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Abstract
There have been increasing needs for task
specific rankings in web search such as
rankings for specific query segments like
long queries, time-sensitive queries, navi-
gational queries, etc; or rankings for spe-
cific domains/contents like answers, blogs,
news, etc. In the spirit of ”divide-and-
conquer”, task specific ranking may have
potential advantages over generic ranking
since different tasks have task-specific fea-
tures, data distributions, as well as feature-
grade correlations. A critical problem for
the task-specific ranking is training data
insufficiency, which may be solved by us-
ing the data extracted from click log. This
paper empirically studies how to appro-
priately exploit click data to improve rank
function learning in task-specific ranking.
The main contributions are 1) the explo-
ration on the utilities of two promising ap-
proaches for click pair extraction; 2) the
analysis of the role played by the noise
information which inevitably appears in
click data extraction; 3) the appropriate
strategy for combining training data and
click data; 4) the comparison of click data
which are consistent and inconsistent with
baseline function.

1 Introduction

Learning-to-rank approaches (Liu, 2008) have
been widely applied in commercial search en-
gines, in which ranking models are learned using
labeled documents. Significant efforts have been
made in attempt to learn a generic ranking model
which can appropriately rank documents for all
queries . However, web users’ query intentions are
extremely heterogeneous, which makes it difficult
for a generic ranking model to achieve best rank-
ing results for all queries. For this reason, there

have been increasing needs for task specific rank-
ings in web search such as rankings for specific
query segments like long queries, time-sensitive
queries, navigational queries, etc; or rankings
for specific domains/contents like answers, blogs,
news, etc. Therefore, a specific ranking task usu-
ally correspond to a category of queries; when
the search engine determines that a query is be-
longing to this category, it will call the ranking
function dedicated to this ranking task. The mo-
tivation of this divide-and-conquer strategy is that,
task specific ranking may have potential advan-
tages over generic ranking since different tasks
have task-specific features, data distributions, as
well as feature-grade correlations.

Such a dedicated ranking model can be trained
using the labeled data belonging to this query cat-
egory (which is called dedicated training data).
However, the amount of training data dedicated
to a specific ranking task is usually insufficient
because human labeling is expensive and time-
consuming, not to mention there are multiple rank-
ing tasks that need to be taken care of. To deal
with the training data insufficiency problem for
task-specific ranking, we propose to extract click-
through data and incorporate it with dedicated
training data to learn a dedicated model.

In order to incorporate click data to improve the
ranking for a dedicate query category, it is critical
to fully exploit click information. We empirically
explore the related approaches for the appropriate
click data exploitation in task-specific rank func-
tion learning. Figure 1 illustrates the procedures
and critical components to be studied.

1) Click data mining: the purpose is to extract
informative and reliable users’ preference infor-
mation from click log. We employ two promis-
ing approaches: one is heuristic rule approach, the
other is sequential supervised learning approach.

2) Sample selection and combination: with la-
beled training data and unlabeled click data, how
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Figure 1: Framework of incorporating click-
through data with training data to improve dedi-
cated model for task-specific ranking.

to select and combine them so that the samples
have the best utility for learning? As the data
distribution for a specific ranking task is differ-
ent from the generic data distribution, it is nat-
ural to select those labeled training samples and
unlabeled click preference pairs which belong to
this query category, so that the data distributions
of training set and testing set are consistent for
this category. On the other hand, we should keep
in mind that: a) non-dedicated data, i.e, the data
that does not belong the specific category, might
also have similar distribution as the dedicated data.
Such distribution similarity makes non-dedicated
data also useful for task-specific rank function
learning, especially for the scenario that dedicated
training samples is insufficient. b) The quality of
dedicated click data may be not as reliable as hu-
man labeled training data. In other words, there
are some extracted click preference pairs that are
inconsistent with human labeling while we regard
human labeling as correct labeling.

