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Abstract

In this paper we address the problem of
modeling compositional meaning for phrases
and sentences using distributional methods.
We experiment with several possible com-
binations of representation and composition,
exhibiting varying degrees of sophistication.
Some are shallow while others operate over
syntactic structure, rely on parameter learn-
ing, or require access to very large corpora.
We find that shallow approaches are as good
as more computationally intensive alternatives
with regards to two particular tests: (1) phrase
similarity and (2) paraphrase detection. The
sizes of the involved training corpora and the
generated vectors are not as important as the
fit between the meaning representation and
compositional method.

1 Introduction

Distributional models of semantics have seen con-
siderable success at simulating a wide range of be-
havioral data in tasks involving semantic cognition
and also in practical applications. For example, they
have been used to model judgments of semantic sim-
ilarity (McDonald, 2000) and association (Denhire
and Lemaire, 2004; Griffiths et al., 2007) and have
been shown to achieve human level performance
on synonymy tests (Landauer and Dumais, 1997;
Griffiths et al., 2007) such as those included in the
Test of English as a Foreign Language (TOEFL).
This ability has been put to practical use in numer-
ous natural language processing tasks such as au-
tomatic thesaurus extraction (Grefenstette, 1994),

word sense discrimination (Schütze, 1998), lan-
guage modeling (Bellegarda, 2000), and the iden-
tification of analogical relations (Turney, 2006).

While much research has been directed at the
most effective ways of constructing representations
for individual words, there has been far less con-
sensus regarding the representation of larger con-
structions such as phrases and sentences. The prob-
lem has received some attention in the connection-
ist literature, particularly in response to criticisms of
the ability of connectionist representations to handle
complex structures (Smolensky, 1990; Plate, 1995).
More recently, several proposals have been put for-
ward for computing the meaning of word combina-
tions in vector spaces. This renewed interest is partly
due to the popularity of distributional methods and
their application potential to tasks that require an un-
derstanding of larger phrases or complete sentences.

For example, Mitchell and Lapata (2010) intro-
duce a general framework for studying vector com-
position, which they formulate as a function f of
two vectors u and v. Different composition mod-
els arise, depending on how f is chosen. Assuming
that composition is a linear function of the Cartesian
product of u and v allows to specify additive mod-
els which are by far the most common method of
vector combination in the literature (Landauer and
Dumais, 1997; Foltz et al., 1998; Kintsch, 2001).
Alternatively, assuming that composition is a linear
function of the tensor product of u and v, gives rise
to models based on multiplication.

One of the most sophisticated proposals for se-
mantic composition is that of Clark et al. (2008) and
the more recent implementation of Grefenstette and

546



Sadrzadeh (2011a). Using techniques from logic,
category theory, and quantum information they de-
velop a compositional distributional semantics that
brings type-logical and distributional vector space
models together. In their framework, words belong
to different type-based categories and different cate-
gories exist in different dimensional spaces. The cat-
egory of a word is decided by the number and type of
adjoints (arguments) it can take and the composition
of a sentence results in a vector which exists in sen-
tential space. Verbs, adjectives and adverbs act as re-
lational functions, are represented by matrices, and
modify the properties of nouns, that are represented
by vectors (see also Baroni and Zamparelli (2010)
for a proposal similar in spirit). Clarke (2012) intro-
duces context-theoretic semantics, a general frame-
work for combining vector representations, based on
a mathematical theory of meaning as context, and
shows that it can be used to describe a variety of
models including that of Clark et al. (2008).

Socher et al. (2011a) and Socher et al. (2011b)
present a framework based on recursive neural net-
works that learns vector space representations for
multi-word phrases and sentences. The network is
given a list of word vectors as input and a binary
tree representing their syntactic structure. Then, it
computes an n-dimensional representation p of two
n-dimensional children and the process is repeated
at every parent node until a representation for a full
tree is constructed. Parent representations are com-
puted essentially by concatenating the representa-
tions of their children. During training, the model
tries to minimize the reconstruction errors between
the n-dimensional parent vectors and those repre-
senting their children. This model can also compute
compositional representations when the tree struc-
ture is not given, e.g., by greedily inferring a binary
tree.

