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Abstract

Topic models are increasingly being used for
text analysis tasks, often times replacing ear-
lier semantic techniques such as latent seman-
tic analysis. In this paper, we develop a novel
adaptive topic model with the ability to adapt
topics from both the previous segment and the
parent document. For this proposed model, a
Gibbs sampler is developed for doing poste-
rior inference. Experimental results show that
with topic adaptation, our model significantly
improves over existing approaches in terms of
perplexity, and is able to uncover clear se-
quential structure on, for example, Herman
Melville’s book “Moby Dick”.

1 Introduction

Natural language text usually consists of topically
structured and coherent components, such as groups
of sentences that form paragraphs and groups of
paragraphs that form sections. Topical coherence in
documents facilitates readers’ comprehension, and
reflects the author’s intended structure. Capturing
this structural topical dependency should lead to im-
proved topic modelling. It also seems reasonable
to propose that text analysis tasks that involve the
structure of a document, for instance, summarisation
and segmentation, should also be improved by topic
models that better model that structure.

Recently, topic models are increasingly being
used for text analysis tasks such as summarisa-

∗This work was partially done when Du was at College of
Engineering & Computer Science, the Australian National Uni-
versity when working together with Buntine and Jin there.

tion (Arora and Ravindran, 2008) and segmenta-
tion (Misra et al., 2011; Eisenstein and Barzilay,
2008), often times replacing earlier semantic tech-
niques such as latent semantic analysis (Deerwester
et al., 1990). Topic models can be improved by bet-
ter modelling the semantic aspects of text, for in-
stance integrating collocations into the model (John-
son, 2010; Hardisty et al., 2010) or encouraging top-
ics to be more semantically coherent (Newman et
al., 2011) based on lexical coherence models (New-
man et al., 2010), modelling the structural aspects
of documents, for instance modelling a document
as a set of segments (Du et al., 2010; Wang et al.,
2011; Chen et al., 2009), or improving the under-
lying statistical methods (Teh et al., 2006; Wallach
et al., 2009). Topic models, like statistical parsing
methods, are using more sophisticated latent vari-
able methods in order to model different aspects of
these problems.

In this paper, we are interested in developing a
new topic model which can take into account the
structural topic dependency by following the higher
level document subject structure, but we hope to re-
tain the general flavour of topic models, where com-
ponents (e.g., sentences) can be a mixture of topics.
Thus we need to depart from the earlier HMM style
models, see, e.g., (Blei and Moreno, 2001; Gruber
et al., 2007). Inspired by the idea that documents
usually exhibits internal structure (e.g., (Wang et al.,
2011)), in which semantically related units are clus-
tered together to form semantically structural seg-
ments, we treat documents as sequences of segments
(e.g., sentences, paragraphs, sections, or chapters).
In this way, we can model the topic correlation be-
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Figure 1: Different structural relationships for topics of
sections in a 4-part document, hierarchical (H), sequen-
tial (S), both (B) or mixed (M).

tween the segments in a “bag of segments” fashion,
i.e., beyond the “bag of words” assumption, and re-
veal how topics evolve among segments.

Indeed, we were impressed by the improvement
in perplexity obtained by the segmented topic model
(STM) (Du et al., 2010), so we considered the prob-
lem of whether one can add sequence information
into a structured topic model as well. Figure 1 illus-
trates the type of structural information being con-
sidered, where the vectors are some representation
of the content. STM is represented by the hierar-
chical model. A strictly sequential model would
seem unrealistic for some documents, for instance
books. A topic model using the strictly sequential
model was developed (Du et al., 2012) but it report-
edly performs halfway between STM and LDA. In
this paper, we develop an adaptive topic model to
go beyond a strictly sequential model while allow
some hierarchical influence. There are two possible
hybrids, one called “mixed” has distinct breaks in
the sequence, while the other called “both” overlays
both sequence and hierarchy and there could be rel-
ative strengths associated with the arrows. We em-
ploy the “both” hybrid but use the relative strengths
to adaptively allow it to approximate the “mixed”
hybrid.