3) Rank function learning algorithm: we use
GBrank (Zheng et al., 2007) algorithm for rank
function learning, which has proved to be one
of the most effective up-to-date learning-to-rank
algorithms; furthermore, GBrank algorithm also
takes preference pairs as inputs, which will be il-
lustrated with more details in the paper.

2 Related work

Learning to rank has been a promising research
area which continuously improves web search rel-
evance (Burges et al., 2005) (Zha et al., 2006)

(Cao et al., 2007) (Freund et al., 1998) (Fried-
man, 2001) (Joachims, 2002) (Wang and Zhai,
2007) (Zheng et al., 2007). The ranking prob-
lem is usually formulated as learning a ranking
function from preference data. The basic idea
is to minimize the number of contradicted pairs
in the training data, and different algorithm cast
the preference learning problem from different
point of view, for example, RankSVM (Joachims,
2002) uses support vector machines; RankBoost
(Freund et al., 1998) applies the idea of boost-
ing from weak learners; GBrank (Zheng et al.,
2007) uses gradient boosting with decision tree;
RankNet (Burges et al., 2005) uses gradient boost-
ing with neural net-work. In (Zha et al., 2006),
query difference is taken into consideration for
learning effective retrieval function, which leads
to a multi-task learning problem using risk mini-
mization framework.

There are a few related works to apply multi-
ple ranking models for different query categories.
However, none of them takes click-through infor-
mation into consideration. In (Kang and Kim,
2003), queries are categorized into 3 types, infor-
mational, navigational and transactional, and dif-
ferent models are applied on each query category.

a KNN method is proposed to employ different
ranking models to handle different types of queries
(Geng et al., 2008). The KNN method is unsuper-
vised, and it targets to improve the overall ranking
instead of the rank-ing for a certain query cate-
gory. In addition, the KNN method requires all
feature vector to be the same.

Quite a few research papers explore how to ob-
tain useful information from click-through data,
which could benefit search relevance (Carterette
et al., 2008) (Fox et al., 2005) (Radlinski and
Joachims, 2007) (Wang and Zhai, 2007). The in-
formation can be expressed as pair-wise prefer-
ences (Chapelle and Zhang, 2009) (Ji et al., 2009)
(Radlinski et al., 2008), or represented as rank fea-
tures (Agichtein et al., 2006). Task-specific rank-
ing relies on the accuracy of query classification.
Query classification or query intention identifica-
tion has been extensively studied in (Beitzel et al.,
2007) (Lee et al., 2005) (Li et al., 2008) (Rose and
Levinson, 2004). How to combine editorial data
and click data is well discussed in (Chen et al.,
2008) (Zheng et al., 2007). In addition, how to use
click data to improve ranking are also exploited
in personalized or preference-based search (Coyle
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Table 1: Statistics of click occurrences for heuris-
tic rule approach.

imp impression, number of occurrence of the tuple

cc number of occurrence of the tuple where two

documents both get clicked

ncc number of occurrence of the tuple where url1
is not clicked but url2 is clicked

cnc number of occurrence of the tuple where url1
is clicked but url2 is not clicked

ncnc number of occurrence of the tuple where url1
and url2 are not clicked

and Smyth, 2007) (Glance, 2001) (R. Jin, 2008).

3 Technical approach

This section presents the related approaches in
Figure 1. In Section 4, we will make deeper anal-
ysis based on experimental results.

3.1 Click data mining

We use two approaches for click data mining,
whose outputs are preference pairs. A preference
pair is defined as a tuple {< xq, yq > |xq Â yq},
which means for the query q, the document xq is
more relevant than yq. We need to extract infor-
mative and reliable preference pairs which can be
used to improve rank function learning.

