
Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pages 767–777,
MIT, Massachusetts, USA, 9-11 October 2010. c©2010 Association for Computational Linguistics

The Necessity of Combining Adaptation Methods

Ming-Wei Chang, Michael Connor and Dan Roth
University of Illinois at Urbana Champaign

Urbana, IL 61801
{mchang21,connor2,danr}@uiuc.edu

Abstract

Problems stemming from domain adaptation
continue to plague the statistical natural lan-
guage processing community. There has been
continuing work trying to find general purpose
algorithms to alleviate this problem. In this
paper we argue that existing general purpose
approaches usually only focus on one of two
issues related to the difficulties faced by adap-
tation: 1) difference in base feature statistics
or 2) task differences that can be detected with
labeled data.

We argue that it is necessary to combine these
two classes of adaptation algorithms, using
evidence collected through theoretical analy-
sis and simulated and real-world data exper-
iments. We find that the combined approach
often outperforms the individual adaptation
approaches. By combining simple approaches
from each class of adaptation algorithm, we
achieve state-of-the-art results for both Named
Entity Recognition adaptation task and the
Preposition Sense Disambiguation adaptation
task. Second, we also show that applying an
adaptation algorithm that finds shared repre-
sentation between domains often impacts the
choice in adaptation algorithm that makes use
of target labeled data.

1 Introduction

While recent advances in statistical modeling for
natural language processing are exciting, the prob-
lem of domain adaptation remains a big challenge.
It is widely known that a classifier trained on one do-
main (e.g. news domain) usually performs poorly on
a different domain (e.g. medical domain) (Jiang and

Zhai, 2007; Daumé III, 2007). The inability of cur-
rent statistical models to handle multiple domains is
one of the key obstacles hindering the progress of
NLP.

Several general purpose algorithms have been
proposed to address the domain adaptation prob-
lem: (Blitzer et al., 2006; Jiang and Zhai, 2007;
Daumé III, 2007; Finkel and Manning, 2009). It
is widely believed that the drop in performance of
statistical models on new domains is due to the
shift of the joint distribution of labels and examples,
P (Y, X), from domain to domain, where X repre-
sents the input space and Y represents the output
space. In general, we can separate existing adap-
tation algorithms into two categories:

Focuses on P (X) This type of adaptation algo-
rithm attempts to resolve the difference between the
feature space statistics of two domains. While many
different techniques have been proposed, the com-
mon goal of these algorithms is to find a better
shared representation that brings the source domain
and the target domain closer. Often these algorithms
do not use labeled examples in the target domain.
The works (Blitzer et al., 2006; Huang and Yates,
2009) all belong to this category.

Focuses on P (Y |X) These adaptation algorithms
assume that there exists a small amount of labeled
data for the target domain. Instead of training two
weight vectors independently (one for source and
the other for the target domain), these algorithms try
to relate the source and target weight vectors. This is
often achieved by using a special designed regular-
ization term. The works (Chelba and Acero, 2004;
Daumé III, 2007; Finkel and Manning, 2009) belong
to this category.
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It is important to give the definition of an adapta-
tion framework. An adaptation framework is speci-
fied by the data/resources used and a specific learn-
ing algorithm. For example, a framework that used
only source labeled examples and one that used both
source and target labeled examples should be con-
sidered as two different frameworks, even though
they might use exactly the same training algorithm.
Note that the goal of a good adaptation framework is
to perform well on the target domain and quite often
we only need to change the data/resource used to in-
crease the performance without changing the train-
ing algorithm. We refer to frameworks that do not
use target labeled data and focus on P (X) as Unla-
beled Adaptation Frameworks and refer to frame-
works that use algorithms that focus on P (Y |X) as
Labeled Adaptation Frameworks.

The major difference between unlabeled adapta-
tion frameworks and labeled adaptation frameworks
is the use of target labeled examples. Unlabeled
adaptation frameworks do not use target labeled ex-
amples1, while the labeled adaptation frameworks
make use of target labeled examples. Under this
definition, we consider that a model trained on both
source and target labeled examples (later referred as
S+T) is a labeled adaptation framework.

It is important to combine the labeled and unla-
beled adaptation frameworks for two reasons:

• Mutual Benefit: We analyze these two types
of frameworks and find that they address dif-
ferent adaptation issues. Therefore, it is often
beneficial to apply them together.