Although the type of function used for vector
composition has attracted much attention, relatively
less emphasis has been placed on the basic distri-
butional representations on which the composition
functions operate. In this paper, we examine three
types of distributional representation of increasing
sophistication and their effect on semantic composi-
tion. These include a simple semantic space, where
a word’s vector represents its co-occurrence with
neighboring words (Mitchell and Lapata, 2010),

a syntax-aware space based on weighted distribu-
tional tuples that encode typed co-occurrence rela-
tions among words (Baroni and Lenci, 2010), and
word embeddings computed with a neural language
model (Bengio, 2001; Collobert and Weston, 2008).
Word embeddings are distributed representations,
low-dimensional and real-valued. Each dimension
of the embedding represents a latent feature of the
word, hopefully capturing useful syntactic and se-
mantic properties.

Using these representations, we construct several
compositional models, based on addition, multipli-
cation, and recursive neural networks. We assess
the effectiveness of these models using two evalua-
tion protocols. The first one involves modeling sim-
ilarity judgments for short phrases gathered in hu-
man experiments (Mitchell and Lapata, 2010). The
second one is paraphrase detection, i.e., the task of
examining two sentences and determining whether
they have the same meaning (Socher et al., 2011a).
We find that shallow approaches are as good as
more computationally intensive alternatives. They
achieve considerable semantic expressivity without
any learning, sophisticated linguistic processing, or
access to very large corpora.

Our contributions in this work are three-fold: an
empirical comparison of a broad range of composi-
tional models, some of which are introduced here for
the first time; the use of an evaluation methodology
that takes into account the full spectrum of compo-
sitionality from phrases to sentences; and the em-
pirical finding that relatively simple compositional
models can be used to perform competitively on the
paraphrase detection and phrase similarity tasks.

2 Modeling

The elementary objects that we operate on are vec-
tors associated with words. We instantiate these
word representations following three distinct seman-
tic space models which we describe in Section 2.1
below. Analogously, in Section 2.2 we consider
three methods of vector composition, i.e., how a
phrase or a sentence can be represented as a vector
using the vectors of its constituent words. Combin-
ing different vector representations and composition
methods gives rise to several compositional models
whose performance we evaluate in Sections 3 and 4.
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2.1 Word Representations

For all of our experiments we employ column vec-
tors from a Cartesian, finitely-dimensional space.
The dimensionality will depend on the source of
the vectors involved. Similarly, the component val-
ues inside each source’s vectors are not to be inter-
preted in the same manner. Nonetheless, they have
in common that they originate from distributive cor-
pus statistics.

Co-occurence-based Semantic Space Word
meaning is commonly represented in a high-
dimensional space, where each component corre-
sponds to some contextual element in which the
word is found. The contextual elements can be
words themselves, or larger linguistic units such as
sentences or documents, or even more complex lin-
guistic representations such as the argument slots of
predicates. A semantic space that is often employed
in studying compositionality across a variety of
tasks (Mitchell and Lapata, 2010; Grefenstette and
Sadrzadeh, 2011a) uses a context window of five
words on either side of the target word, and 2,000
vector dimensions. These are the common context
words in the British National Corpus (BNC), a
corpus of about 100 million tokens. Their values
are set to the ratio of the probability of the context
word given the target word to the probability of the
context word overall.

More formally, let us consider the BNC as a set of
sentences:

BNC = {Sen(BNC)
1 , ...,Sen(BNC)

nBNC } (1)

where the i-th sentence is a sequence of words
Seni = (w(i)

1 , ...,w(i)
ni ) from the BNC’s vocabulary

VocBNC. Then f reqw is the amount of times
that each word w ∈ VocBNC appears in the BNC.
Mitchell and Lapata (2010) collect the M most
frequent non-stoplist words in the set ctxttop =
{w(top)

1 , ...,w(top)
M } and let them consitute the word

vectors’ dimensions. Each dimension’s value is ob-
tained from a co-occurrence count:

coCountw[ j] =
nBNC

∑
i=1

ni

∑
t=1

(2)

|{k ∈ [t−5; t +5] |w(i)
t = w, w(i)

k = w(top)
j }|

for w∈VocBNC and j = 1, ...,M. Using these counts,
they define word vectors component-wise.

wdVec(rp)
w [ j] =

p(w(top)
j |w)

p(w(top)
j )

= (3)

coCountw[ j]
f reqw

× totalCount
f req

w(top)
j

for j = 1, ...,M, where totalCount is the total num-
ber of words in the BNC.