3.1.1 Heuristic rule approach
We use heuristic rules to extract skip-above pairs
and skip-next pairs, which are similar to Strategy
1 (click > skip above) and Strategy 5 (click > no-
click next) proposed in (Joachims et al., 2005). To
reduce the misleading effect of an individual click
behavior, click information from different query
sessions is aggregated before applying heuristic
rules. For a tuple (q, url1, url2, pos1, pos2) where
q is query, url1 and url2 are urls representing two
documents, pos1 and pos2 are ranking positions
for the two documents with pos1 ≺ pos2 mean-
ing url1 has higher rank than url2, the statistics for
this tuple are listed in Table 1.

Skip-above pair extraction: if ncc is much
larger than cnc, and cc

imp , ncnc
imp is much smaller

than 1, that means, when url1 is ranked higher than
url2 in query q, most users click url2 but not click
url1. In this case, we extract a skip-above pair, i.e.,
url2 is more relevant than url1. In order to have
highly accurate skip-above pairs, a set of thresh-

Table 2: Skip-above pairs count vs. human judge-
ments (e.g., the element in the third row and sec-
ond column means we have 40 skip-above pairs
with ”excellent” url1 and ”perfect” url2). P: per-
fect; E: excellent; G: good; F: fair; B: bad.

P E G F B
P 13 13 12 4 0
E 40 44 16 2 2
G 27 53 103 29 8
F 10 15 43 27 5
B 4 4 11 20 14

Table 3: Skip-next pairs vs. human judgements
(e.g., the element in the third row and second col-
umn means we have 10 skip-next pairs with ”ex-
cellent” url1 and ”perfect” url2 ). P: perfect; E:
excellent; G: good; F: fair; B: bad.

P E G F B
P 126 343 225 100 35
E 10 71 84 37 12
G 6 9 116 56 21
F 1 5 17 29 14
B 1 1 1 2 5

olds are applied to only extract the pairs that have
high impression and ncc is larger enough than cnc.

Skip-next pair extraction: if pos1 = pos2 − 1,
cnc is much larger than ncc, and cc

imp , ncnc
imp is much

smaller than 1, that means, in most of cases when
url2 is ranked just below url1 in query q, most
users click url1 but not click url2. In this case, we
regard this tuple as a skip-next pair.

To test the accuracy of preference pairs, we
ask editors to judge some randomly selected pairs
from skip-above pairs and skip-next pairs. Edi-
tors label each query-url pair using five grades ac-
cording to relevance: perfect, excellent, good, fair,
bad. Table 2 shows skip-above pair distribution.
The diagonal elements have high values, which
are for tied pairs labeled by editors but determined
as skip-above pairs from heuristic rules. Higher
values appear in the left-bottom triangle than in
the right-top triangle, because there are more skip-
above preferences agreed with editors than dis-
agreed with editors. Summing up the tied pairs,
agreed and disagreed pairs, 44% skip-above pref-
erence judgments agree with editors, 18% skip-
above preference judgments disagree with editors,
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and there are 38% skip-above pairs judged as tie
pairs by editors.

Table 3 shows skip-next pair distribution. Sum-
ming up the tied pairs, agreed and disagreed pairs,
70% skip-next preference judgments agree with
editors, 4% skip-next preference judgments dis-
agree with editors, and 26% skip-next pairs judged
as tie pairs by editors.

Therefore, skip-next pairs have much higher
accuracy than skip-above. That is because in a
search engine that already has a good ranking
function, it is much easier to find a correct skip-
next pairs which are consistent with the search en-
gine than to find a correct skip-above pairs which
are contradictory to the search engine. Skip-above
and skip-next preferences provide us two kinds of
users’s feedbacks which are complementary: skip-
above preferences provide us the feedback that the
user’s vote is contradictory to the current ranking,
which implies the current relative ranking should
be reversed; skip-next preferences shows that the
user’s vote is consistent with the current ranking,
which implies the current relative ranking should
be maintained with high confidence provided by
users’ vote.