• Complex Interaction: Another, probably
more important issue, is that these two types
of frameworks are not independent. Different
representations will impact how much a labeled
adaptation algorithm can transfer information
between domains. Therefore, in order to have a
clear picture of what is the best labeled adapta-
tion framework, it is necessary to analyze these
two domain adaptation frameworks together.

In this paper, we assume we have both a small
amount of target labeled data and a large amount

1Note that we still use labeled data from source domain in
an unlabeled adaptation framework.

of unlabeled data so that we can perform both unla-
beled and labeled adaptation. The goal of our paper
is to point out the necessity of applying these two
adaptation frameworks together. To the best of our
knowledge, this is the first paper that both theoreti-
cally and empirically analyzes the interdependence
between the impact of labeled and unlabeled adap-
tation frameworks.

The contribution of this paper is as follows:

• Propose a theoretical analysis of the “Frustrat-
ingly Easy” (FE) framework (Daumé III, 2007)
(Section 3).

The theoretical analysis shows that for FE to be
effective the domains must already be “close”.
At some threshold of “closeness” it is better to
switch from FE to just pool all training together
as one domain.

• Demonstrate the complex interaction between
unlabeled and labeled approaches (Section 4)

We construct artificial experiments that demon-
strate how applying unlabeled adaptation may
impact the behavior of two labeled adaptation
approaches.

• Empirically analyze the interaction on real
datasets (Section 5).

We show that in general combining both ap-
proaches on the tasks of preposition sense
disambiguation and named entity recognition
works better than either individual method.
Our approach not only achieves state-of-the-
art results on these two tasks but it also re-
veals something surprising – finding a bet-
ter shared representation often makes a sim-
ple source+target approach the best adaptation
framework in practice.

2 Two Adaptation Aspects: A Review

Why do we need two types of adaptation frame-
works? First, unlabeled adaptation frameworks are
necessary since many features only exist in one do-
main. Therefore, it is important to develop algo-
rithms that find features which work across domains.
On the other hand, labeled adaptation frameworks
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are also required because we would like to take ad-
vantages of target labeled data. Even though differ-
ent domains may have different definitions for la-
bels (say in named entity recognition, specific defi-
nition of PER/LOC/ORG may change), labeled data
should still be useful. We summarize these distinc-
tions in Table 1.

While these two aspects of adaptation both saw
significant progress in the past few years, little anal-
ysis has been done on the interaction between these
two types of algorithms2.

In order to have a deep analysis, it is necessary to
choose specific adaptation algorithms for each as-
pect of adaptation framework. While we mainly
conduct analysis on the algorithms we picked, we
would like to point out that the necessity of com-
bining these two types of adaptation algorithms has
been largely ignored in the community.

As our example adaptation algorithms we se-
lected:

Labeled adaptation: FE framework One of the
most popular adaptation frameworks that requires
the use of labeled target data is the “Frustrat-
ingly Easy” (FE) adaptation framework (Daumé III,
2007). However, why and when this framework
works remains unclear in the NLP community. The
FE framework can be viewed as an framework that
extends the feature space, and it requires source and
target labeled data to work. We denote n as the
total number of features3 and m is the number of
the “domains”, where one of the domains is the tar-
get domain. The FE framework creates a global
weight vector in Rn(m+1), an extended space for all
domains. The representation x of the t-th domain
is mapped by Φt(x) ∈ Rn(m+1). In the extended
space, the first n features consist of the “shared”
block, which is always active across all tasks. The
(t+1)-th block (the (nt+1)-th to the (nt+n)-th fea-
tures) is a “specific” block, and is only active when

2Among the previously mentioned work, (Jiang and Zhai,
2007) is a special case given that it discusses both aspects of
adaptation algorithms. However, little analysis on the interac-
tion of the two aspects is discussed in that paper

3We assume that the number of features in each domain is
equal.

extracting examples from the task t. More formally,

Φt(x) =

264 x|{z}
shared

(t−1) blocksz }| {
0 . . .0 x|{z}

specific

(m−t) blocksz }| {
0 . . .0

375 . (1)

A single weight vector w̄ is obtained by training on
the modified labeled data {yt

i ,Φt(xt
i)}m

t=1. Given
that this framework only extends the feature space,
in this paper, we also call it the feature extension
framework (still called FE). We will see in Section 3
that this framework is equivalent to applying a reg-
ularization trick that bridges the source and the tar-
get domains. As it will become clear in Section 3,
in fact, this framework is only effective when there
is target labeled data and hence belongs to labeled
adaptation frameworks.