This space is relatively simple, it has few param-
eters, requires no preprocessing other than tokeniza-
tion and involves no syntactic information or param-
eter learning. Despite its simplicity, it is a good start-
ing point for studying representations for composi-
tional models as a baseline against which to evaluate
more elaborate models.

Neural Language Model Another perhaps less
well-known approach to meaning representation is
to represent words as continuous vectors of param-
eters. Such word vectors can be obtained with an
unsupervised neural language model (NLM, Bengio
(2001); Collobert and Weston (2008)) which jointly
learns an embedding of words into a vector space
and uses these vectors to predict how likely a word
is, given its context.

We induced word embeddings with Collobert
and Weston (2008)’s neural language model. The
model is discriminative and non-probabilistic. Each
word i ∈ D (the vocabulary) is embedded into a
d-dimensional space using a lookup table LTW (·):

LTW (i) = Wi (4)

where W ∈ Rd×|D| is a matrix of parameters to be
learned. Wi ∈ Rd is the i-th column of W and d is
the word vector size to be chosen by the user. The
parameters W are automatically trained during the
learning process using backpropagation.

Specifically, at each training update, the model
reads an n-gram x = (w1, . . . ,wn) from the cor-
pus. The n-gram is paired with a corrupted n-gram
x̃ = (w1, . . . , w̃n) where w̃n 6= wn is chosen uniformly
from the vocabulary. The model concatenates the
learned embeddings of the n words and predicts a
score for the n-gram sequence using the learned em-
beddings as features. The training criterion is that
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n-grams that are present in the training corpus must
have a score at least some margin higher than the
corrupted n-grams. The model learns via gradient
descent over the neural network parameters and the
embedding lookup table. Word vectors are stored in
a word embedding matrix which captures syntactic
and semantic information from co-occurrence statis-
tics. As these representations are learned, albeit in
an unsupervised manner, one would hope that they
capture word meanings more succinctly, compared
to the simpler distributional representations that are
merely based on co-occurrence.

We trained the neural language model on the
BNC. We optimized the model’s parameters on a
word similarity task using 4% of the BNC as de-
velopment data. Specifically, we used WordSim353,
a benchmark dataset (Finkelstein et al., 2001), con-
sisting of relatedness judgments (on a scale of 0
to 10) for 353 word pairs. We experimented with
vectors of varying dimensionality (ranging from 50
to 200, with a step size of 50). The size of the target
word’s context window was 2, 3 and 4 in turn. The
rate at which embeddings were learned ranged from
3.4× 10−10 to 6.7× 10−10 to 10−9. We ran each
training process for 1.1×108 to 2.7×108 iterations
(ca. 2 days). We obtained the best results with 50
dimensions, a context window of size 4, and a em-
bedding learning rate of 10−9. The NLM with these
parameters was then trained for 1.51×109 iterations
(ca. 2 weeks).

Figure 1 illustrates a two-dimensional projection
of the embeddings for the 500 most common words
in the BNC. We only show two out of the actual
50 dimensions involved, but one can already begin
to see clusterings of a syntactic and semantic na-
ture. In one corner, for example, we encounter a
grouping of possessive pronouns together with the
possessive clitic ’s. The singular ones my, her and
his are closely positioned, as are the plural ones our,
your and their. Also, there is a clustering of socio-
political terms, such as international, country, na-
tional, government, and council.

Distributional Memory Tensor Baroni and Lenci
(2010) present Distributional Memory, a general-
ized framework for distributional semantics from
which several special-purpose models can be de-
rived. In their framework distributional information

Figure 1: A two-dimensional projection of the word em-
beddings we trained on the BNC using Turian et al.’s
(2010) implementation of the NLM. Two small sections
have been blown up to a legible scale. They show exam-
ples of syntactic and semantic clustering, respectively.

word w link l co-word v value c

1950s-n of essence-n 2.4880
1950s-n during bring-v 16.4636
Anyone-n nmod reaction-n 1.2161
American-n coord-1 athlete-n 5.6485
American-j nmod wasp-n 3.4945
American-n such as-1 country-n 14.4269
American-n sbj tr build-v 23.1014

Table 1: Example entries in Baroni and Lenci (2010)’s
tensor

is extracted from the corpus once, in the form of a
set of weighted word-link-word tuples arranged into
a third-order tensor. Different matrices are then gen-
erated from the tensor, and their rows and columns
give rise to different semantic spaces appropriate for
capturing different semantic problems. In this way,
the same distributional information can be shared
across tasks such as word similarity or analogical
learning.