3.1.2 Sequential supervised learning

The click modeling by sequential supervised
learning (SSL) was proposed in (Ji et al., 2009),
in which user’s sequential click information is
exploited to extract relevance information from
click-logs. This approach is reliable because 1)
the sequential click information embedded in an
aggregation of user clicks provides substantial rel-
evance information of the documents displayed in
the search results, and 2) the SSL is supervised
learning (i.e., human judgments are provided with
relevance labels for the training).

The SSL is formulated in the framework
of global ranking (Qin et al., 2008). Let
x(q) = {x(q)

1 , x
(q)
2 , . . . , x

(q)
n } represent the doc-

uments retrieved with a query q, and y(q) =
{y(q)

1 , y
(q)
2 , . . . , y

(q)
n } represent the relevance la-

bels assigned to the documents. Here n is the
number of documents retrieved with q. Without
loss of generality, we assume that n is fixed and
invariant with respect to different queries. The
SSL determines to find a function F in the form
of y(q) =F (x(q)) that takes all the documents as
its inputs, exploiting both local and global infor-
mation among the documents, and predict the rel-

evance labels of all the document jointly. This
is distinct to most of learning to rank methods
that optimize a ranking model defined on a sin-
gle document, i.e., in the form of y

(q)
i =f(x(q)

i ),
∀ i = 1, 2, . . . , n. This formulation of the SSL
is important in extracting relevance information
from user click data since users’ click decisions
among different documents displayed in a search
session tend to rely not only on the relevance judg-
ment of a single document, but also on the relative
relevance comparison among the documents dis-
played; and the global ranking framework is well-
formulated to exploit both local and global infor-
mation from an aggregation of user clicks.

The SSL aggregates all the user sessions for
the same query into a tuple <query, n-document
list, and an aggregation of user clicks>. Fig-
ure 2 illustrates the process of feature extrac-
tion from an aggregated session, where x(q) =
{x(q)

1 , x
(q)
2 , . . . , x

(q)
n } denotes a sequence of fea-

ture vectors extracted from the aggregated ses-
sion, with x

(q)
i representing the feature vector ex-

tracted for document i. Specifically, to form fea-
ture vector x

(q)
i , first a feature vector x

(q)
i,j is ex-

tracted from each user j’s click information, and
j ∈ {1, 2, . . . }, then x

(q)
i is formed by averaging

over x
(q)
i,j , ∀j ∈ {1, 2, . . . }, i.e., x

(q)
i is actually an

aggregated feature vector for document i. Table
4 lists all the features used in the SSL modeling.
Note that some features are statistics independent
of temporal information of the clicks, such as “Po-
sition” and “Frequency”, while other features re-
ply on their surrounding documents and the click
sequences. We use 90,000 query-url pairs to train
the SSL model, and 10,000 query-url pairs for best
model selection.

With the sequential click modeling discussed
above, several sequential supervised algorithms,
including the conditional random fields (CRF)
(Lafferty et al., 2001), the sliding window method
and the recurrent sliding window method (Diet-
terich, 2002), are explored to find a global ranking
function F . We omit the details but refer one to
(Ji et al., 2009). The emphasis here is on the im-
portance to adapt these algorithms to the ranking
problem.

After training, the SSL model can be used to
predict the relevance labels of all the documents in
a new aggregated session, and thus pair-wise pref-
erence data can be extracted, with the score dif-
ference representing the confidence of preference
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Figure 2: An illustration of feature extraction for
an aggregated session for SSL approach. x(q) de-
notes an extracted sequence of feature vectors, and
y(q) denotes the corresponding label sequence that
is assigned by human judges for training.

Table 4: Click features used in SSL model.

Position Position of the document
in the result list

ClickRank Rank of 1st click of doc. in click seq.
Frequency Average number of clicks for this doc.
FrequencyRank Rank in the list sorted by num. of clicks
IsNextClicked 1 if next position is clicked, 0 otherwise
IsPreClicked 1 if previous position is clicked,

0 otherwise
IsAboveClicked 1 if there is a click above, 0 otherwise
IsBelowClicked 1 if there is a click below, 0 otherwise
ClickDuration Time spent on the document

prediction. For the reason of convenience, we also
call the preference pairs contradicting with pro-
duction ranking as skip-above pairs and those con-
sistent with production ranking as skip-next pairs,
so that we can analyze these two types of prefer-
ence pairs respectively.