Although FE framework is quite popular in the
community, there are other even simpler labeled
adaptation frameworks that allow the use of tar-
get labeled data. For example, one of the simplest
frameworks is the S+T framework, which simply
trains a single model on the pooled and unextended
source and target training data.

Unlabeled adaptation: Adding cluster-like fea-
tures Recall that unlabeled adaptation frameworks
find the features that “work” across domain. In this
paper, we find such features in two steps. First,
we use word clusters generated from unlabeled text
and/or third party resources that spans domains.
Then, for every feature template that contains a
word, we append another feature template that uses
the word’s cluster instead of the word itself. This
technique is used in many recent works including
dependency parsing and NER (Koo et al., 2008;
Ratinov and Roth, 2009). Note that the unlabeled
text need not come from the source or target do-
main. In fact, in this paper, we use clusters gen-
erated with the Reuters 1996 dataset, a superset of
the CoNLL03 NER dataset (Koo et al., 2008; Liang,
2005). We adopt the Brown cluster algorithm to find
the word cluster (Brown et al., 1992; Liang, 2005).
We can use other resources to create clusters as well.
For example, in the NER domain, we also include
gazetteers4 as an unlabeled cluster resource, which
can bring the domains together quite effectively.

4Our gazetteers comes from (Ratinov and Roth, 2009).
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Framework Labeled Data Unlabeled Data Common Approach
Unlabeled Adaptation
(Focus on P (X))

Source Encompasses Source and Target.
May use other third party resources
(dictionaries, gazetteers, etc.).

Generate features that span domains us-
ing unlabeled data and/or third party re-
sources.

Labeled Adaptation
(Focus on P (Y |X))

Source and Target None Train classifier(s) using both source and
target training data, relating the two.

Table 1: Comparison between two general adaptation frameworks discussed in this paper. Each framework is specified by its setting
(data required) and its learning algorithm. Multiple previous adaptation approaches fit in one of either framework.

While other more complex algorithms (Ando and
Zhang, 2005; Blitzer et al., 2006) for finding bet-
ter shared representation (without using labeled tar-
get data) have been proposed, we find that using
straightforward clustering features is quite effective
in general.

3 Analysis of the FE Framework

In this section, we propose a simple yet informative
analysis of the FE algorithm from the perspective of
multi-task learning. Note that we ignore the effect
of unlabeled adaptation in this section, and focus on
the analysis of the FE framework as a representative
labeled adaptation framework.

3.1 Mistake Bound Analysis
While (Daumé III, 2007) proposed this framework
for adaptation, a very similar idea had been proposed
in (Evgeniou and Pontil, 2004) as a novel regular-
ization term for multitask learning with support vec-
tor machines. Assume that w1,w2, . . . ,wm are the
weight vector for the first domain to the m-th do-
main, respectively. The baseline approach is to as-
sume that each weight vector is independent. As-
sume that we adopt a SVM-like optimization prob-
lem that consider all m tasks, the baseline approach
is equivalent to using the following regularization
term in the objective function:

∑m
t=1 ‖wt‖2.

In (Evgeniou and Pontil, 2004; Daumé III, 2007),
they assume that wt = u + vt, for t = 1, . . . m,
where vt is the specific weight vector for t-th do-
main and u is a shared weight vector across all do-
mains. The new regularization term then becomes

‖u‖2 +
m∑

t=1

‖vt‖2. (2)

Note that these two regularization terms are differ-
ent, given that the new regularization term makes

w1,w2, . . . ,wm not independent anymore. It fol-
lows that

wT
t x = (u + vt)Tx = w̄T Φt(x),

where
w̄T =

[
uT vT

1 . . . vT
m

]
.

and ‖w̄‖2 equals to Eq. (2). Therefore, we can think
feature extension framework as a learning frame-
work that adopts Eq. (2) as its regularization term.

The FE framework was in fact originally designed
for the problem of multitask learning so in the fol-
lowing, we propose a simple mistake bound analysis
based on the multitask setting, where we calculate
the mistakes on all domains5. We focus on multi-
task setting for two reasons: 1) the analysis is very
easy and intuitive, and 2) in Section 4.1, we empiri-
cally confirm that the analysis holds for the adapta-
tion setting.