More formally, Baroni and Lenci (2010) con-
struct a 3-dimensional tensor T assigning a value c
to instances of word pairs w,v and a connecting
link-word l. This representation operates over a
dependency-parsed corpus and the scores c are ob-
tained via counting the occurrences of tuples, and
weighting the raw counts by mutual information.
Table 1 presents examples of tensor entries. These
were taken from a distributional memory tensor1

1Available at http://clic.cimec.unitn.it/dm/.
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frequency link l co-word v

17059 obj include-v
16713 obj use-v
16573 obj call-v
16475 obj see-v
15962 obj make-v
15707 nmod-1 other-j
15554 nmod-1 new-j
15224 obj find-v
15221 nmod-1 more-j
14715 nmod-1 first-j
14348 obj give-v

Table 2: The 11 most frequent contexts in Baroni and
Lenci (2010)’s tensor (v and j represent verbs and adjec-
tives, respectively).

that Baroni and Lenci obtained via preprocessing
several corpora: the web-derived ukWac corpus of
about 1.915 billion words, a mid-2009 dump of
the English Wikipedia containing about 820 million
words, and the BNC.

Extracting a 3-dimensional tensor from the BNC
alone would create very sparse representations.
We therefore extract so-called word-fibres, essen-
tially projections onto a lower-dimensional sub-
space, from the same tensor Baroni and Lenci (2010)
collectively derived from the 3 billion word corpus
just described (henceforth 3-BWC). We view the
3-dimensional tensor

T = {(w(T )
1 , l(T )

1 ,v(T )
1 ,c(T )

1 ), ...} (5)

as a mapping which assigns each target word w a
non-zero value c, given the context (l,v). All word-
context combinations not listed in T are implicitly
assigned a zero value.

Now we consider two possible approaches for
obtaining vectors, depending on their application.
First, we let the D most frequent contexts

ctxtD = {(l1,v1), ...,(lD,vD)} (6)

constitute the D dimensions that each word vec-
tor will have. Table 2 shows the 11 contexts (l,v)
that appear most frequently in T . Thus, each target
word’s vector is defined component-wise as:

wdVecw[ j] =
{

c, if (w, l j,v j,c) ∈ T
0, otherwise

(7)

for j = 1, ...,D. This approach is used when a fixed
vector dimensionality is necessary.

A more dynamic approach is possible when very
few words w1, ...,wn are involved in a test. Their
representations can then have a denser format, that
is, with no zero-valued components. For this we
identify the set of contexts common to the words in-
volved,

ctxtdyn = {(l(dyn)
1 ,v(dyn)

1 ),(l(dyn)
2 ,v(dyn)

2 ), ...} (8)

= {(l,v) |(wi, l,v,c) ∈ T,c ∈ R, i = 1, ...,n}

Each context (l,v) again constitutes a vector dimen-
sion. The dimensionality varies strongly depend-
ing on the selection of words, but if n does not ex-
ceed 4, the dimensionality |ctxtdyn| will typically be
substantial enough. In this approach, each word’s
vector consists of the values c found along with that
word and its context in the tensor.

wdVecwi [ j] = c, (9)

where (wi, l
(dyn)
j ,v(dyn)

j ,c)∈ T , for j = 1, ..., |ctxtdyn|.

2.2 Composition Methods
In our experiments we compose word vectors to cre-
ate representations for phrase vectors and sentence
vectors. The phrases we are interested in consist of
two words each: an adjective and a noun like black
hair, a compound noun made up of two nouns such
as oil industry, or a verbal phrase with a transitive
verb and an object noun, e.g., pour tea.