3.2 Modeling algorithm

The basic idea of GBrank (Zheng et al., 2007)
is that if the ordering of a preference pair
by the ranking function is contradictory to this
preference, we need to modify the ranking
function along the direction by swapping this
prefence pair. Preferences pairs could be gen-
erated from labeled data, or could be extracted
from click data. For each preference pair <
x, y > in the available preference set S =
{< xi, yi > |xi Â yi, i = 1, 2, ..., N}, x should
be ranked higher than y. In GBrank algorithm, the
problem of learning ranking functions is to com-
pute a ranking function h , so that h matches the
set of preference, i.e, h(xi) ≥ h(yi) , if x Â y,

i = 1, 2, ..., N as many as possible. The following
loss function is used to measure the risk of a given
ranking function h.

R(h) =
1
2

N∑
i=1

(max{0, h(yi)−h(xi)+τ})2, (1)

where τ is the margin between the two documents
in the pair. To minimize the loss function, h(x) has
to be larger than h(y) with the margin τ , which can
be chosen as constant value, or as dynamic val-
ues varying with pairs. When pair-wise judgments
are extracted from editors’ labels with different
grades, pair-wise judgments can include grade dif-
ference, which can further be used as margin τ .
The GBrank algorithm is illustrated in Algorithm
1, and two parameters need to be determined: the
shrinkage factor η and the number of iteration.

Algorithm 1 GBrank algorithm.
Start with an initial guess h0, for m = 1, 2, ...
1. Construct a training set: for each < xi, yi >∈
S, derive (xi, max{0, hm−1(yi) − hm1(xi) +
τ}), and

(yi,−max{0, hm−1(yi)− hm1(xi) + τ}).
2. Fit hm by using a base regressor with the
above training set.
3. hm = hm−1+ηsmhm(x), where sm is found
by line search to minimize the object function,
η is shrinkage factor.

3.3 Sample selection and combination
We use a straightforward approach to learn rank-
ing model from the combined data, which is illus-
trated in Algorithm 2.

Algorithm 2 Learn ranking model by combining
editorial data and click preference pairs.

Input:
• Editorial absolute judgement data.
• Preference pairs from click data.
1. Extract preference pairs from labeled data
with absolute judgement.
2. Select and combine preference pairs from
click data and labeled data.
3. Learn GBrank model from the combined
preference pairs.

Absolute judgement on labeled data contains
(query, url) pairs with absolute grade values la-
beled by human. In Step 1, for each query with
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nq query-url pairs with corresponding grades, {<
query, urli, gradei > |i = 1, 2, . . . , nq}, its prefer-
ence pairs are extracted as
{< query, urli, urlj , gradei − gradej > |i, j =

1, 2, . . . , nq, i 6= j} .
When combining human-labeled pairs and click

preference pairs, we can give use different relative
weights for these two data sources. The loss func-
tion becomes

R(h) =
w

Nl

∑
i∈Labeled

(max{0, h(yi)− h(xi) + τ})2

1− w

Nc

∑
i∈Click

(max{0, h(yi)− h(xi) + τ})2,(2)

where w is used to control the relative weights be-
tween labeled training data and click data, Nl is
the number of training data pairs, and Nc is the
number of click pairs. The margin τ can be deter-
mined as grade difference for editor pairs, and be
a constant parameter for click pairs.