In the following, we assume that the training
algorithm used in the FE framework is the on-
line perceptron learning algorithm (Novikoff, 1963).
This allows us to analyze the mistake bound of the
FE framework with the perceptron algorithm. The
bound can give us an insight on when and why one
should adopt the FE framework. By using the stan-
dard mistake bound theorem (Novikoff, 1963), we
show:

Theorem 1. Let Dt be the labeled data of domain t.
Assume that there exist w1,w2, . . . ,wm such that

ywT
t x ≥ µ,∀(x, y) ∈ Dt,

and assume that max(x,y)∈Dt
‖x‖ ≤ R2,∀t =

1 . . .m. Then, the number of mistakes made with
online perceptron training (Novikoff, 1963) and the

5In the adaptation setting, one generally only cares about the
performance on the target domain.
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FE framework is bounded by

2R2

µ2
(

m∑
t=1

‖wt‖2 −
‖

∑m
t=1 wt‖2

m + 1
). (3)

Proof. Define w̄ as a vector in Rn(m+1). We claim
that there exists a set Sw̄ such that for all w̄ ∈ Sw̄,
w̄T Φt(x) = wT

t x for any domain t = 1 . . .m. Note
that Φt(x) is defined in Eq. (1). We can construct Sw̄

in the following way:

Sw̄ = {
[
s (w1 − s) . . . (wm − s)

]
| s ∈ Rn},

where s is an arbitrary vector with n elements.
In order to obtain the best possible bound, we

would like to find the most compressed weight vec-
tor in Sw̄, w∗ = minw̄∈Sw̄ ‖w̄‖2.

The optimization problem has an analytical solu-
tion:

‖w∗‖2 =
m∑

t=1

‖wt‖2 − ‖
m∑

t=1

wt‖2/(m + 1).

The proof is completed by the standard mis-
take bound theorem and the following fact:
maxx ‖φt(x)‖2 = 2maxx ‖x‖2 ≤ 2R2.

3.2 Mistake Bound Comparison
In the following, we would like to explore under
what circumstances the FE framework can work bet-
ter than individual models and the S+T framework
using Theorem 1. The analysis is done based on the
assumption that all frameworks use the perceptron
algorithm.

Before showing the bound analysis, note that the
framework proposed by (Evgeniou and Pontil, 2004;
Finkel and Manning, 2009) is a generalization over
these three frameworks (FE, S+T, and the base-
line)6. However, our goal in this paper is different:
we try to provide a deep discussion on when and why
one should use a particular framework.

Here, we compare the mistake bounds of the fea-
ture sharing framework to that of the baseline ap-
proach, which learns each task independently7. In

6The framework proposed by (Evgeniou and Pontil, 2004;
Finkel and Manning, 2009) is a generalization of Eq. (1). It
allows the user to weight each block of features. If we put zero
weight on the shared block, it becomes the baseline approach.
On the other hand, if we put zero weight on all task-specific
blocks, the framework becomes the S+T approach.

7Note that mistake bound results can be generalized to gen-
eralization bound results. See (Zhang, 2002).

order to make the comparison easier, we make some
simplifying assumptions. First, we assume that the
problem contains only two tasks, 1 and 2. We also
assume that ‖w1‖ = ‖w2‖ = a. These assump-
tions greatly reduce the complexity of the analysis
and can give us greater insight into the comparisons.

Following the assumptions and Theorem 1, the
mistake bound for the FE frameworks is

4(2− cos(w1,w2))R2a2/(3µ2) (4)

This line of analysis leads to interesting bound com-
parisons for two cases. In the first case, we assume
that task 1 and task 2 are essentially the same. In the
second, more common case, we assume that they are
different.

First, when we know a priori that task 1 and task
2 are essentially the same, we can combine the train-
ing data from the two tasks and train them as a sin-
gle task. Therefore, given that we do not need to
expand the feature space, the number of mistakes is
now bounded by R2a2/µ2. Note that this bound is
in fact better than (4) with cos(w1,w2) = 1. There-
fore, if we know a priori that these two tasks are the
same, training a single model is better than using the
feature shared approach.

In practice, it is often the case that the two tasks
are not the same. In this case, the number of mis-
takes of an independent approach on both task 1 and
2 will be bounded by the summation of the mistake
bounds of task 1 and task 2. Therefore, using the
independent approach, the number of mistakes for
the perceptron algorithm on both tasks is bounded
by 2R2a2/µ2. The following results can be obtained
by directly comparing the two bounds,

Corollary 1. Assume there exists w1 and w2 which
separate D1 and D2 respectively with functional
margin µ, and ‖w1‖ = ‖w2‖ = a. In this case:
(4) will be smaller than the bound of individual ap-
proach, 2R2a2/µ2, if and only if cos(w1,w2) =
(wT

1 w2)/(‖w1‖‖w2‖) > 1
2 .