Conceiving of a phrase phr = (w1,w2) as a binary
tuple of words, we obtain its vector from its words’
vectors either by addition:

phrVec(w1,w2) = wdVecw1 +wdVecw2 (10)

or by point-wise multiplication:

phrVec(w1,w2) = wdVecw1�wdVecw2 (11)

In the same way we acquire a vector senVeci rep-
resenting a sentence Seni = (w(i)

1 , ...,w(i)
ni ) from the

vectors for w1, ...,wni . We simply sum the existing
word vectors, that is, vectors obtained via the respec-
tive corpus for words that are not on our stoplist:

senVec(+)
i [ j] = ∑

k=1,...,ni
wdVecwk exists

wdVecwk [ j] (12)
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And do the same with point-wise multiplication:

senVec(�)
i [ j] = ∏

k=1,...,ni
wdVecwk exists

wdVecwk [ j] (13)

The multiplication model in (13) can be seen as an
instantiation of the categorical compositional frame-
work put forward by Clark et al. (2008). In fact,
a variety of multiplication-based models can be de-
rived from this framework; and comparisons against
component-wise multiplication on phrase similar-
ity tasks yield comparable results (Grefenstette
and Sadrzadeh, 2011a; Grefenstette and Sadrzadeh,
2011b). We thus opt for the model (13) as an exam-
ple of compositional models based on multiplication
due to its good performance across a variety of tasks,
including language modeling and prediction of read-
ing difficulty (Mitchell, 2011).

Our third method, for creating phrase and sen-
tence vectors alike, is the application of Socher et
al. (2011a)’s model. They use the Stanford parser
(Klein and Manning, 2003) to create a binary parse
tree for each input phrase or sentence. This tree is
then used as the basis for a deep recursive autoen-
coder (RAE). The aim is to construct a vector rep-
resentation for the tree’s root bottom-up where the
leaves contain word vectors. The latter can in the-
ory be provided by any type of semantic space, how-
ever Socher et al. use word embeddings provided by
the neural language model (Collobert and Weston,
2008).

Given the binary tree input structure, the model
computes parent representations p from their chil-
dren (c1,c2) using a standard neural network layer:

p = f (W (1)[c1;c2]+b(1)), (14)

where [c1;c2] is the concatenation of the two chil-
dren, f is an element-wise activation function such
as tanh, b is a bias term, and W ∈ Rn×2n is an en-
coding matrix that we want to learn during training.
One way of assessing how well p represents its di-
rect children is to decode their vectors in a recon-
struction layer:

[c′1;c′2] = f (W (2)p+b(2)) (15)

During training, the goal is to minimize the re-
construction errors of all input pairs at nontermi-
nal nodes p in a given parse tree by computing the

square of the Euclidean distance between the origi-
nal input and its reconstruction:

Erec([c1;c2]) =
1
2
|[c1;c2]− [c′1;c′2]|2 (16)

Socher et al. (2011a) extend the standard re-
cursive autoencoder sketched above in two ways.
Firstly, they present an unfolding autoencoder that
tries to reconstruct all leaf nodes underneath each
node rather than only its direct children. And sec-
ondly, instead of transforming the two children di-
rectly into a parent p, they introduce another hidden
layer inbetween.

We obtained three compositional models per rep-
resentation resulting in nine compositional mod-
els overall. Plugging different representations into
the additive and multiplicative models is relatively
straightforward. The RAE can also be used with
arbitrary word vectors. Socher et al. (2011a) ob-
tain best results with 100-dimensional vectors which
we also used in our experiments. NLM vectors
were trained with this dimensionality on the BNC
for 7.9× 108 iterations (with window size 4 and an
embedding learning rate of 10−9). We constructed
a simple distributional space with M = 100 dimen-
sions, i.e., those connected to the 100 most frequent
co-occurrence words. In the case of vectors obtained
from Baroni and Lenci (2010)’s DM tensor, we dif-
ferentiated between phrases and sentences, due to
the disparate amount of words contained in them
(see Section 2.1). To represent phrases, we used
vectors of dynamic dimensionality, since these form
a richer and denser representation. The sentences
considered in Section 4 are too large for this ap-
proach and all word vectors must be members of
the same vector space. Hence, these sentence vec-
tors have fixed dimensionality D = 100, consisting
of the “most significant” 100 dimensions, i.e., those
reflecting the 100 most frequent contexts.

