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Abstract

This work concerns automatic topic segmen-
tation of email conversations. We present a
corpus of email threads manually annotated
with topics, and evaluate annotator reliabil-
ity. To our knowledge, this is the first such
email corpus. We show how the existing topic
segmentation models (i.e., Lexical Chain Seg-
menter (LCSeg) and Latent Dirichlet Alloca-
tion (LDA)) which are solely based on lex-
ical information, can be applied to emails.
By pointing out where these methods fail and
what any desired model should consider, we
propose two novel extensions of the models
that not only use lexical information but also
exploit finer level conversation structure in a
principled way. Empirical evaluation shows
that LCSeg is a better model than LDA for
segmenting an email thread into topical clus-
ters and incorporating conversation structure
into these models improves the performance
significantly.

1 Introduction

With the ever increasing popularity of emails and
web technologies, it is very common for people to
discuss issues, events, agendas or tasks by email.
Effective processing of the email contents can be
of great strategic value. In this paper, we study
the problem of topic segmentation for emails, i.e.,
grouping the sentences of an email thread into a
set of coherent topical clusters. Adapting the stan-
dard definition of topic (Galley et al., 2003) to con-
versations/emails, we consider a topic is something
about which the participant(s) discuss or argue or

express their opinions. For example, in the email
thread shown in Figure 1, according to the major-
ity of our annotators, participants discuss three top-
ics (e.g., ‘telecon cancellation’, ‘TAG document’,
and ‘responding to I18N’). Multiple topics seem to
occur naturally in social interactions, whether syn-
chronous (e.g., chats, meetings) or asynchronous
(e.g., emails, blogs) conversations. In multi-party
chat (Elsner and Charniak, 2008) report an average
of 2.75 discussions active at a time. In our email cor-
pus, we found an average of 2.5 topics per thread.

Topic segmentation is often considered a pre-
requisite for other higher-level conversation analy-
sis and applications of the extracted structure are
broad, encompassing: summarization (Harabagiu
and Lacatusu, 2005), information extraction and or-
dering (Allan, 2002), information retrieval (Dias et
al., 2007), and intelligent user interfaces (Dredze et
al., 2008). While extensive research has been con-
ducted in topic segmentation for monologues (e.g.,
(Malioutov and Barzilay, 2006), (Choi et al., 2001))
and synchronous dialogs (e.g., (Galley et al., 2003),
(Hsueh et al., 2006)), none has studied the problem
of segmenting asynchronous multi-party conversa-
tions (e.g., email). Therefore, there is no reliable an-
notation scheme, no standard corpus, and no agreed-
upon metrics available. Also, it is our key hypothe-
sis that, because of its asynchronous nature, and the
use of quotation (Crystal, 2001), topics in an email
thread often do not change in a sequential way. As a
result, we do not expect models which have proved
successful in monologue or dialog to be as effective
when they are applied to email conversations.

Our contributions in this paper aim to remedy
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these problems. First, we present an email corpus
annotated with topics and evaluate annotator agree-
ment. Second, we adopt a set of metrics to mea-
sure the local and global structural similarity be-
tween two annotations from the work on multi-party
chat disentanglement (Elsner and Charniak, 2008).
Third, we show how the two state-of-the-art topic
segmentation methods (i.e., LCSeg and LDA) which
are solely based on lexical information and make
strong assumptions on the resulting topic models,
can be effectively applied to emails, by having them
to consider, in a principled way, a finer level struc-
ture of the underlying conversations. Experimen-
tal results show that both LCSeg and LDA benefit
when they are extended to consider the conversa-
tional structure. When comparing the two methods,
we found that LCSeg is better than LDA and this
advantage is preserved when they are extended to
incorporate conversational structure.

2 Related Work

Three research areas are directly related to our study:
a) text segmentation models, b) probabilistic topic
models, and c) extracting and representing the con-
versation structure of emails.

Topic segmentation has been extensively studied
both for monologues and dialogs. (Malioutov and
Barzilay, 2006) uses the minimum cut model to seg-
ment spoken lectures (i.e., monologue). They form a
weighted undirected graph where the vertices repre-
sent sentences and the weighted links represent the
similarity between sentences. Then the segmenta-
tion problem can be solved as a graph partitioning
problem, where the assumption is that the sentences
in a segment should be similar, while sentences in
different segments should be dissimilar. They op-
timize the ‘normalized cut’ criterion to extract the
segments. In general, the minimization of the nor-
malized cut criterion is NP-complete. However, the
linearity constraint on text segmentation for mono-
logue allows them to find an exact solution in poly-
nomial time. In our extension of LCSeg, we use
a similar method to consolidate different segments;
however, in our case the linearity constraint is ab-
sent. Therefore, we approximate the optimal solu-
tion by spectral clustering (Shi and Malik, 2000).
Moving to the task of segmenting dialogs, (Galley