If we assume that there is no difference in
P (X) between domains and hence we can treat
cos(w1,w2) as the similarity between two tasks, the
above argument suggests:

• If the two tasks are very different, the baseline
approach (building two models) is better than
FE and S+T.
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• If the tasks are similar enough, FE is better than
baseline and S+T.

• If the tasks are almost the same, S+T becomes
better than FE and baseline.

In Section 4.1, we will evaluate whether these claims
can be justified empirically.

4 Artificial Data Experiment Study

In this section we will present artificial experiments.
We have two primary goals: 1) verifying the analysis
proposed in Section 3, and 2) showing that the repre-
sentation shift will impact the behavior of the FE al-
gorithm. The second point will be verified again in
the real world experiments in Section 5.

Data Generation In the following artificial ex-
periments we experiment with domain adaptation
by generating training and test data for two tasks,
source and target, where we can control the differ-
ence between task definitions. The general proce-
dure can be divided into two steps: 1) generating
weight vectors z1 and z2 (for source and target re-
spectively), and 2) randomly generating labeled in-
stances for training and testing using z1 and z2.

The different experiments start with the same ba-
sic z1 and z2, but then may alter these weights to
introduce task dissimilarities or similarities. The ba-
sic z1 and z2 are both generated by a multivariate
Gaussian distribution with mean z and a diagonal
covariance matrix βI:

z1 ∼ N (z, βI), z2 ∼ N (z, βI),

where N is the normal distribution and z is random
vector with zero mean. Note that z is only used to
generate z1 and z2. There is one parameter, β, that
controls the variance of the Gaussian distribution.
Hence we use β to roughly control the “angle” of z1

and z2. When β is close to zero, z1 and z2 will be
very similar. On the other hand, when β is large, z1

and z2 can be very different. In these experiments,
we vary β between 0.01 and 5 so that we are exper-
imenting only with tasks where the weight the task
difference is the “angle” or cosine between z1 and
z2. Once we obtain the z1 and z2, we normalize
them to the unit length.

After selecting z1 and z2, we then generate la-
beled instances (x, y) for the source task in the fol-
lowing way. For each example x, we randomly gen-
erate n binary features, where each feature has 20%
chance to be active. We then label the example by

y = sign(zT
1 x),

The data for the target task is generated similarly
with z2. In these experiments, we fix the number of
features n to be 500 and generate 100 source train-
ing examples and 40 target training examples, along
with 1000 target testing examples. This matches the
reasonable case in NLP where there are more fea-
tures than training examples and each feature vector
is sparse. In all of the experiments, we report the
averaged testing error rate on the target testing data.

4.1 Experiment 1, FE algorithm
Goal The goal here is to verify our theoretical
analysis in Section 3. Note that we do not introduce
representation shift in this experiment and assume
that both source and target domains use exactly the
same features.

Result Figure 1(a) shows the performance of the
three training algorithms as variance decreases and
thus cosine between weight vectors (or measure of
task similarity) goes to 1. Note that FE labeled adap-
tation framework beats TGT once the task cosine
passes approximately 0.6. Initially FE slightly out-
performs S+T until the tasks are close enough to-
gether that it is better to treat all the data as coming
from one task. Note that while the experiments are
based on the adaptation setting, the results match our
analysis based on the multitask setting in Section 3.

4.2 Experiment 2, Unseen Features
Goal So far we have not considered the difference
in P (X) between domains. In the previous exper-
iment, we used only cosine as our task similarity
measurement to decide what is the best framework.
However, task similarity should consider the differ-
ence in both P (X) and P (Y |X), and the cosine
measurement is not sufficient for this. Here we con-
struct a simple example to show that even a simple
representation shift can change the behavior of the
labeled adaptation framework. This case shows that
S+T can be better than FE even when the tasks are
not similar according to the cosine measurement.
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(b) Shared Features