3 Experiment 1: Phrase Similarity

Our first experiment focused on modeling similarity
judgments for short phrases gathered in human ex-
periments. Distributional representations of individ-
ual words are commonly evaluated on tasks based
on their ability to model semantic similarity rela-
tions, e.g., synonymy or priming. Thus, it seems
appropriate to evaluate phrase representations in a
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dim. c.m. Adj-N N-N V-Obj
2000 + 0.37 0.38 0.28SDS
2000 � 0.48 0.50 0.35

(BNC)
100 RAE 0.31 0.30 0.28
vary + 0.37 0.30 0.29DM
vary � 0.21 0.37 0.33

(3-BWC)
100 RAE 0.25 0.26 0.09
50 + 0.28 0.26 0.24NLM
50 � 0.26 0.22 0.18

(BNC)
100 RAE 0.19 0.24 0.28

Table 3: Correlation coefficients of model predictions
with subject similarity ratings (Spearman’s ρ); columns
show dimensionality: fixed or varying (see Section 2.1),
composition method: + is additive vector composition,
� is component-wise multiplicative vector composition,
RAE is Socher et al. (2011a)’s recursive auto-encoder.

similar manner. Specifically, we used the dataset
from Mitchell and Lapata (2010) which contains
similarity judgments for adjective-noun, noun-noun
and verb-object phrases, respectively.2 Each item is
a phrase pair phr1, phr2 which has a human rating
from 1 (very low similarity) to 7 (very high similar-
ity).

Using the composition models described above,
we compute the cosine similarity of phr1 and phr2:

phrSimphr1,phr2 =
phrVecphr1 · phrVecphr2

|phrVecphr1 |× |phrVecphr2 |
(17)

Model similarities were evaluated against the human
similarity ratings using Spearman’s ρ correlation co-
efficient.

Table 3 summarizes the performance of the vari-
ous models on the phrase similarity dataset. Rows
in the table correspond to different vector repre-
sentations: the simple distributional semantic space
(SDS) from Mitchell and Lapata (2010), Baroni and
Lenci’s (2010) distributional memory tensor (DM)
and the neural language model (NLM), for each
phrase combination: adjective noun (Adj-N), noun-
noun (N-N) and verb object (V-Obj). For each
phrase type we report results for each compositional
model, namely additive (+), multiplicative (�) and
recursive autoencoder (RAE). The table also shows

2The dataset is publicly available from http:
//homepages.inf.ed.ac.uk/s0453356/share

the dimensionality of the input vectors next to the
vector representation.

As can be seen, for SDS the best performing
model is multiplication, as it is mostly for DM. With
regard to NLM, vector addition yields overall better
results. In general, neither DM or NLM in any com-
positional configuration are able to outperform SDS
with multiplication. All models in Table 3 are sig-
nificantly correlated with the human similarity judg-
ments (p < 0.01). Spearman’s ρ differences of 0.3
or more are significant at the 0.01 level, using a t-
test (Cohen and Cohen, 1983).

4 Experiment 2: Paraphrase Detection

Although the phrase similarity task gives a fairly
direct insight into semantic similarity and compo-
sitional representations, it is somewhat limited in
scope as it only considers two-word constructions
rather than naturally occurring sentences. Ideally,
we would like to augment our evaluation with a task
which is based on large quantities of natural data and
for which vector composition has practical conse-
quences. For these reasons, we used the Microsoft
Research Paraphrase Corpus (MSRPC) introduced
by Dolan et al. (2004). The corpus consists of sen-
tence pairs Seni1 ,Seni2 and labels indicating whether
they are in a paraphrase relationship or not. The vec-
tor representations obtained from our various com-
positional models were used as features for the para-
phrase classification task.

The MSRPC dataset contains 5,801 sentence
pairs, we used the standard split of 4,076 training
pairs (67.5% of which are paraphrases) and 1,725
test pairs (66.5% of which are paraphrases). In order
to judge whether two sentences have the same mean-
ing we employ Fan et al. (2008)’s liblinear classifier.
For each of our three vector sources and three differ-
ent compositional methods, we create the following
features: (a) a vector representing the pair of input
sentences either via concatenation (“con”) or sub-
traction (“sub”); (b) a vector encoding which words
appear therein (“enc”); and (c) a vector made up of
the following four other pieces of information: the
cosine similarity of the sentence vectors, the length
of Seni1 , the length of Seni2 , and the unigram overlap
among the two sentences.