et al., 2003) first proposed the lexical chain based
unsupervised segmenter (LCSeg) and a supervised
segmenter for segmenting meeting transcripts. Their
supervised approach uses C4.5 and C4.5 rules binary
classifiers with lexical and conversational features
(e.g., cue phrase, overlap, speaker, silence, and lex-
ical cohesion function). Their supervised approach
performs significantly better than LCSeg. (Hsueh
et al., 2006) follow the same approaches as (Galley
et al., 2003) on both manual transcripts and ASR
output of meetings. They perform segmentation at
both coarse (topic) and fine (subtopic) levels. For
the topic level, they achieve similar results as (Gal-
ley et al., 2003), with the supervised approach out-
performing LCSeg. However, for the subtopic level,
LCSeg performs significantly better than the super-
vised one. In our work, we show how LCSeg per-
forms when applied to the temporal ordering of the
emails in a thread. We also propose its extension to
leverage the finer conversation structure of emails.

The probabilistic generative topic models, such
as LDA and its variants (e.g., (Blei et al., 2003),
(Steyvers and Griffiths, 2007)), have proven to be
successful for topic segmentation in both mono-
logue (e.g., (Chen et al., 2009)) and dialog (e.g.,
(Georgescul et al., 2008)). (Purver et al., 2006) uses
a variant of LDA for the tasks of segmenting meet-
ing transcripts and extracting the associated topic
labels. However, their approach for segmentation
does not perform better than LCSeg. In our work,
we show how the general LDA performs when ap-
plied to email conversations and describe how it can
be extended to exploit the conversation structure of
emails.

Several approaches have been proposed to cap-
ture an email conversation . Email programs (e.g.,
Gmail, Yahoomail) group emails into threads using
headers. However, our annotations show that top-
ics change at a finer level of granularity than emails.
(Carenini et al., 2007) present a method to capture an
email conversation at the finer level by analyzing the
embedded quotations in emails. A fragment quota-
tion graph (FQG) is generated, which is shown to be
beneficial for email summarization. In this paper, we
show that topic segmentation models can also bene-
fit significantly from this fine conversation structure
of email threads.
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3 Corpus and Evaluation Metrics

There are no publicly available email corpora anno-
tated with topics. Therefore, the first step was to
develop our own corpus. We have annotated the
BC3 email corpus (Ulrich et al., 2008) with top-
ics1. The BC3 corpus, previously annotated with
sentence level speech acts, meta sentence, subjectiv-
ity, extractive and abstractive summaries, is one of a
growing number of corpora being used for email re-
search. The corpus contains 40 email threads from
the W3C corpus2. It has 3222 sentences and an av-
erage of 5 emails per thread.

3.1 Topic Annotation

Topic segmentation in general is a nontrivial and
subjective task (Hsueh et al., 2006). The conver-
sation phenomenon called ‘Schism’ makes it even
more challenging for conversations. In schism a
new conversation takes birth from an existing one,
not necessarily because of a topic shift but because
some participants refocus their attention onto each
other, and away from whoever held the floor in the
parent conversation and the annotators can disagree
on the birth of a new topic (Aoki et al., 2006). In the
example email thread shown in Figure 1, a schism
takes place when people discuss about ‘responding
to I18N’. All the annotators do not agree on the fact
that the topic about ‘responding to I18N’ swerves
from the one about ‘TAG document’. The annota-
tors can disagree on the number of topics (i.e., some
are specific and some are general), and on the topic
assignment of the sentences3. To properly design an
effective annotation manual and procedure we per-
formed a two-phase pilot study before carrying out
the actual annotation. For the pilot study we picked
five email threads randomly from the corpus. In the
first phase of the pilot study we selected five uni-
versity graduate students to do the annotation. We
then revised our instruction manual based on their
feedback and the source of disagreement found. In

1The BC3 corpus had already been annotated for email sum-
marization, speech act recognition and subjectivity detection.
This new annotation with topics will be also made publicly
available at http://www.cs.ubc.ca/labs/lci/bc3.html

2http://research.microsoft.com/en-
us/um/people/nickcr/w3c-summary.html

3The annotators also disagree on the topic labels, however
in this work we are not interested in finding the topic labels.

the second phase we tested with a university postdoc
doing the annotation.

For the actual annotation we selected three com-
puter science graduates who are also native speakers
of English. They annotated 39 threads of the BC3
corpus4. On an average they took seven hours to an-
notate the whole dataset.

BC3 contains three human written abstract sum-
maries for each email thread. With each email thread
the annotators were also given an associated human
written summary to give a brief overview of the cor-
responding conversation. The task of finding topics
was carried out in two phases. In the first phase, the
annotators read the conversation and the associated
summary and list the topics discussed. They spec-
ify the topics by a short description (e.g., “meeting
agenda”, “location and schedule”) which provides a
high-level overview of the topic. The target number
of topics and the topic labels were not given in ad-
vance and they were instructed to find as many top-
ics as needed to convey the overall content structure
of the conversation.