Research in Machine Learning and Natural Lan-
guage Processing has attempted to model various
topical dependencies. Some work considers struc-
ture within the sentence level by mixing hidden
Markov models (HMMs) and topics on a word by
word basis: the aspect HMM (Blei and Moreno,
2001) and the HMM-LDA model (Griffiths et al.,
2005) that models both short-range syntactic depen-
dencies and longer semantic dependencies. These

models operate at a finer level than we are consider-
ing at a segment (like paragraph or section) level. To
make a tool like the HMM work at higher levels, one
needs to make stronger assumptions, for instance as-
signing each sentence a single topic and then topic
specific word models can be used: the hidden topic
Markov model (Gruber et al., 2007) that models the
transitional topic structure; a global model based on
the generalised Mallows model (Chen et al., 2009),
and a HMM based content model (Barzilay and
Lee, 2004). Researchers have also considered time-
series of topics: various kinds of dynamic topic
models, following early work of (Blei and Lafferty,
2006), represent a collection as a sequence of sub-
collections in epochs. Here, one is modelling the
collections over broad epochs, not the structure of a
single document that our model considers.

This paper is organised as follows. We first
present background theory in Section 2. Then the
new model is presented in Section 3, followed by
Gibbs sampling theory and algorithm in Sections 4
and 5 respectively. Experiments are reported in Sec-
tion 6 with a conclusion in Section 7.

2 Background

The basic topic model is first presented in Sec-
tion 2.1, as a point of departure. In seeking to de-
velop a general sequential topic model, we hope
to go beyond a strictly sequential model and allow
some hierarchical influence. This, however, presents
two challenges: modelling and statistical inference.
Hierarchical inference (and thus sequential infer-
ence) over probability vectors can be handled us-
ing the theory of hierarchical Poisson-Dirichlet pro-
cesses (PDPs). This is presented in Section 2.2.

2.1 The LDA model

The benchmark model for topic modelling is latent
Dirichlet allocation (LDA) (Blei et al., 2003), a la-
tent variable model of documents. Documents are
indexed by i, and words ~w are observed data. The
latent variables are ~µi (the topic distribution for a
document) and ~z (the topic assignments for observed
words), and the model parameter of ~φk’s (word dis-
tributions). These notation are later extended in Ta-
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ble 1. The generative model is as follows:

~φk ∼ DirichletW (~γ) ∀ k
~µi ∼ DirichletK (~α) ∀ i
zi,l ∼ DiscreteK (~µi) ∀ i, l

wi,l ∼ DiscreteK
(
~φzi,l

)
∀ i, l .

DirichletK(·) is a K-dimensional Dirichlet distribu-
tion. The hyper-parameter ~γ is a Dirichlet prior on
word distributions (i.e., a Dirichlet smoothing on the
multinomial parameter ~φk (Blei et al., 2003)) and the
Dirichlet prior ~α on topic distributions.

2.2 Hierarchical PDPs
A discrete probability vector ~µ of finite dimension
K is sampled from some distribution Fτ (~µ0) with
a parameter set, say τ , and is also dependent on
a parent probability vector ~µ0 also of finite dimen-
sion K. Then a sample of size N is taken ac-
cording to the probability vector ~µ, represented as
~z ∈ {1, ...,K}N . This data is collected into counts
~n = (n1, ..., nK) where nk is the number of data in
~z with value k and

∑
k nk = N . This situation is

represented as follows:

~µ ∼ Fτ (~µ0); ~zi ∼ DiscreteK(~µ) for i = 1, ..., N .

Commonly in topic modelling, the Dirichlet distri-
bution is used for discrete probability vectors. In
this case Fτ (~µ0) ≡ DirichletK(b~µ0), τ ≡ (K, b)
where b is the concentration parameter. Bayesian
analysis yields a marginalised likelihood, after inte-
grating out ~µ, of

p
(
~z
∣∣τ, ~µ0,Dirichlet

)
=

Beta (~n+ b~µ0)

Beta (b~µ0)
, (1)

where Beta(·) is the vector valued function normal-
ising the Dirichlet distribution. A problem here is
that p(~z|b, ~µ0) is an intractable function of ~µ0.