In order to encode which words appear in
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NLM DM SDS
(BNC) (3-BWC) (BNC)

+ 69.04 73.51 72.93
(con, other) (other) (other)

� 67.83 67.54 73.04
(sub, other) (other) (other)

RAE 70.26 68.29 69.10
(con, other) (sub, other) (con, other)

Table 4: Paraphrase classification accuracy in %. In-
cluded features are in parentheses: “con” is sentence vec-
tor concatenation, “sub” is sentence vector subtraction,
“other” stands for 4 other features (see Section 4)

each sentence and how often, we define a vec-
tor wdCounti for sentence Seni and enumerate all
words occuring in the MSRPC:

VocMSRPC = {w(MSRPC)
1 , ...,w(MSRPC)

nMSRPC } (18)

giving the word count vectors nMSRPC dimensions.
Thus the k-th component of wdCounti is the fre-
quency with which the word w(MSRPC)

k appears in
Seni = (w(i)

1 , ...,w(i)
ni ):

wdCounti[k] = |{ j ∈ [1;ni] |w
(MSRPC)
k = w(i)

j }| (19)

for k = 1, ...,nMSRPC. Even though nMSRPC may be
large, the computer files storing our feature vectors
do not explode in size because wdCount contains
many zeros and the classifier allows a sparse nota-
tion of (non-zero) feature values.

Regarding the last four features, we measured the
similarity between sentences the same way as we did
with phrases in section 3.

senSimi1,i2 =
senVeci1 · senVeci2

|senVeci1 |× |senVeci2 |
(20)

Note that this is the cosine of the angle between
senVeci1 and senVeci2 . This enables us to observe
the similarity or dissimilarity of two sentences inde-
pendent of their sentence length. Even though each
contained word increases or decreases the norm of
the resulting sentence vector, this does not distort
the overall similarity value, due to normalization.

The lengths of Seni1 and Seni2 are simply the
number of words they contain. The unigram over-
lap feature value may be viewed as the cardinal-

NLM DM SDS
(BNC) (3-BWC) (BNC)

+ 81.00 82.16 80.76
(con, other) (other) (other)

� 80.41 80.18 82.33
(sub, other) (other) (other)

RAE 81.28 80.43 80.68
(con, other) (sub, other) (con, other)

Table 5: Paraphrase classification F1-score in %. The
involved features are exactly the same as in Table 4.

ity of the intersection of each sentence’s multiset-
bag-of-words. The latter is encoded in the already-
introduced wdCount vectors. Therefore,

uniOverlapi1,i2 =
nMSRPC

∑
k=1

min
s=1,2
{wdCountis [k]} (21)

In order to establish which features work best for
each representation and composition method, we ex-
haustively explored all combinations on a develop-
ment set (20% of the original MSRPC training set).
Tables 4 (accuracy) and 5 (F1) show our results on
the test set with the best feature combinations for
each model (shown in parentheses). Each row cor-
responds to a different type of composition and each
column to a different word representation model.

As can be seen, the distributional memory (DM)
is the best performing representation for the addi-
tive composition model. The neural language model
(NLM) gives best results for the recursive autoen-
coder (RAE), although the other two representations
come close. And finally the simple distributional
semantic space (SDS) works best with multiplica-
tion. Also note that the best performing models,
namely DM with addition and SDS with multipli-
cation, use a basic feature space consisting only of
the cosine similarity of the composed sentence vec-
tors, the length of the two sentences involved, and
their unigram word overlap.

Although our intention was to use the paraphrase
detection task as a test-bed for evaluating composi-
tional models rather than achieving state-of-the-art
results, Table 6 compares our approach against pre-
vious work on the same task and dataset. Initial re-
search concentrated on individual words rather than
sentential representations. Several approaches used
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Model Acc. F1
Baseline 66.5 79.9
Mihalcea et al. (2006) 70.3 81.3
Rus et al. (2008) 70.6 80.5
Qiu et al. (2006) 72.0 81.6
Islam and Inkpen (2007) 72.6 81.3
Mitchell and Lapata (2010) (�) 73.0 82.3
Baroni and Lenci (2010) (+) 73.5 82.2
Fernando and Stevenson (2008) 74.1 82.4
Wan et al. (2006) 75.6 83.0
Das and Smith (2009) 76.1 82.7
Socher et al. (2011a) 76.8 83.6

Table 6: Overview of results on the MSRCP (test corpus).
Accuracy differences of 3.3 or more are significant at the
0.01 level (using the χ2 statistic).