In the second phase the annotators identify the
most appropriate topic for each sentence. However,
if a sentence covers more than one topic, they were
asked to label it with all the relevant topics according
to their order of relevance. If they find any sentence
that does not fit into any topic, they are told to label
those as the predefined topic ‘OFF-TOPIC’. Wher-
ever appropriate they were also asked to make use of
two other predefined topics: ‘INTRO’ and ‘END’.
INTRO (e.g., ‘hi’, ‘hello’) signifies the section (usu-
ally at the beginning) of an email that people use to
begin their email. Likewise, END (e.g., ‘Cheers’,
‘Best’) signifies the section (usually at the end) that
people use to end their email. The annotators car-
ried out the task on paper. We created the hierar-
chical thread view (‘reply to’ relation) using ‘TAB’s
(indentation) and each participant’s name is printed
in a different color as in Gmail.

Table 1 shows some basic statistics computed on
the three annotations of the 39 email threads5. On

4The annotators in the pilot and in the actual study were dif-
ferent so we could reuse the threads used in pilot study. How-
ever, one thread on which the pilot annotators agree fully, was
used as an example in the instruction manual. This gives 39
threads left for the actual study.

5We got 100% agreement on the two predefined topics ‘IN-
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average we have 26.3 sentences and 2.5 topics per
thread. A topic contains an average of 12.6 sen-
tences. The average number of topics active at a
time is 1.4. The average entropy is 0.94 and cor-
responds (as described in detail in the next section)
to the granularity of the annotation. These statistics
(number of topics and topic density) indicate that the
dataset is suitable for topic segmentation.

Mean Max Min
Number of sentences 26.3 55 13
Number of topics 2.5 7 1
Avg. topic length 12.6 35 3
Avg. topic density 1.4 3.1 1
Entropy 0.94 2.7 0

Table 1: Corpus statistics of human annotations

Metrics Mean Max Min
1-to-1 0.804 1 0.31
lock 0.831 1 0.43
m-to-1 0.949 1 0.61

Table 2: Annotator agreement in the scale of 0 to 1

3.2 Evaluation Metrics
In this section we describe the metrics used to com-
pare different human annotations and system’s out-
put. As different annotations (or system’s output)
can group sentences in different number of clusters,
metrics widely used in classification, such as the κ
statistic, are not applicable. Again, our problem of
topic segmentation for emails is not sequential in na-
ture. Therefore, the standard metrics widely used in
sequential topic segmentation for monologues and
dialogs, such as Pk and WindowDiff(WD), are
also not applicable. We adopt the more appropri-
ate metrics 1-to-1, lock and m-to-1, introduced re-
cently by (Elsner and Charniak, 2008). The 1-to-1
metric measures the global similarity between two
annotations. It pairs up the clusters from the two
annotations in a way that maximizes (globally) the
total overlap and then reports the percentage of over-
lap. lock measures the local agreement within a con-

TRO’ and ‘END’. In all our computation (i.e., statistics, agree-
ment, system’s input) we excluded the sentences marked as ei-
ther ‘INTRO’ or ‘END’

text of k sentences. To compute the loc3 metric for
the m-th sentence in the two annotations, we con-
sider the previous 3 sentences: m-1, m-2 and m-3,
and mark them as either ‘same’ or ‘different’ de-
pending on their topic assignment. The loc3 score
between two annotations is the mean agreement on
these ‘same’ or ‘different’ judgments, averaged over
all sentences. We report the agreement found in 1-
to-1 and lock in Table 2. In both of the metrics we
get high agreement, though the local agreement (av-
erage of 83%) is little higher than the global agree-
ment (average of 80%).

If we consider the topic of a randomly picked sen-
tence as a random variable then its entropy measures
the level of detail in an annotation. If the topics are
evenly distributed then the uncertainty (i.e., entropy)
is higher. It also increases with the increase of the
number of topics. Therefore, it is a measure of how
specific an annotator is and in our dataset it varies
from 0 6 to 2.7. To measure how much the annota-
tors agree on the general structure we use the m-to-1
metric. It maps each of the source clusters to the
single target cluster with which it gets the highest
overlap, then computes the total percentage of over-
lap. This metric is asymmetrical and not a measure
to be optimized7, but it gives us some intuition about
specificity (Elsner and Charniak, 2008). If one an-
notator divides a cluster into two clusters then, the
m-to-1 metric from fine to coarse is 1. In our corpus
by mapping from fine to coarse we get an m-to-1
average of 0.949.