Dirichlet processes and Poisson-Dirichlet pro-
cesses alleviate this problem by using an auxiliary
variable trick (Robert and Casella, 2004). That is,
we introduce an auxiliary variable over which we
also sample but do not need to record. The auxiliary
variable is the table count1 which is a tk for each nk

1Based on the Chinese Restaurant analogy (Teh et al., 2006),
each table has a dish, a data value, while data, the customer, is
assigned to tables, and multiple tables can serve the same dish.

and it represents the number of “tables” over which
the nk “customers” are spread out. Thus the follow-
ing constraints hold:

0 ≤ tk ≤ nk and tk = 0 iff nk = 0 . (2)

When the distribution over probability vectors fol-
lows a Poisson-Dirichlet process which has two pa-
rameters τ ≡ (a, b) and the parent distribution ~µ0,
then Fτ (~µ0) ≡ PDP(a, b, ~µ0). Here a is the dis-
count parameter, b the concentration parameter and
~µ0 the base measure. In this case Bayesian analysis
yields an augmented marginalised likelihood (Bun-
tine and Hutter, 2012), after integrating out ~µ, of

p
(
~z,~t
∣∣τ, ~µ0,PDP

)
=

(b|a)T
(b)N

∏
k

Snk
tk,a

(µ0,k)
tk (3)

where T =
∑

k tk, (x|y)N =
∏N−1
n=0 (x + ny) de-

notes the Pochhammer symbol, (x)N = (x|1)N , and
SNM,a is a generalized Stirling number that is readily
tabulated (Buntine and Hutter, 2012).

There are two fundamental things to notice about
Equation (3). Positively, the term in ~µ0 takes the
form of a multinomial likelihood, so we can prop-
agate it up and perform inference on ~µ0 unen-
cumbered by the functional mess of Equation (1).
Thus Poisson-Dirichlet processes allow one to do
Bayesian reasoning on hierarchies of probability
vectors (Teh, 2006; Teh et al., 2006). Negatively,
however, one needs to sample the auxiliary vari-
ables ~t leading to some problems: The range of tk,
{0, ..., nk}, is broad. Also, contributions from in-
dividual data zi have been lost so the mixing of the
MCMC can sometimes be slow. We confirmed these
problems on our first implementation of the Adap-
tive Topic Model presented next in Section 3.

A further improvement on PDP sampling is
achieved in (Chen et al., 2011), where another aux-
iliary variable is introduced, a so-called table in-
dicator, that for each datum zi indicates whether
it is the “head of its table” (recall the nk data are
spread over tk tables, each table has one and only
one “head”). Let ri = 1 if zi is the “head of its
table,” and zero otherwise. According to this “ta-
ble” logic, the number of tables for nk must be the
number of data zi that are also head of table, so
tk =

∑N
i=1 1zi=k1ri=1. Moreover, given this def-

inition, the first constraint of Equation (2) on tk is
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automatically satisfied. Finally, with tk tables then
there must be exactly tk heads of table, and we are
indifferent about which data are heads of table, thus

p
(
~z, ~r
∣∣τ, ~µ0,PDP

)
= p

(
~z,~t
∣∣τ, ~µ0,PDP

)∏
k

(
nk
tk

)−1

.

(4)
When using this marginalised likelihood in a Gibbs
sampler, the zi themselves are usually latent so also
sampled, and we develop a blocked Gibbs sampler
for (zi, ri). Since ~r only appears indirectly through
the table counts ~t, one does not need to store the ~r,
instead just resamples an ri when needed according
to the proportion tw/nw where zi = w.

3 The proposed Adaptive Topic Model

In this section an adaptive topic model (AdaTM) is
developed, a fully structured topic model, by using
a PDP to simultaneously model the hierarchical and
the sequential topic structures. Documents are as-
sumed to be broken into a sequence of segments.
Topic distributions are used to mimic the subjects of
documents and subtopics of their segments. The no-
tations and terminologies used in the following sec-
tions are given in Table 1.