Step 2 is critical for the efficacy of the approach.
A few factors need to be considered:

1) data distribution: for the application of task-
specific ranking, our purpose is to improve ranking
for the queries belonging to this category. An im-
portant observation is that the relevance patterns
for the ranking within a specific category may
have some unique characteristics, which are differ-
ent from generic relevance ranking. Thus, it is rea-
sonable to consider only using dedicated labeled
training data and dedicated click preference data
for training. The reality is that dedicated training
data is usually insufficient, while it is possible that
non-dedicated data can also help the learning.

2) click pair quality: it is inevitable there exist
some incorrect pairs in the click preference pairs.
Such incorrect pairs may mislead the learning. So
overall, can the click preference pairs still help the
learning for task-specific ranking? By our study,
skip-above pairs usually contain more incorrect
pairs compared with skip-above pairs. Does this
mean skip-next pairs are always more helpful in
improving learning than skip-above pairs?

3) click pair utility: use labeled training data as
baseline, how much complimentary information
can click pairs bring? This is determined by the
methodology of click data mining approach.

While it is possible to achieve some learning
improvement for task-specific ranking by using
click pairs by a plausible method, we attempt to
empirically explore the above interweaving fac-

tors for deeper understanding, in order to apply the
most appropriate strategy to exploit click data on
real-world applications of task-specific ranking.

4 Experiments

4.1 Data set

Query category: in the experiments, we use long
query ranking as an example of task-specific rank-
ing, because it is commonly known that long query
ranking has some unique relevance patterns com-
pared with generic ranking. We define the long
queries as the queries containing at least three to-
kens. The techniques and analysis proposed in this
paper can be applied to other ranking tasks, such
as rankings for specific query segments like time-
sensitive queries, navigational queries, or rankings
for specific domains/contents like answers, blogs,
news, as long as the tasks have their own charac-
teristics of data distributions and discriminant rank
features.

Labeled training data: we do experiments
based on a data set for a commercial search en-
gine, for which there are 16,797 query-url pairs
(with 1,123 different queries) that have been la-
beled by editors. The proportion of long queries
is about 35% of all queries. The data distribution
of such long queries may be different from gen-
eral data distribution, as it will be validated in the
experiments below.

The human labeled data is randomly split into
two sets: training set (8,831 query-url pairs, 589
queries), and testing set (7,966 query-url pairs,
534 queries). The training set will be combined
with click preference pairs for rank function learn-
ing, and the testing set will be used to evaluate the
efficacy of the ranking function. In the training set,
there are 3,842 long query-url pairs (229 queries).
At testing stage, the learned rank functions are ap-
plied only to the long queries in the testing data,
as our concern in this paper is how to improve
task-specific ranking, i.e., long query ranking in
the experiment. In the testing data, there are 3,210
query-url pairs (193 queries) are long query data,
which will be used to test rank functions.

Click preference pairs: using the two ap-
proaches of heuristic rule approach and sequen-
tial supervised approach, we extract click prefence
pairs from the click log of the search engine. Each
approach yields both skip-next and skip-above
pairs, which are sorted by confidence descending
order respectively.
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Table 5: Use click data by heuristic rule approach
(Data Selection: ”N”: not use; ”D”: use dedicated
data; ”G”: use generic data. Data Source: ”T”:
training data; ”C”: click data)

(a) skip-next pairs
NT DT GT

NC n/a 0.7736 0.7813
DC 0.7822 0.7906 (1.2%) 0.7997(2.4%)
GC 0.7834 0.7908 (1.2%) 0.7950 (1.7%)

(b) skip-above pairs
NT DT GT

NC n/a 0.7736 0.7813
DC 0.6649 0.7676 (-1.6%) 0.7748 (-0.8%)
GC 0.6792 0.7656 (-2.0%) 0.7989 (2.2%)

4.2 Setup and measurements

We try different sample selection and combination
strategies to train rank functions using GBrank al-
gorithm. For the labeled training data, we either
use generic data or dedicated data. For the click
preference pairs, we also try these two options.
Furthermore, as more click preference pairs may
bring more useful information to help the learn-
ing while on the other hand, the more incorrect
pairs may be given so that they mislead the learn-
ing, we try different amounts of these prefence
pairs: 5,000, 10,000, 30,000, 50,000, 70,000 and
100,000 pairs.