4 Topic Segmentation Models

Developing automatic tools for segmenting an email
thread is challenging. The example email thread in
Figure 1 demonstrates why. We use different col-
ors and fonts to represent sentences of different top-
ics8. One can notice that email conversations are
different from written monologues (e.g., newspaper)
and dialogs (e.g., meeting, chat) in various ways.
As a communication media Email is distributed (un-
like face to face meeting) and asynchronous (unlike

60 uncertainty happens when there is only one topic found
7hence we do not use it to compare our models.
82 of the 3 annotators agree on this segmentation. Green rep-

resents topic 1 (‘telecon cancellation’), orange indicates topic 2
(‘TAG document’) and magenta represents topic 3 (‘responding
to I18N’)
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chat), meaning that different people from different
locations can collaborate at different times. There-
fore, topics in an email thread may not change in
sequential way. In the example, we see that topic 1
(i.e., ‘telecon cancellation’) is revisited after some
gaps.

The headers (i.e., subjects) do not convey much
information and are often misleading. In the exam-
ple thread, participants use the same subject (i.e.,
20030220 telecon) but they talk about ‘responding
to I18N’ and ‘TAG document’ instead of ‘telecon
cancellation’. Writing style varies among partici-
pants, and many people tend to use informal, short
and ungrammatical sentences. These properties of
email limit the application of techniques that have
been successful in monologues and dialogues.

LDA and LCSeg are the two state-of-the-art mod-
els for topic segmentation of multi-party conversa-
tion (e.g., (Galley et al., 2003), (Hsueh et al., 2006),
(Georgescul et al., 2008)). In this section, at first we
describe how the existing models of topic segmen-
tation can be applied to emails. We then point out
where these methods fail and propose extensions of
these basic models for email conversations.

4.1 Latent Dirichlet Allocation (LDA)
Our first model is the probabilistic LDA model
(Steyvers and Griffiths, 2007). This model relies on
the fundamental idea that documents are mixtures of
topics, and a topic is a multinomial distribution over
words. The generative topic model specifies the fol-
lowing distribution over words within a document:

P (wi) =
T∑

j=1

P (wi|zi = j)P (zi = j)

Where T is the number of topics. P (wi|zi = j) is
the probability of word wi under topic j and P (zi =
j) is the probability that jth topic was sampled for
the ith word token. We refer the multinomial dis-
tributions φ(j) = P (w|zi = j) and θ(d) = P (z)
as topic-word distribution and document-topic dis-
tribution respectively. (Blei et al., 2003) refined this
basic model by placing a Dirichlet (α) prior on θ.
(Griffiths and Steyvers, 2003) further refined it by
placing a Dirichlet (β) prior on φ. The inference
problem is to find φ and θ given a document set.
Variational EM has been applied to estimate these

two parameters directly. Instead of estimating φ and
θ, one can also directly estimate the posterior distri-
bution over z = P (zi = j|wi) (topic assignments
for words). One efficient estimation technique uses
Gibbs sampling to estimate this distribution.

This framework can be directly applied to an
email thread by considering each email as a doc-
ument. Using LDA we get z = P (zi = j|wi)
(i.e., topic assignments for words). By assuming the
words in a sentence occur independently we can esti-
mate the topic assignments for sentences as follows:

P (zi = j|sk) =
∏

wi∈sk

P (zi = j|wi)

where, sk is the kth sentence for which we can
assign the topic by: j∗ = argmaxjP (zi = j|sk).

4.2 Lexical Chain Segmenter (LCSeg)

Our second model is the lexical chain based seg-
menter LCSeg, (Galley et al., 2003). LCSeg as-
sumes that topic shifts are likely to occur where
strong term repetitions start and end9. LCSeg at first
computes ‘lexical chains’ for each non-stop word
based on word repetitions. It then ranks the chains
according to two measures: ‘number of words in the
chain’ and ‘compactness of the chain’. The more
compact (in terms of number of sentences) and the
more populated chains get higher scores.

The algorithm then works with two adjacent anal-
ysis windows, each of a fixed size k which is em-
pirically determined. For each sentence boundary,
LCSeg computes the cosine similarity (or lexical co-
hesion function) at the transition between the two
windows. Low similarity indicates low lexical cohe-
sion, and a sharp change signals a high probability
of an actual topic boundary. This method is similar
to TextTiling (Hearst, 1997) except that the similar-
ity is computed based on the scores of the ‘lexical
chains’ instead of ‘term counts’. In order to apply
LCSeg on email threads we arrange the emails based
on their temporal relation (i.e., arrival time) and ap-
ply the LCSeg algorithm to get the topic boundaries.