In AdaTM, the two topic structures are captured
by drawing topic distributions from the PDPs with
two base distributions as follows. The document
topic distribution ~µi and the jth segment topic dis-

Table 1: List of notation for AdaTM

K number of topics
I number of documents
Ji number of segments in document i
Li,j number of words in document i, segment j
W number of words in dictionary
~µi document topic probabilities for document i
~α K-dimensional prior for each ~µi

~νi,j segment topic probabilities for document i and
segment j

ρi,j mixture weight associating with the link be-
tween ~νi.j and ~νi,j−1

~Φ word probability vectors as a K ×W matrix
~φk word probability vector for topic k, entries in Φ

~γ W -dimensional prior for each ~φk

wi,j,l word in document i, segment j, position l
zi,j,l topic for word wi,j,l

w
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Figure 2: The adaptive topic model: ~µ is the document
topic distribution, ~ν1, ~ν2, . . . , ~νJ are the segment topic
distributions, and ~ρ is a set of the mixture weights.

tribution ~νi,j are linearly combined to give a base
distribution for the (j + 1)th segment’s topic dis-
tribution ~νi,j+1. The topic distribution of the first
segment, i.e., ~νi,1, is drawn directly with the base
distribution ~µi. Call this generative process topic
adaptation. The graphical representation of AdaTM
is shown in Figure 2, and clearly shows the combi-
nation of sequence and hierarchy for the topic prob-
abilities. Note the linear combination at each node
~νi,j is weighted with latent proportions ρi,j .

The resultant model for AdaTM is:

~φk ∼ DirichletW (~γ) ∀ k
~µi ∼ DirichletK (~α) ∀ i
ρi,j ∼ Beta(λS , λT ) ∀ i, j
~νi,j ∼ PDP (ρi,j~νi,j−1 + (1− ρi,j)~µi, a, b)
zi,j,l ∼ DiscreteK (~νi,j) ∀ i, j, l

wi,j,l ∼ DiscreteK
(
~φzi,j,l

)
∀ i, j, l .

For notational convenience, let ~νi,0 = ~µi. Assume
the dimensionality of the Dirichlet distribution (i.e.,
the number of topics) is known and fixed, and word
probabilities are parameterised with aK×W matrix
~Φ = (~φ1, ..., ~φK).

4 Gibbs Sampling Formulation

Given observations and model parameters, comput-
ing the posterior distribution of latent variables is in-
feasible for AdaTM due to the intractable computa-
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Table 2: List of statistics for AdaTM

Mi,k,w the total number of words in document i with
dictionary index w and being assigned to topic
k

Mk,w total Mi,k,w for document i, i.e.,
∑

iMi,k,w

~Mk vector of W values Mk,w

ni,j,k topic count in document i segment j for topic k
Ni,j topic total in document i segment j, i.e.,∑K

k=1 ni,j,k

ti,j,k table count in the CPR for document i and para-
graph j, for topic k that is inherited back to
paragraph j − 1 and ~µi,j−1.

si,j,k table count in the CPR for document i and para-
graph j, for topic k that is inherited back to the
document and ~µi.

Ti,j total table count in the CRP for document i and
segment j, equal to

∑K
k=1 ti,j,k.

Si,j total table count in the CRP for document i and
segment j, equal to

∑K
k=1 si,j,k.

~ti,j table count vector of ti,j,k’s for segment j.
~si,j table count vector of si,j,k’s for segment j.

tion of marginal probabilities. Therefore, we have to
use approximate inference techniques. This section
proposes a blocked Gibbs sampling algorithm based
on methods from Chen et al. (2011). Table 2 lists
all statistics needed in the algorithm. Note for easier
understanding, terminologies of the Chinese Restau-
rant Process (Teh et al., 2006) will be used, i.e., cus-
tomers, dishes and restaurants, correspond to words,
topics and segments respectively.

The first major complication, over the use of the
hierarchical PDP and Equation (3) and the table in-
dicator trick of Equation (4), is handling the lin-
ear combination of ρi,j~νi,j−1 + (1 − ρi,j)~µi used
in the PDPs. We manage this as follows: First,
Equation (3) shows that a contribution of the form
(µ0,k)

tk results. In our case, this becomes∏
k

(ρi,jνi,j−1,k + (1− ρi,j)µi,k)t
′
i,j,k

where t′i,j,k is the corresponding introduced auxil-
iary variable the table count which is involved with
constraints on ni,j,k+ti,j+1,k, from Equation (2). To
deal with this power of a sum, we break the counts
t′i,j,k into two parts, those that contribute to ~νi,j−1

and those that contribute to ~µi. We call these parts
ti,j,k and si,j,k respectively. The product can then be

expanded and ρi,j integrated out. This yields:

Beta (Si,j + λS , Ti,j + λT )
∏
k

ν
ti,j,k

i,j−1,kµ
si,j,k

i,k .

