feature contributes the most to over-
all system performance while the PDTB discourse
feature contributes the least. However we should not
conclude prematurely that the former is more use-
ful than the latter; as the results are obtained using
parses from automatic systems, and are not reflec-
tive of the full utility of ground truth discourse an-
notations.
Useful Relations. The ablation test results showed
us that discourse relations (in particular RST dis-
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Figure 8: Proportion of occurence in temporal classes for every RST and PDTB relation.

Ablated Feature Change in F1 Sig
−RST -9.03 **
−TOPICSEG -2.98 **
−COREF -2.18 **
−PDTB -1.42 *

Table 3: Ablation test results. ‘**’ and ‘*’ denote statis-
tically significance against the full system with p < 0.01
and p < 0.05, respectively.

course relations) are the most important in our sys-
tem. We have also motivated our work earlier with
the intuition that certain relations such as the RST
“Result” and the PDTB “Cause” relations provide
very useful temporal cues. We now offer an intro-
spection into the use of these discourse relations.

Figure 8 illustrates the relative proportion of tem-
poral classes in which each RST and PDTB re-
lation appear. If the relations are randomly dis-
tributed, we should expect their distribution to fol-
low that of the temporal classes as shown in Table 1.
However we see that many of the relations do not
follow this distribution. For example, we observe
that several relations such as the RST “Condition”
and PDTB “Cause” relations are almost exclusively
found within AFTER and BEFORE event pairs only,
while the RST “Manner-means” and PDTB “Syn-
chrony” relations occur in a disproportionately large
number of OVERLAP event pairs. These relations
are likely useful in disambiguating between the dif-
ferent temporal classes.

To verify this, we examine the convolution tree
fragments that lie on the support vector of our SVM
classifier. The work of Pighin and Moschitti (2010)

in linearizing kernel functions allows us to take a
look at these tree fragments. Applying the lineariza-
tion process leads to a different classifier from the
one we have used. The identified tree fragments are
therefore just an approximation to those actually em-
ployed by our classifier. However, this analysis still
offers an introspection as to what relations are most
influential for classification.

BEFORE OVERLAP
B1 (Temporal ... O1 (Manner-means ...
B2 (Temporal (Elaboration ...
B3 (Condition (Explanation ...
B4 (Condition (Attribution ...
B5 (Elaboration (Bckgrnd ...

Table 4: Subset of top RST discourse fragments on sup-
port vectors identified by linearizing kernel function.

Table 4 shows a subset of the top RST discourse
fragments identified for the BEFORE and OVER-
LAP one-vs-all classifiers. The list is in line with
what we expect from Figure 8. The former consists
of fragments containing relations such as “Tempo-
ral” and “Condition”, while the latter has a sole frag-
ment containing “Manner-Means”.

To illustrate what these fragments may mean, we
show several example sentences from our data set
in Example 4. Sentence A consists of the tree frag-
ment B1, i.e. “(Temporal...”. Its corresponding dis-
course structure is illustrated in the top half of Fig-
ure 9. This fragment indicates to us (correctly) that
the event “wielded” happened BEFORE Milosevic
was “swept out” of power. Sentence B is made
up of tree fragment O1, i.e. “(Manner-means...”,
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and its discourse structure is shown in the bottom
half of Figure 9. As with the previous example, the
fragment suggests (correctly) that there should be a
OVERLAP relationship for the “requested – said”
event pair.

[A] Milosevic and his wife wielded enormous power in
Yugoslavia for more than a decade before he was swept
out of power after a popular revolt in October 2000.

[B] The court order was requested by Jack Welch’s at-
torney, Daniel K. Webb, who said Welch would likely be
asked about his business dealings, his health and entries
in his personal diary.

(4)

Milosevic … wielded… 
a decade 

before.. swept out.. 
power

after a…  October
2000.

temporal

temporal

The court… requested

by Jack .. Webb,

elaboration

who said Welch would …
diary.

attribution

manner-means

Figure 9: RST discourse structures for sentences A (top
half) and B (bottom half) in Example 4.