WordNet in conjunction with distributional similar-
ity in an attempt to detect meaning conveyed by syn-
onymous words (Islam and Inkpen, 2007; Mihalcea
et al., 2006; Fernando and Stevenson, 2008). More
recently, the addition of syntactic features based
on dependency parse trees (Wan et al., 2006; Das
and Smith, 2009) has been shown to substantially
boost performance. The model of Das and Smith
(2009), for example, uses quasi-synchronous depen-
dency grammar to model the structure of the sen-
tences involved in the comparison and their corre-
spondences. Socher et al. (2011a) obtain an accu-
racy that is higher than previously published results.
This model is more sophisticated than the one we
used in our experiments (see Table 4 and 5). Rather
than using the output of the RAE as features for the
classifier, it applies dynamic pooling, a procedure
that takes a similarity matrix as input (e.g., created
by sentences with differing lengths) and maps it to
a matrix of fixed size that represents more faithfully
the global similarity structure.3

Overall, we observe that our own models do as
well as some of the models that employ WordNet
and more sophisticated syntactic features. With re-
gard to F1, we are comparable with Das and Smith
(2009) and Socher et al. (2011a) without using elab-
orate features, or any additional manipulations over
and above the output of the composition functions

3Without dynamic pooling, their model yields an accuracy
of 74.2.

which if added could increase performance.

5 Discussion

In this paper we systematically compared three types
of distributional representation and their effect on
semantic composition. Our comparisons involved
a simple distributional semantic space (Mitchell
and Lapata, 2010), word embeddings computed
with a neural language model (Collobert and We-
ston, 2008) and a representation based on weighted
word-link-word tuples arranged into a third-order
tensor (Baroni and Lenci, 2010). These represen-
tations vary in many respects: the amount of pre-
processing and linguistic information involved (the
third-order tensor computes semantic representa-
tions over parsed corpora), whether the semantic
space is the by-product of a learning process (in the
neural language model the parameters of the lookup
table must be learned), and data requirements (the
third-order tensor involves processing billions of
words). These representations served as input to
three composition methods involving addition, mul-
tiplication and a deep recursive autoencoder. Again
these methods differ in terms of how they imple-
ment compositionality: addition and multiplication
are commutative and associative operations and thus
ignore word order and, more generally, syntactic
structure. In contrast, the recursive autoencoder is
syntax-aware as it operates over a parse tree. How-
ever, the composed representations must be learned
with a neural network.

We evaluated nine models on the complementary
tasks of phrase similarity and paraphrase detection.
The former task simplifies the challenge of find-
ing an adequate method of composition and places
more emphasis on the representation, whereas the
latter poses, in a sense, the ultimate challenge for
composition models. It involves entire sentences
exhibiting varied syntactic constructions and in the
limit involves genuine natural language undertand-
ing. Across both tasks our results deliver a consis-
tent message: simple is best. Despite being in the-
ory more expressive, the representations obtained by
the neural language model and the third-order ten-
sor cannot match the simple semantic space on the
phrase similarity task. In this task syntax-oblivious
composition models are superior to the more sophis-
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ticated recursive autoencoder. The latter performs
better on the paraphrase detection task when its out-
put is fed to a classifier. The simple semantic space
may not take word order or sentence structure into
account, but nevertheless achieves considerable se-
mantic expressivity: it is on par with the third-order
tensor without having access to as much data (3 bil-
lion words) or a syntactically parsed corpus.

What do these findings tell us about the future of
compositional models for distributional semantics?
The problem of finding the right methods of vec-
tor composition cannot be pursued independent of
the choice of lexical representation. Having tested
many model combinations, we argue that in a good
model of distributive semantics representation and
composition must go hand in hand, i.e., they must
be mutually learned.
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