The powers νti,j,k

i,j−1,k and µsi,j,k

i,k can then be pushed
up to the next nodes in the PDP/Dirichlet hierarchy.
Note the standard constraints and table indicators are
also needed here.

The precise form of the table indicators needs to
be considered as well since there is a hierarchy for
them, and this is the second major complication in
the model. As discussed in Chen et al. (2011), table
indicators are not required to be recorded, instead,
randomly sampled in Gibbs cycles. The table indi-
cators when known can be used to reconstruct the
table counts ti,j,k and si,j,k, and are reconstructed
by sampling from them. For now, denote the table
indicators as ui,j,l for word wi,j,l.

To complete a formulation suitable for Gibbs
sampling, we first compute the marginal distribu-
tion of the observations ~w1:I,1:J (words), the topic
assignments ~z1:I,1:J and the table indicators ~u1:I,1:J .
The Dirichlet integral is used to integrate out the
document topic distributions ~µ1:I and the topic-
by-words matrix ~Φ, and the joint posterior dis-
tribution computed for a PDP is used to recur-
sively marginalise out the segment topic distribu-
tions ~ν1:I,1:J . With these variables marginalised out,
we derive the following marginal distribution

p(~z1:I,1:J , ~w1:I,1:J , ~u1:I,1:J

∣∣ ~α,~γ, a, b) = (5)

I∏
i=1

BetaK
(
~α+

∑Ji
j=1 ~si,j

)
BetaK (~α)

K∏
k=1

BetaW
(
~γ + ~Mk

)
BetaW (~γ)

I∏
i=1

Ji∏
j=1

Beta (Si,j + λS , Ti,j + λT )
(b|a)Ti,j+Si,j

(b)Ni,j+Ti,j+1

I∏
i=1

Ji∏
j=1

K∏
k=1

(
(ni,j,k + ti,j+1,k)

(ti,j,k + si,j,k)

)−1

S
ni,j,k+ti,j+1,k

ti,j,k+si,j,k,a
.

And the following constraints apply:

ti,j,k + si,j,k ≤ ni,j,k + ti,j+1,k, (6)

ti,j,k + si,j,k = 0 iff ni,j,k + ti,j+1,k = 0 . (7)

The first constraint falls out naturally when table in-
dicators are used. For convenience of the formulas,
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set ti,Ji+1,k = 0 (there is no Ji + 1 segment) and
ti,1,k = 0 (the first segment only uses ~µi).

Now let us consider again the table indicators
ui,j,l for word wi,j,l. If this word is in topic k at doc-
ument i and segment j, then it contributes a count to
ni,j,k. It also indicates if it contributes a new table,
or a count to t′i,j,k for the PDP at this node. How-
ever, as we discussed above, this then contributes to
either ti,j,k or si,j,k. If it contributes to ti,j,k, then
it recurses up to contribute a data count to the PDP
for document i segment j − 1. Thus it also needs a
table indicator at that node. Consequently, the table
indicator ui,j,l for word wi,j,l must specify whether
it contributes a table to all PDP nodes reachable by
it in the graph.

We define ui,j,l specifically as ui,j,l = (u1, u2)
such that u1 ∈ [−1, 0, 1] and u2 ∈ [1, · · · , j],
where u2 indicates segment denoted by node νj
up to which wi,j,l contributes a table. Given u2,
u1 = −1 denotes wi,j,l contributes a table count to
si,u2,k and ti,j′,k for u2 < j′ ≤ j; u1 = 0 denotes
wi,j,l does not contribute a table to node u2, but con-
tributes a table count to ti,j′,k for u2 < j′ ≤ j; and
u1 = 1 denotes wi,j,l contributes a table count to
each ti,j′,k for u2 ≤ j′ ≤ j.

Now, we are ready to compute the conditional
probabilities for jointly sampling topics and table in-
dicators from the model posterior of Equation (5).