We use NDCG to evaluate ranking model,
which is defined as

NDCGn = Zn
∑n

i=1
2r(i)−1
log(i+1)

where i is the position in the document list, r(i) is
the score of Document i, and Zn is a normalization
factor, which is used to make the NDCG of ideal
list be 1.

4.3 Results

Table 5 and 6 show the NDCG5 results by using
heuristic rule approach and SSL approach respec-
tively. We do not present NDCG1 results due to
space limitation, but NDCG1 results have the sim-
ilar trends as NDCG5.

Baseline by training data: there are two base-
line functions by using training data sets 1) use
dedicated training data (DT), NDCG5 on the test-
ing set by the rank function is 0.7736; 2) use
generic training data (GT), NDCG5 is 0.7813. It
is reasonable that using generic training data is

Table 6: Use click data by SSL approach (Data
Selection: ”N”: not use; ”D”: use dedicated data;
”G”: use generic data. Data Source: ”T”: training
data; ”C”: click data)

(a) skip-next pairs
NT DT GT

NC n/a 0.7736 0.7813
DC 0.7752 0.7933 (1.5%) 0.7936 (1.5%)
GC 0.7624 0.7844 (0.4%) 0.7914 (1.2%)

(b) skip-above pairs
NT DT GT

NC n/a 0.7736 0.7813
DC 0.6756 0.7636 (-2.2%) 0.7784 (-0.3%)
GC 0.6860 0.7717 (-1.2%) 0.7774 (-0.5%)

better than only using dedicated training data, be-
cause the distributions of non-dedicated data and
dedicated data share some similarity. As the ded-
icated training data is insufficient, the adoption of
the extra non-dedicated data helps the learning.
We compare learning results with Baseline 2) (use
generic training data, the slot of NC + GT in the
tables), which is the higher baseline.

Baseline by click data: we then study the utili-
ties of click preference pairs by using them alone
for training without using labeled training data.
In Table 5 and 6, each of the NDCG5 results us-
ing click preference pairs is the highest NDCG5

value over the cases of using different amounts of
pairs (5000, 10,000, 30,000, 50,000, 70,000 and
100,000 pairs). The results regarding the pairs
amounts are illustrated in Figure 3, which will help
us to analyze the results more deeply.

If we only use click preference pairs for training
(the two table slots DC+NT and GC+NT, corre-
sponding to using dedicated click preference pairs
and generic click pairs respectively), the best case
is using skip-next pairs extracted by heuristic rule
approach (Table 5 (a) ). It is not surprising that
skip-next pairs outperform skip-above pairs be-
cause there are significantly lower percentage of
incorrect pairs in skip-next pairs compared with
skip-above pairs. It is a little bit surprising that
the case of DC+NT has no dominant advantage
over GC+NT as we expected. For example, in Ta-
ble 5 (a), the NDCG5 values (0.7822 and 0.7834)
are very close to each other. However, in Figure
3, we find that with the same amount of pairs,
when we use 30,000 or fewer pairs, using dedi-
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Figure 3: Incorporate different amounts of skip-
next pairs by heuristic rule approach with generic
training data.
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Figure 4: The effects of using different combin-
ing weights. Skip-next pairs by heuristic rule ap-
proach are combined with generic training data.

cated click pairs alone is always better than using
generic click pairs alone. With more click pairs
being used (> 30, 000), the noise rates become
higher in the pairs, which makes the distribution
factor less important.