9One can also consider other lexical semantic relations (e.g.,
synonym, hypernym, hyponym) in lexical chaining. However,
Galley et al., (Galley et al., 2003) uses only repetition relation
as previous research results (e.g., (Choi, 2000)) account only
for repetition.
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From: Brian To: rdf core Subject: 20030220 telecon Date: Tue Feb 17 13:52:15 
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     From: Jeremy To: Brian Subject: Re: 20030220 telecon Date: Wed Feb 18 05:18:10 
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       I think that means we will not formally respond to I18N on the charmod comments, shall I tell them          [d] 
      that we do not intend to, but that the e-mail discussion has not shown any disagreement.  

e.g. I have informed the RDF Core WG of your decisions, and no one has indicated unhappiness                [e] 
- however we have not formally discussed these issues;  and are not likely to.  

 
From: Brian To: Jeremy Subject: Re: 20030220 telecon Date: Wed Feb 18 13:16:21  
 
> I think that means we will not formally respond to I18N on the charmod comments, shall  
> I tell them that we do not intend to, but that the e-mail discussion has not shown any disagreement.  
Ah. Is this a problem. Have I understood correctly they are going through last call again anyway.                [f] 
> e.g. I have informed the RDF Core WG of your decisions, and no one has indicated unhappiness  
> - however we have not formally discussed these issues; and are not likely to.  
When is the deadline? I'm prepared to decide by email so we can formally respond by email.                       [g] 
 
From: Pat To: Brian Subject: Re: 20030220 telecon Date: Wed Feb 18 16:56:26 
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From: Jeremy To: Brian Subject: Re: 20030220 telecon Date: Thu Feb 19 05:42:21 
 
> Ah. Is this a problem.  
> Have I understood correctly they are going through last call again anyway.  
Yes - I could change my draft informal response to indicate that if we have any other formal                        [j] 
response it will be included in our LC review comments on their new documents.  
> When is the deadline? 
> I'm prepared to decide by email so we can formally respond by email.  
Two weeks from when I received the message ....i.e. during Cannes                                                               [k] 
-I suspect that is also the real deadline, in that I imagine they want to make their final decisions at         
Cannes.  
I am happy to draft a formal response that is pretty vacuous, for e-mail vote.                                                  [l] 
  
 From: Brian To: Pat Subject: Re: 20030220 telecon Date: Thu Feb 19 06:10:53 
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>Likewise, whether or not anyone else in the WG agrees with any of my own personal comments, …[m] 
       ! 
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 From: Brian To: Jeremy  

       Subject: Re: 20030220 telecon Date: Thu Feb 19 10:06:57 
          
         > I am happy to draft a formal response that is pretty vacuous, for e-mail vote.  
         Please do.                                    [o]  

Figure 1: Sample thread from the BC3 corpus. Each dif-
ferent color/font indicates a different topic. Right most
column specifies the fragments (sec 4.4).

Figure 2: Fragment Quotation Graph for emails

4.3 Limitation of Existing Approaches

The main limitation of the two models discussed
above is that they take the bag-of-words (BOW)
assumption without considering the fact that an
email thread is a multi-party, asynchronous conver-
sation10. The only information relevant to LDA is
term frequency. LCSeg considers both term fre-
quency and how closely the terms occur in a docu-
ment. These models do not consider the word order,
syntax and semantics. However, several improve-
ments of LDA over the BOW approach have been
proposed. (Wallach, 2006) extends the model be-
yond BOW by considering n-gram sequences. (Grif-
fiths et al., 2005) presents an extension of the topic
model that is sensitive to word-order and automat-
ically learns the syntactic as well as semantic fac-
tors that guide word choice. (Boyd-Graber and Blei,
2010) describes another extension to consider syn-
tax of the text. As described earlier, one can also
incorporate lexical semantics (i.e., synonym, hyper-
nym, hyponym) into the LCSeg model. However,
we argue that these models are still inadequate for
finding topics in emails especially when topics are
closely related (e.g., ‘extending the meeting’ and
‘scheduling the meeting’) and distributional varia-
tions are subtle. To better identify the topics in an
email thread we need to consider the email specific
conversation features (e.g., reply-to relation, usage
of quotations). As can be seen in the example (Fig-
ure 1), people often use quotations to talk about the
same topic. In fact in our corpus we found an av-
erage quotation usage of 6.44 per thread. Therefore,

10though in LCSeg we provide minimal conversation struc-
ture in the form of temporal relation between emails.
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we need to leverage this useful information in a prin-
cipled way to get the best out of our models. Specif-
ically, we need to capture the conversation structure
at the fragment (quotation) level and to incorporate
this structure into our models.

In the next section, we describe how one can cap-
ture the conversation structure at the fragment level
in the form of Fragment Quotation Graph (hence-
forth, FQG). In Section 4.5 and 4.6 respectively, we
show how the LDA and LCSeg models can be ex-
tended so that they take this conversation structure
into account for topic segmentation.