Figure 1: Artificial Experiment comparing labeled adaptation performance vs. cosine between base weight vectors that defines
two tasks, before and after cross-domain shared features are added. Figure (a) shows results from experiment 1. For FE adaptation
algorithm to work the tasks need to be close (cosine > 0.6), and if the tasks are close enough (cosine ≈ 1, dividing line) then
it is better to just pool source and target training data together (the S+T algorithm). Figure (b) shows results for experiment 3
when shared features are added to the base weight vectors as used in experiment 1. Here the cosine similarity measure is between
the base task weight vectors before the shared features have been added. Both labeled adaptation algorithms effectively use the
shared features to improve over just training on target. With shared features added the dividing line where S+T improves over
FE decreases so even for tasks that are initially further apart, once clusters are added the S+T algorithm does better than FE. Each
point represents the average of 2000 training runs with random initial z1 and z2 generating data.

Result The second experiment deals with the case
where features may appear in only one domain but
should be treated like known features in the other
domain. An example of this are out of vocabulary
words that may not exist in a small target train-
ing task, but have synonyms in the source train-
ing data. In this case if we had features grouping
words (say by word meanings) then we would re-
cover this cross-domain information. In this experi-
ment we want to explore which adaptation algorithm
performs best before these features are applied.

To simulate this case we start with similar weight
vectors z1 and z2 (sampled with variance = 0.00001,
cos(z1,z2) ≈ 1), but then shift some set of dimen-
sions so that they represent features that appear only
in one domain.

z1 = (a1,b1) → z′1 = (0,b1,a1)
z2 = (a2,b2) → z′2 = (a2,b2,0)

By changing the ratio of the size of the dissimilar
subset a to the similar subset b we can make the
two weight vectors z′1 and z′2 more or less similar.
Using these two new weight vectors we can proceed
as above, generating training and testing data.

Figure 2 shows the performance of the three algo-
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Figure 2: Artificial Experiment where unknown features are
included in source or target domains, but not the other. The
simple S+T adaptation framework is best able to exploit the
set of shared features so performs best over the whole space of
similarity in this setting.

rithms on this data as the number of unrelated fea-
tures are decreased. Over the entire range the com-
bined algorithm S+T does better since it more ef-
ficiently exploits the shared similar b subset of the
feature space. When the FE algorithm tries to cre-
ate the shared features, it considers both the similar
subset b and dissimilar subset a. However, since
a should not be shared, FE algorithm becomes less
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effective than the S+T algorithm. See the bound
comparison in Section 3.2 for more intuitions. With
this experiment we have demonstrated that there is
a need to consider label and unlabeled adaptation
frameworks together.

4.3 Experiment 3, Shared Features
Goal A good unlabeled adaptation framework
should try to find features that “work” across do-
mains. However, it is not clear how these newly
added features will impact the behavior of the la-
beled adaptation frameworks. In this experiment, we
show that the new shared features will bring the do-
mains together, and hence make S+T a very strong
adaptation framework.

Result For the third experiment we start with the
same setup as in the first experiment, but then aug-
ment the initial weight vector with additional shared
weights. These shared weights correspond to the in-
troduction of features that appear in both domains
and have the same meaning relative to the tasks, the
ideal result of unlabeled adaptation methods.

To generate this case we again start with z1 and
z2 of varying similarity as in section 4.1, then gen-
erate a random weight vector for shared features and
append this to both weight vectors.

zs ∼ N (0, I), z′′1 = (z1, γzs), z′′2 = (z2, γzs),

where γ is used to put increased importance on the
shared weight vectors by increasing the total weight
of that section relative to the base z1 and z2 subsets.
In our experiments we use 100 shared features to the
500 base features and set γ to 2.

Figure 1(b) shows the performance of the labeled
adaptation algorithms once shared features had been
added. Here the x-axis is the cosine between the
original task weight vectors, demonstrating how the
shared features improve performance on potentially
dissimilar tasks. Whereas in the first experiment
FE does not improve over just training on target data
until the cosine is greater than 0.6, once shared fea-
tures have been added then both FE and S+T use
these features to learn with originally dissimilar
tasks. Furthermore the shared features tend to push
the tasks ‘closer’ so that S+T improves over FE ear-
lier. Comparing to Figure 1(a), there are regions
where before shared features are added it is better

to use FE, and after shared features are added it is
better to use S+T. This shows that labeled adapta-
tion and unlabeled are not independent. Therefore,
it is important to combine these two aspects to see
the real contribution of each adaptation framework.