5 Gibbs Sampling Algorithm

The Gibbs sampler iterates over words, doing a
blocked sample of (zi,j,l, ui,j,l). The first task is to
reconstruct ui,j,l since it is not stored. Since the pos-
terior of Equation (5) does not explicitly mention
the ui,j,l’s, they occur indirectly through the table
counts, and we can randomly reconstruct them by
sampling them uniformly from the space of possi-
bilities. Following this, we then remove the values
(zi,j,l, ui,j,l) from the full set of statistics. Finally,
we block sample new values for (zi,j,l, ui,j,l) and
add them to the statistics. The new ui,j,l is subse-
quently forgotten and the zi,j,l recorded.

Reconstructing table indicator ui,j,l: We start at
the node indexed i, j. If si,j,k+ti,j,k = 1 and ni,j,k+
ti,j+1,k > 1 then no tables can be removed since
there is only one table but several customers at the
table. Thus ui,j,l = (u1, u2) = (0, j) and there is no

sampling. Otherwise, by symmetry arguments, we
sample u1 via

p(u1 = −1, 0, 1|u2 = j, zi,j,l = k) ∝
(si,j,k, ti,j,k, ni,j,k + ti,j+1,k − si,j,k − ti,j,k) ,

since there are ni,j,k+ti,j+1,k data distributed across
the three possibilities. If after sampling u1 = −1,
the data contributes a table count up to ~µi and so
ui,j,l = (u1, u2) = (−1, j). If u1 = 0, the ui,j,l =
(u1, u2) = (0, j). Otherwise, the data contributes a
table count up to the parent PDP for ~νi,j−1 and we
recurse, repeating the sampling process at the parent
node. Note, however, that the table indicator (0, j′)
for j′ < j is equivalent to the table indicator (1, j′+
1) as far as statistics is concerned.

Block sampling (zi,j,l, ui,j,l): The full set of pos-
sibilities are, for each possible topic zi,j,l = k:

• no tables are created, so ui,j,l = (0, j),

• tables are created contributing a table count all
the way up to node j′ (≤ j) but stop at j′ and
do not subsequently contribute a count to ~µi, so
ui,j,l = (1, j′),

• tables are created contributing a table count all
the way up to node j′ ≤ j but stop at j′ and
also subsequently contribute a count to ~µi, so
ui,j,l = (−1, j′).

These three possibilities lead to detailed but fairly
straight forward changes to the posterior of Equa-
tion (5). Thus a full blocked sampler for (zi,j,l, ui,j,l)
can be constructed.

Estimates: learnt values of ~µi, ~νi,j , ~φk are needed
for evaluation, perplexity calculations, etc. These
are estimated by taking averages after the Gibbs
sampler has burnt in, using the standard posterior
means for Dirichlets and Poisson-Dirichlets.

6 Experiments

In the experimental work, we have three objectives:
(1) to explore the setting of hyper-parameters, (2) to
compare the model with the earlier sequential LDA
(SeqLDA) of (Du et al., 2012), STM of (Du et al.,
2010) and standard LDA, and (3) to view the results
in detail on a number of characteristic problems.
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Table 3: Datasets

#docs #segs #words vocab
Pat-A 500 51,748 2,146,464 16,573
Pat-B 397 9,123 417,631 7,663
Pat-G06 500 11,938 655,694 6,844
Pat-H 500 11,662 562,439 10,114
Pat-F 140 3,181 166,091 4,674
Prince-C 1 26 10,588 3,292
Prince-P 1 192 10.588 3,292
Moby Dick 1 135 88,802 16,223

6.1 Datasets

For general testing, five patent datasets are ran-
domly selected from U.S. patents granted in 2009
and 2010. Patents in Pat-A are selected from in-
ternational patent class (IPC) “A”, which is about
“HUMAN NECESSITIES”; those in Pat-B are se-
lected from class “B60” about “VEHICLES IN
GENERAL”; those in Pat-H are selected from
class “H” about “ELECTRICITY”; those in Pat-
F are selected from class “F” about “MECHAN-
ICAL ENGINEERING; LIGHTING; HEATING;
WEAPONS; BLASTING”; and those in Pat-G are
selected from class “G06” about “COMPUTING;
CALCULATING; COUNTING”. All the patents in
these five datasets are split into paragraphs that are
taken as segments, and the sequence of paragraphs
in each patent is reserved in order to maintain the
original layout. All the stop words, the top 10 com-
mon words, the uncommon words (i.e., words in less
than five patents) and numbers have been removed.