4.4 Extracting Conversation Structure
We demonstrate how to build a FQG through the ex-
ample email thread involving 7 emails shown in Fig-
ure 1. For convenience we do not show the real con-
tent but abbreviate them as a sequence of fragments.

In the first pass by processing the whole thread
we identify the new (i.e., quotation depth 0) and
quoted (i.e., quotation depth > 0) fragments based
on the usage of quotation (>) marks. For instance,
email E3 contains two new fragments (f, g), and
two quoted fragments (d, e) of depth 1. E2 contains
abc and de. Then in the second step, we compare the
fragments with each other and based on the overlap
we find the distinct fragments. If necessary we split
the fragments in this step. For example, de in E2 is
divided into d and e distinct fragments when com-
pared with the fragments of E3. This process gives
15 distinct fragments which constitute the vertices
of the FQG. In the third step, we compute the edges,
which represent referential relations between frag-
ments. For simplicity we assume that any new frag-
ment is a potential reply to its neighboring quoted
fragments. For example, for the fragments of E4 we
create two edges from h ((h,a),(h,b)) and one edge
from i ((i,b)). We then remove the redundant edges.
In E6 we found the edges (n,h), (n,a) and (n,m). As
(h,a) is already there we exclude (n,a). The FQG
with all the redundant edges removed is shown at the
right in Figure 2. If an email does not contain quotes
then the fragments of that email are connected to the
fragments of the source email to which it replies.

The advantage of the FQG is that it captures the
conversation at finer granularity level in contrast to
the structure found by the ‘reply-to’ relation at the
email level, which would be merely a sequence from

E1 to E7 in this example. Another advantage of
this structure is that it allows us to find the ‘hidden
fragments’. Hidden fragments are quoted fragments
(shaded fragment m in fig 2 which corresponds to
the fragment made bold in fig 1), whose original
email is missing in the user’s inbox. (Carenini et
al., 2007) study this phenomenon and its impact on
email summarization in detail.

4.5 Regularizing LDA with FQG
The main advantage of the probabilistic (Bayesian)
models is that they allow us to incorporate multiple
knowledge sources in a coherent way in the form of
priors (or regularizer). We want to regularize LDA
in a way that will force two sentences in the same or
adjacent fragments to fall in the same topical cluster.
The first step forwards this aim is to regularize the
topic-word distribution with a word network such
that two connected words get similar topic distribu-
tions. Then we can easily extend it to fragments. In
this section, at first we describe how one can regu-
larize the LDA model with a word network, then we
extend this by regularizing LDA with FQG.

Assume we are given a word network as an undi-
rected graph with nodes (V ) representing the words
and the edges (E) representing the links between
words. We want to regularize the LDA model such
that two connected words u, v have similar topic-
word distributions (i.e., φ(u)

j ≈ φ(v)
j for j = 1 . . . T ).

Note that the standard conjugate Dirichlet prior on
φ is limited in that all words share a common vari-
ance parameter, and are mutually independent ex-
cept normalization constraint (Minka, 1999). There-
fore it does not allow us to encode this knowledge.
Very recently, (Andrzejewski et al., 2009) shows
how to encode ‘must-link’ and ‘cannot-link’ (be-
tween words) into the LDA model by using a Dirich-
let Forest prior. We reimplemented this model; how-
ever, we only use its capability of encoding ‘must-
links’. Therefore, we just illustrate how to encode
‘must-links’ here. Interested readers can see (An-
drzejewski et al., 2009) for the method of encoding
‘cannot-links’.

Must links such as (a, b), (b, c), or (x, y) in Fig-
ure 3(A) can be encoded into the LDA model by us-
ing a Dirichlet Tree (henceforth, DT) prior. Like the
traditional Dirichlet, DT is also a conjugate to the
multinomial but under a different parameterization.
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Instead of representing a multinomial sample as the
outcome of a K-sided die, in this representation we
represent a sample as the outcome of a finite stochas-
tic process. The probability of a leaf is the product of
branch probabilities leading to that leaf. The words
constitute the leaves of the tree.

DT distribution is the distribution over leaf prob-
abilities. Let ωn be the DT edge weight leading into
node n, C(n) be the children of node n, L be the
leaves of the tree, I the internal nodes, and L(n)
be the leaves in the subtree under n. We gener-
ate a sample φk from Dirichlet Tree(Ω) by draw-
ing a multinomial at each internal node i ∈ I from
Dirichlet(ωC(i)) (i.e., the edge weights from i to
its children). The probability density function of
DT(φk|Ω) is given by:

DT (φk|Ω) ≈
(∏

l∈L φ
kωl−1

l

)(∏
i∈I

(∑
j∈L(i) φ

k
j

)∆(i)
)

Here ∆(i) = ωi −
∑

j∈C(i) ω
j (i.e., the differ-

ence between the in-degree and out-degree of inter-
nal node i. Note that if ∆(i) = 0 for all i ∈ I , then
the DT reduces to the typical Dirichlet distribution.