In these three artificial experiments we have
demonstrated cases where both FE or S+T are
the best algorithm before and after representation
changes like those created with unlabeled adaptation
are imposed. This fact points to the perhaps obvi-
ous conclusion that there is not a single best adapta-
tion algorithm, and the determination of specific best
practices depends on task similarity (in both P (X)
and P (Y |X)), especially after being brought closer
together with other adaptation approaches. If there
is one common trend it is that often once two tasks
have been brought close together using a shared rep-
resentation, then the tasks are now close enough
such that the simple S+T algorithm does well.

5 Real World Experiments

In Section 4, we have shown through artificial data
experiments that labeled and unlabeled adaptation
algorithms are not independent. In this section, we
focus on experiments with real datasets.

For the labeled adaptation algorithms, we have the
following options:

• TGT: Only uses target labeled training dataset.

• FE: Uses both labeled datasets.

• FE+: Uses both labeled datasets. A modifica-
tion of the FE algorithm, equivalent to multi-
plying the “shared” part of the FE feature vec-
tor (Eq. (1)) by 10 (Finkel and Manning, 2009).

• S+T: Uses both source and target labeled
datasets to train a single model with all labeled
data directly.

Throughout all of our experiments, we use SVMs
trained with a modified java implementation8 of
LIBLINEAR as our underlying learning classi-
fier (Hsieh et al., 2008). For the tasks that require
structures, we model each individual decision using

8Our code is modified from the version available on http:
//www.bwaldvogel.de/liblinear-java/
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Algorithm TGT FE FE+ S+T
SRC labeled data? no yes
Target labeled data Token F1
(a) MUC7 Dev 58.6 70.5 74.3 73.1
(a) + cluster 77.5 82.5 83.3 83.3
(b) MUC7 Train 73.0 78.2 80.1 78.7
(b) + cluster 85.4 86.4 86.2 86.5

Table 2: NER Experiments. We bold face the best accuracy
in a row and underline the runner up. Both unlabeled adapta-
tion algorithms (adding cluster features) and labeled adaptation
algorithm (using source labeled data) help the performance sig-
nificantly. Moreover, adding cluster-like features also changes
the behavior of the labeled adaptation algorithms. Note that
after adding cluster features, S+T becomes quite competitive
with (or slightly better than) the FE+ approach. The size of
MUC7 develop set is roughly 20% of the size of the MUC7
training set.

a local SVM classifier then make our prediction us-
ing a greedy approach from left to right. While we
could use a more complex model such as Condi-
tional Random Field (Lafferty et al., 2001), as we
will see later, our simple model generates state-of-
the-art results for many tasks. Regarding parameter
selection, we selected the SVM regularization pa-
rameter for the baseline model (TGT) and then fix it
for all algorithms9.

Named Entity Recognition Our first task is
Named Entity Recognition (NER). The source do-
main is from the CoNLL03 shared task (Tjong
Kim Sang and De Meulder, 2003) and the target do-
main is from the MUC7 dataset. The goal of this
adaptation system is to maximize the performance
on the test data of MUC7 dataset with CoNLL train-
ing data and (some) MUC7 labeled data. As an unla-
beled adaptation method to address feature sparsity,
we add cluster-like features based on the gazetteers
and word clustering resources used in (Ratinov and
Roth, 2009) to bridge the source and target domain.
We experiment with both MUC development and
training set as our target labeled sets.

The experimental results are in Table 2. First, no-
tice that addressing the feature sparsity issue helps
the performance significantly. Adding cluster-like

9We use L2-hinge loss for all of the experiments, with
C = 2−4 for NER experiments and C = 2−5 for the PSD
experiments.

features improves the Token-F1 by around 10%. On
the other hand, adding target labeled data also helps
the results significantly. Moreover, using both tar-
get labeled data and cluster-like shared representa-
tion are mutually beneficial in all cases.

Importantly, adding cluster-like features changes
the behavior of the labeled adaptation algorithms.
When the cluster-like features are not added, the
FE+ algorithm is in general the best labeled adap-
tation framework. This result agrees with the re-
sults showed in (Finkel and Manning, 2009), where
the authors show that FE+ is the best labeled adap-
tation framework in their settings. However, after
adding the cluster-like features, the simple S+T ap-
proach becomes very competitive to both FE and
FE+. This matches our analysis in Section 4: re-
solving features sparsity will change the behavior of
labeled adaptation frameworks.