Two books used for more detailed investigation
are “The Prince” by Niccolò Machiavelli and “Moby
Dick” by Herman Melville. They are split into chap-
ters and/or paragraphs which are treated as seg-
ments, and only stop-words are removed. Table 3
shows in detail the statistics of these datasets after
preprocessing.

6.2 Design

Perplexity, a standard measure of dictionary-based
compressibility, is used for comparison. When re-
porting test perplexities, the held-out perplexity
measure (Rosen-Zvi et al., 2004) is used to evaluate
the generalisation capability to the unseen data. This
is known to be unbiased. To compute the held-out
perplexity, 20% of patents in each data set was ran-
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Figure 3: Analysis of parameters of Poisson-Dirichlet
process. (a) shows how perplexity changes with b; (b)
shows how it changes with a.
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Figure 4: Analysis of the two parameters for Beta distri-
bution. (a) how perplexity changes with λS ; (b) how it
changes with λT .

domly held out from training to be used for testing.
For this, 1000 Gibbs cycles were done for burn-in
followed by 500 cycles with a lag for 100 for pa-
rameter estimation.

We implemented all the four models, e.g., LDA,
STM, SeqTM and AdaTM in C, and ran them on a
desktop with Intel Core i5 CPU (2.8GHz×4), even
though our code is not multi-threaded. Perplexity
calculations, data input and handling, etc., were the
same for all algorithms. We note that the current
AdaTM implementation is an order of magnitude
slower than regular LDA per major Gibbs cycle.

6.3 Hyper-parameters in AdaTM
Experiments on the impact of the hyper-parameters
on the patent data sets were as follows: First, fixing
K = 50, the Beta parameters λT = 1 and λS = 1,
optimise symmetric α, and do two variations fix-a:
a = 0.0, trying b = 1, 5, 10, 25, ..., 300, and fix-b:
b = 10, trying a = 0.1, 0.2, ..., 0.9. Second, fix-λT
(fix-λS): fix a = 0.2 and λT (λS) = 1, optimise
b and α, change λS(λT ) = 0.1, 1, 10, 50, 100, 200.
Figures 3 and 4 show the corresponding plots. Fig-
ure 3(b) and Figure 4(a) show that varying the val-
ues of a and λS does not significantly change the
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Figure 5: Perplexity comparisons.

perplexity. In contrast, Figure 3(a) shows different
b values significantly change perplexity. Therefore,
we sought to optimise b. The experiment of fixing
λS = 1 and changing λT shows a small λT is pre-
ferred.

6.4 Perplexity Comparison

Perplexity comparisons were done with the default
settings a = 0.2, α = 0.1, γ = 0.01, λS = 1,
λT = 1 and b optimised automatically using the
scheme from (Du et al., 2012). Figure 5 shows
the results on these five patent datasets for differ-
ent numbers of topics. LDA D is LDA run on whole
patents, and LDA P is LDA run on the paragraphs
within patents. Table 4 gives the p-values of a one-
tail paired t-test for AdaTM versus the others, where
lower p-value indicates AdaTM has statistically sig-
nificant lower perplexity. From this we can see that
AdaTM is statistically significantly better than Se-
qLDA and LDA, and somewhat better than STM.

In addition, we ran another set of experiments
by randomly shuffling the order of paragraphs in
each patent several times before running AdaTM.
Then, we calculate the difference between perplex-
ities with and without random shuffle. Figure 5(f)
shows the plot of differences in each data sets. The
positive difference means randomly shuffling the or-
der of paragraphs indeed increases the perplexity.

It can further prove that there does exist sequential
topic structure in patents, which confirms the finding
in (Du et al., 2012).

6.5 Topic Evolution Comparisons

All the comparison experiments reported in this sec-
tion are run with 20 topics, the upper limit for easy
visualisation, and without optimising any parame-
ters. The Dirichlet Priors are fixed as αk = 0.1
and γw = 0.01. For AdaTM, SeqLDA, and STM,
a = 0.0 and b = 100 for “The Prince” and b = 200
for “Moby Dick”. These settings have proven ro-
bust in experiments. To align the topics so visual-
isations match, the sequential models are initialised
using an LDA model built at the chapter level. More-
over, all the models are run at both the chapter and
the paragraph level. With the common initialisation,
both paragraph level and chapter level models can

Table 4: P-values for one-tail paired t-test on the five
patent datasets.