Suppose we have the following (Figure 3(A))
word network. The network can be decomposed
into a collection of chains (e.g., (a,b,c), (p), and
(x,y)). For each chain having number of elements
more than one (e.g., (a,b,c), (x,y)), we have a subtree
(see Figure 3(B)) in the DT with one internal node
(blank in figure) and the words as leaves. We assign
λβ as the weights of these edges where λ is the reg-
ularization strength and β is the hyperparameter of
the symmetric Dirichlet prior on φ. The root node of
the Dirichlet tree then connects to the internal node i
with weight |L(i)|β. The other nodes (words) which
form single element chains (e.g, (p)) are connected
to the root directly with weight β. Notice that when
λ = 1 (i.e., no regularization), ∆(i) = 0 and our
model reduces to the original LDA. By tuning λ we
control the strength of regularization.

Figure 3: Incorporating word network into DT

To regularize LDA with FQG, we form the word
network where a word is connected to the words in
the same or adjacent fragments. Specifically, if word
wi ∈ fragx and word wj ∈ fragy (wi 6= wj), we
create a link (wi, wj) if x = y or (x, y) ∈ E, where
E is the set of edges of the FQG. Implicitly by doing
this we want two sentences in the same or adjacent
fragments to have similar topic distributions, and fall
in the same topical cluster.

4.6 LCSeg with FQG
If we examine the FQG carefully, different paths
(considering the fragments of the first email as root
nodes) can be interpreted as subconversations. As
we walk down a path topic shifts may occur along
the pathway. We incorporate FQG into the LCSeg
model in three steps. First, we extract the paths of
a FQG. We then apply LCSeg algorithm on each of
the extracted paths separately. This process gives the
segmentation decisions along the paths of the FQG.
Note that a fragment can be in multiple paths (e.g.,
f , g, in Figure 2) which will cause its sentences to
be in multiple segments found by LCSeg. There-
fore, as a final step we need a consolidation method.
Our intuition is that sentences in a consolidated seg-
ment should fall in same segments more often when
we apply LCSeg in step 2. To consolidate the seg-
ments found, we form a weighted undirected graph
where the vertices V represent the sentences and the
edge weights w(u, v) represent the number of times
sentence u and v fall in the same segment. The con-
solidation problem can be formulated as a N-mincut
graph partitioning problem where we try to optimize
the Normalized Cut criterion:

Ncut(A,B) =
cut(A,B)
assoc(A, V )

+
cut(B,A)
assoc(B, V )

where cut(A,B) = Σu∈A,v∈Bw(u, v) and
assoc(A, V ) = Σu∈A,t∈V w(u, t) is the total con-
nection from nodes in partition A to all nodes in the
graph and assoc(B, V ) is similarly defined. How-
ever, solving this problem turns out to be NP-hard.
Hence, we approximate the solution following (Shi
and Malik, 2000) which has been successfully ap-
plied to image segmentation in computer vision.

This approach makes a difference only if FGQ
contains more than one path. In fact in our corpus
we found an average paths of 7.12 per thread.

395



Avg. Topic LDA LDA +FQG LCSeg LCSeg +FQG Speaker Block 5
Number 2.10 1.90 2.2 2.41 4.87 5.69
Length 13.3 15.50 13.12 12.41 5.79 4.60
Density 1.83 1.60 1.01 1.39 1.37 1.00
Entropy 0.98 0.75 0.81 0.93 1.88 2.39

Table 3: Corpus statistics of different system’s annotation

5 Experiments

We ran our four systems LDA, LDA+FQG, LCSeg,
and LCSeg+FQG on the dataset11. The statistics
of these four annotations and two best performing
baselines (i.e., ‘Speaker’ and ‘Block 5’ as described
below) are shown in Table 3. For brevity we just
mention the average measures. Comparing with Ta-
ble 1, we see that these fall within the bounds of the
human annotations.

We compare our results in Table 4, where we also
provide the results of some simple baseline systems.
We evaluated the following baselines and report the
best two in Table 4.

All different: Each sentence is a separate topic.
All same: The whole thread is a single topic.
Speaker: The sentences from each participant

constitute a separate topic.
Blocks of k(= 5, 10, 15): Each consecutive

group of k sentences is a topic.
Most of these baselines perform rather poorly.