We compare the simple S+T algorithm with
cluster-like features to other published results on
adapting from CoNLL dataset to MUC7 dataset in
table 3. Past works on this setting often only fo-
cus on one class of adaption approach. For example,
(Ratinov and Roth, 2009) only use the cluster-like
features to address the feature sparsity problem, and
(Finkel and Manning, 2009) only use target labeled
data without using gazetteers and word-cluster in-
formation. Notice that because of combining two
classes of adaption algorithms, our approach is sig-
nificantly better than these two systems10.

Preposition Sense Disambiguation We also test
the combination of unlabeled and labeled adaption
on the task of Preposition Sense Disambiguation.
Here the data contains multiple prepositions where
each preposition has many different senses. The
goal is to predict the right sense for a given prepo-
sition in the testing data. The source domain is the
SemEval 2007 preposition WSD Task and the target
domain is from the dataset annotated in (Dahlmeier
et al., 2009). Our feature design mainly comes
from (Tratz and Hovy, 2009) (who do not evalu-
ate their system on our target data). As our un-

10The work (Ratinov and Roth, 2009) also combines their
system with several document-level features. While it is possi-
ble to add these features in our system, we do not include any
global features for the sake of simplicity. Note that our sys-
tem is competitive to (Ratinov and Roth, 2009) even though our
system does not use global features.
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Systems Cluster? TGT? P.F1 T.F1
Our NER y y 84.1 86.5
FM09 n y 79.98 N/A
RR09 y n N/A 83.2
RR09 + global y n N/A 86.2

Table 3: Comparisons between different NER systems. P.F1
and T.F1 represent the phrase-level and token-level F1 score,
respectively. We use “Cluster?” to indicate if cluster features
are used and use “TGT?” to indicate if target labeled data is
used. Previous systems often only use one class of adaptation
algorithms. Using both adaptation aspects makes our system
perform significantly better than FM09 and RR09.

Algorithm TGT FE FE+ S+T
SRC labeled data? no yes
Target labeled data Accuracy
10% Tgt 43.8 48.2 51.3 49.7
10% Tgt + Cluster 44.9 50.5 51.8 52.0
100% Tgt 59.5 60.5 60.3 61.2
100% Tgt + Cluster 61.3 62.0 61.2 62.1

Table 4: Preposition Sense Disambiguation. We mark the best
accuracy in a row using the bold font and underline the runner
up. Note that both adding cluster features and adding source la-
beled data help the performance significantly. Moreover, adding
clusters also changes the behavior of the labeled adaptation al-
gorithms.

labeled adaptation approach we augment all word
based features with cluster information from sepa-
rately generated hierarchical Brown clusters (Brown
et al., 1992).

The experimental results are in Table 4. Note that
we see phenomena similar to what happened in the
NER experiments. First, both labeled and unlabeled
adaptation improves the system. When only 10% of
the target labeled data is used, the inclusion of the
source labeled data helps significantly. When there
is more labeled data, labeled and unlabeled adaption
have similar impact. Again, using unlabeled adap-
tion changes the behavior of the labeled adaption al-
gorithms.

In Table 5, we compare our system to (Dahlmeier
et al., 2009), who do not use the SemEval data but
jointly train their preposition sense disambiguation
system with a semantic role labeling system. With
both labeled and unlabeled adaption, our system is
significantly better.

Systems ACC
Our PSD (S+T and cluster) 62.1
DNS09 56.5
DNS09 + SRL 58.8

Table 5: Comparison between different PSD systems. Note
that after adding cluster features and source labeled data with
S+T approach, our system outperforms the state-of-the-art sys-
tem proposed in (Dahlmeier et al., 2009), even though they
jointly learn a PSD and SRL system together.

6 Conclusion

In this paper, we point out the necessities of com-
bining labeled and unlabeled adaptation algorithms.
We analyzed the FE algorithm both theoretically
and empirically, demonstrating that it requires both
a minimal amount of task similarity to work, and
past a certain level of similarity other, simpler ap-
proaches are better. More importantly, through arti-
ficial data experiments we found that applying unla-
beled adaptation algorithms may change the behav-
ior of labeled adaptation algorithms as representa-
tions change, and hence affect the choice of labeled
adaptation algorithm. Experiments with real-world
datasets confirmed that combinations of both adap-
tation methods provide the best results, often allow-
ing the use of simple labeled adaptation approaches.
In the future, we hope to develop a joint algorithm
which addresses both labeled and unlabeled adapta-
tion at the same time.
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