Segment Numbers. From the ablation test results,
text segmentation is the next most important feature
after the RST discourse feature. This is interesting
given that the defined feature structure for topical
text segmentation is not the most intuitive. By us-
ing actual segment numbers, the structure may not
generalize well for articles of different lengths for
example, as each article may have vastly different
number of segments. The transition across segments
may also not carry the same semantic significance
for different articles.

Our experiments have however shown that this
feature design is useful in improving performance.
This is likely because:

1. The default settings of the text segmentation
system we had used are such that precision is

favoured over recall (Kazantseva and Szpakow-
icz, 2011, p. 292). As such there is just an aver-
age of between two to three identified segments
per article. This makes the feature more gener-
alizable despite making use of actual segment
numbers.

2. The style of writing in newswire articles which
we are experimenting on generally follows
common journalistic guidelines. The semantics
behind the transitions across the coarse-grained
segments that were identified are thus likely to
be of a similar nature across many different ar-
ticles.

We leave for future work an investigation into
whether more fine-grained topic segments can lead
to further performance gains. In particular, it will be
interesting to study if work on argumentative zoning
(Teufel and Kan, 2011) can be applied to newswire
articles, and whether the subsequent learnt docu-
ment structures can be used to delineate topic seg-
ments more accurately.
Error Analysis. Besides examining the features we
had used, we also want to get a better idea of the er-
rors made by our classifier. Recall that we are using
separate one-vs-all classifiers for each of the tempo-
ral classes, so each of the three classifiers generates
a column in the aggregate confusion matrix shown
in Table 5. In cases where none of the SVM clas-
sifiers return a positive confidence value, we do not
assign a temporal class (captured as column N). The
high number of event pairs which are not assigned to
any temporal class explains the lower recall scores
obtained by our system, as observed in Table 2.

Predicted
O B A N

O 119 (14.7%) 114 (14.1%) 104 (12.8%) 474 (58.5%)
B 19 (0.5%) 2067 (57.9%) 554 (15.5%) 928 (26.0%)
A 16 (0.5%) 559 (15.7%) 2046 (57.3%) 947 (26.5%)

Table 5: Confusion matrix obtained for the full system,
classifying into (O)VERLAP, (B)EFORE, (A)FTER, and
(N)o result.

Additionally, an interesting observation is the low
percentage of OVERLAP instances that our classi-
fier managed to predict correctly. About 57% of
BEFORE and AFTER instances are classified cor-
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rectly, however only about 15% of OVERLAP in-
stances are correct.

Figure 10 offers more evidence to suggest that
our classifier works better for the BEFORE and AF-
TER classes than the OVERLAP class. We see that
as sentence gap increases, we achieve a fairly con-
sistent performance for both BEFORE and AFTER
instances. OVERLAP instances are concentrated
where the sentence gap is less than 7, with the best
accuracy figure coming in below 30%.

Although not definitive, this may be because our
data set consists of much fewer OVERLAP in-
stances than the other two classes. This bias may
have led to insufficient training data for accurate
OVERLAP classification. It will be useful to inves-
tigate if using a more balanced data set for training
can help overcome this problem.

Figure 10: Accuracy of the classifer for each temporal
class, plotted against the sentence gap of each E-E pair.

7 Conclusion

We believe that discourse features play an important
role in the temporal ordering of events in text. We
have proposed the use of different discourse anal-
ysis frameworks and shown that they are effective
for classifying the temporal relationships of article-
wide E-E pairs. Our proposed discourse-based fea-
tures are robust and work well even though auto-
matic discourse analysis is noisy. Experiments fur-
ther show that improvements to these underlying
discourse analysis systems will benefit system per-
formance.

In future work, we will like to explore how to
better exploit the various discourse analysis frame-
works for temporal classification. For instance, RST
relations are either hypotactic or paratactic. Marcu

(1997) made use of this to generate automatic sum-
maries by considering EDUs which are nuclei to be
more salient. We believe it is interesting to examine
how such information can help. We are also inter-
ested to apply discourse features in the context of a
global inferencing system (Yoshikawa et al., 2009;
Do et al., 2012), as we think such analyses will also
benefit these systems as well.
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