All different is the worst baseline with mean 1-to-
1 score of 0.10 (max: 0.33, min: 0.03) and mean
loc3 score of 0.245 (max: 0.67, min: 0). Block
10 has mean 1-to-1 score of 0.35 (max: 0.71, min:
0.13) and mean loc3 score of 0.584 (max: 0.76,
min: 0.31). Block 15 has mean 1-to-1 score of
0.32 (max: 0.77, min: 0.16) and mean loc3 score
of 0.56 (max: 0.82, min: 0.38). All same is optimal
for threads containing only one topic, but its perfor-
mance rapidly degrades as the number of topics in
a thread increases. It has mean 1-to-1 score of 0.28
(max: 112, min: 0.11) and mean loc3 score of 0.54

11For a fair comparison of the systems we set the same topic
number per thread for all of them. If at least two of the anno-
tators agree on the topic number we set that number, otherwise
we set the floor value of the average topic number. λ is set to 20
in LDA+FQG.

12The maximum value of 1 is due to the fact that for some
threads some annotators found only one topic

(max: 1, min: 0.34).
As shown in Table 4, Speaker and Blocks of 5 are

two strong baselines especially for the loc3. In gen-
eral, our systems perform better than the baselines,
but worse than the gold standard. Of all the systems,
the basic LDA model performs very disappointingly.
In the local agreement it even fails to beat the base-
lines. A likely explanation is that the independence
assumption made by LDA when computing the dis-
tribution over topics for a sentence from the distribu-
tion over topics for the words causes sentences in a
local context to be excessively distributed over top-
ics. Another possible explanation for LDA’s disap-
pointing performance is the limited amount of data
available for training. In our corpus, the average
number of sentences per thread is 26.3 (see table 1)
which might not be sufficient for the LDA models.

If we compare the performance of the regularized
LDA (in the table LDA+FQG) with the basic LDA
we get a significant (p=0.0002 (1-to-1), p=9.8e-07
(loc3)) improvement in both of the measures 13. This
supports our claim that sentences connected by ref-
erential relations in the FQG usually refer to the
same topic. The regularization also prevents the lo-
cal context from being overly distributed over topics.

A comparison of the basic LCSeg with the basic
LDA reveals that LCSeg is a better model for email
topic segmentation (p=0.00017 (1-to-1), p<2.2e-16
(loc3)). One possible reason is that LCSeg extracts
the topics keeping the local context intact. An-
other reason could be the term weighting scheme
employed by LCSeg. Unlike LDA, which considers
only ‘repetition’, LCSeg also considers how tightly
the ‘repetition’ happens. When we incorporate the
conversation structure (i.e., FQG) into LCSeg (in the
table LCSeg+FQG), we get a significant improve-
ment in the 1-to-1 measure over the basic LCSeg
(p=0.0014). Though the local context (i.e., loc3) suf-

13Tests of significance were done by paired t-test with df=116
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Baselines Systems Human
Scores Speaker Block 5 LDA LDA+FQG LCSeg LCSeg+FQG
Mean 1-to-1 0.52 0.38 0.57 0.62 0.62 0.68 0.80
Max 1-to-1 0.94 0.77 1.00 1.00 1.00 1.00 1.00
Min 1-to-1 0.23 0.14 0.24 0.24 0.33 0.33 0.31
Mean loc3 0.64 0.57 0.54 0.61 0.72 0.71 0.83
Max loc3 0.97 0.73 1.00 1.00 1.00 1.00 1.00
Min loc3 0.27 0.42 0.38 0.38 0.40 0.40 0.43

Table 4: Comparison of Human, System and best Baseline annotations

fers a bit, the decrease in performance is minimal
and it is not significant. The fact that LCSeg is a
better model than LDA is also preserved when we
incorporate FQG into them (p=2.140e-05 (1-to-1),
p=1.3e-09 (loc3)). Overall, LCSeg+FQG is the best
model for this data.

6 Future Work

There are some other important features that our
models do not consider. The ‘Speaker’ feature is
a key source of information. A participant usu-
ally contributes to the same topic. The best base-
line ‘Speaker’ in Table 4 also favours this claim.
Another possibly critical feature is the ‘mention of
names’. In multi-party discussion people usually
mention each other’s name for the purpose of dis-
entanglement (Elsner and Charniak, 2008). In our
corpus we found 175 instances where a participant
mentions other participant’s name. In addition to
these, ‘Subject of the email’, ‘topic-shift cue words’
can also be beneficial for a model. As a next step
for this research, we will investigate how to exploit
these features in our methods.

We are also interested in the near future to transfer
our approach to other similar domains by hierarchi-
cal Bayesian multi-task learning and other domain
adaptation methods. We plan to work on both syn-
chronous (e.g., chats, meetings) and asynchronous
(e.g., blogs) domains.

7 Conclusion

In this paper we presented an email corpus annotated
for topic segmentation. We extended LDA and LC-
Seg models by incorporating the fragment quotation
graph, a fine-grain model of the conversation, which
is based on the analysis of quotations. Empirical

evaluation shows that the fragment quotation graph
helps both these models to perform significantly bet-
ter than their basic versions, with LCSeg+FQG be-
ing the best performer.
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