AdaTM
Pat-G Pat-A Pat-F Pat-H Pat-B

LDA D .0001 .0001 .0002 .0001 .0001
LDA P .0041 .0030 .0022 .0071 .0096

SeqLDA .0029 .0047 .0003 .0012 .0023
STM .0220 .0066 .0210 .0629 .0853
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(a) Evolution of paragraph topics for LDA

(b) Topic alignment of LDA versus AdaTM top-
ics for chapters

Figure 6: Analysis on “The Prince”.

be aligned.
To visualise topic evolution, we use a plot with

one colour per topic displayed over the sequence.
Figure 6(a) shows this for LDA run on paragraphs
of “The Prince”. The proportion of 20 topics is the
Y-axis, spread across the unit interval. The para-
graphs run along the X-axis, so the topic evolution
is clearly displayed. One can see there is no se-
quential structure in this derived by the LDA model,
and similar plots result from “Moby Dick” for LDA.
Figure 6(b) shows the alignment of topics between
the initialising model (LDA+chapters) and AdaTM
run on chapters. Each point in the matrix gives the
Hellinger distance between the corresponding top-
ics, color coded. The plots for the other models,
chapters or paragraphs, are similar so plots like Fig-
ure 6(a) for the other models can be meaningfully
compared.

Figure 7 then shows the corresponding evolution
plots for AdaTM and SeqLDA on chapters and para-
graphs. The contrast of these with LDA is stark.
The large improvement in perplexity for AdaTM
(see Section 6.4) along with no change in lexi-
cal coherence (see Section 6.2) means that the se-

(a) AdaTM on chapters

(b) AdaTM on paragraphs

(c) SeqLDA on chapters

(d) SeqLDA on paragraphs

Figure 7: Topic Evolution on “The Prince”.

quential information is actually beneficial statisti-
cally. Note that SeqLDA, while exhibiting slightly
stronger sequential structure than AdaTM in these
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(a) LDA on chapters

(b) STM on Chapters

(c) AdaTM on Chapters

Figure 8: Topic Evolution on “Moby Dick”.

figures has significantly worse test perplexity, so its
sequential affect is too strong and harming results.
Also, note that some topics have different time se-
quence profiles between AdaTM and SeqLDA. In-
deed, inspection of the top words for each show
these topics differ somewhat. So while the LDA
to AdaTM/SeqLDA topic correspondences are quite
good due to the use of LDA initialisation, the cor-
respondences between AdaTM and SeqLDA have
degraded. We see that AdaTM has nearly as good
sequential characteristics as SeqLDA. Furthermore,
segment topic distribution νi,j of SeqLDA are grad-
ually deviating from the document topic distribution

µi, which is not the case for AdaTM.
Results for “Moby Dick” on chapters are com-

parable. Figure 8 shows similar topic evolution
plots for LDA, STM and AdaTM. In contrast, the
AdaTM topic evolutions are much clearer for the
less frequent topics, as shown in Figure 8(c). Var-
ious parts of this are readily interpreted from the
storyline. Here we briefly discuss topics by their
colour: black: Captain Peleg and the business of
signing on; yellow: inns, housing, bed; mauve:
Queequeg; azure: (around chapters 60-80) details
of whales aqua: (peaks at 8, 82, 88) pulpit, schools
and mythology of whaling.

We see that AdaTM can be used to understand the
topics with regards to the sequential structure of a
book. In contrast, the sequential nature for LDA and
STM is lost in the noise. It can be very interesting to
apply the proposed topic models to some text anal-
ysis tasks, such as topic segmentation, summarisa-
tion, and semantic title evaluation, which are subject
to our future work.

7 Conclusion

A model for adaptive sequential topic modelling has
been developed to improve over a simple exchange-
able segments model STM (Du et al., 2010) and a
naive sequential model SeqLDA (Du et al., 2012) in
terms of perplexity and its confirmed ability to un-
cover sequential structure in the topics. One could
extract meaningful topics from a book like Herman
Melville’s “Moby Dick” and concurrently gain their
sequential profile. The current Gibbs sampler is
slower than regular LDA, so future work is to speed
up the algorithm.
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