Combine training data and click data: we
compare the four table slots, DC+DT, GC+DT,
DC+GT, GC+GT, in Table 5 and 6, and there are
quite a few interesting observations:

1) Skip-next vs. skip-above: overall, incorporat-
ing skip-next pairs with training data is better than
incorporating skip-above pairs, due to the reason
that there are more incorrect pairs in skip-above
pairs, which may mislead the learning. The only
exception is the slot GC+GT in Table 5 (b), whose
NDCG5 improvement is as high as 2.2%. We fur-

ther track this result, and find that this is the case
by using only 5,000 generic skip-above pairs. The
noise rate of these 5,000 pairs is low because they
have the highest pair extraction confidence values.
At the same time, these 5,000 pairs may provide
good complementary signals to the generic train-
ing data, so that the learning result is good. How-
ever, in general, skip-next pairs have better utilities
than skip-above pairs.

2) Dedicated training data vs. generic train-
ing data: using generic training data is gen-
erally better than only using dedicated training
data. If training data is insufficient, the extra
non-dedicated data provides useful information
for relevance pattern learning, and the distribu-
tion dissimilarity between dedicated data and non-
dedicated data is not the most important factor.

3) Dedicated click data vs. generic click data:
using dedicated click data is more effective than
using generic click data. From Figure 3, we ob-
serve that when 30,000 or fewer pairs are incorpo-
rated into training data, using dedicate click pairs
is always better than using generic click pairs.
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Figure 5: The effects of using different margin
values for click preference pairs. Skip-next pairs
by heuristic rule approach are incorporated with
generic training data.

4) Heuristic rule approach vs. SSL approach:
the preference pairs extracted by heuristic rule ap-
proach have better utilities than those extracted by
SSL approach.

5) GBrank parameters for combining training
data and click pairs: the relative weight w for
combining training data and click pairs in (2) may
also affect rank function learning. Figure 4 shows
the effects of using different combining weights,
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for which skip-next pairs by heuristic rule ap-
proach are combined with generic training data.
We observe that neither over-weighting training
data or over-weighting click pairs yields good re-
sults while the two data sources are best exploited
at certain weight values when there is good bal-
ance between them. Another concern is the ap-
propriate margin value τ for the click pairs in (2).
Figure 5 shows that τ = 1 consistently yields good
learning results, which suggests us that click pair
provides good information at τ = 1.

4.4 Discussions

we have defactorized the related approaches for
exploiting click data to improve task-specific rank
learning. The utility of click preference pairs de-
pends on the following factors:

1) Data distribution: if click pairs have good
quality, we should use dedicated click pairs in-
stead of generic click pairs, so that the samples
for training have similar distribution to the task of
task-specific ranking.

2) The amount of dedicated training data: the
more dedicated training data, the more reliable the
task-specific rank function is; thus, the less room
for learning improvement using click data. For the
case in the experiment that dedicated training is in-
sufficient, the non-dedicated training data can also
help the learning as non-dedicated training data
share relevance pattern similarity with the dedi-
cated data distribution.

3) The quality of click pairs: if we can extract
large amount of high-quality click pairs, the learn-
ing improvement will be significant. For example,
as shown in Figure 3, at the early stage with fewer
click pairs (5,000 and 10,000 pairs) being com-
bined with training data, the learning improvement
is best. With more click pairs are used, the noise
rate in the click pairs becomes higher so that the
learning misleading factor is more important than
information complementary factor. Thus, it is im-
portant to improve the reliability of the click pairs.

4) The utility of click pairs: by our study, the
quality of click pairs extracted by SSL approach
is comparable to those extracted by heuristic rule
approach. The possible reason that heuristic-rule-
based click pairs can bring more benefit is that
these pairs provide more complementary infor-
mation compared with SSL approach. As the
methodologies of these two click data extraction
approaches are totally different, in future we will

explore the concrete reason that causes such utility
difference.

5 Conclusions

By empirically exploring the related factors in
utilizing click-through data to improve dedicated
model learning for task-specific ranking, we have
better understood the principles of using click
preference pairs appropriately, which is impor-
tant for the real-world applications in commer-
cial search engines as using click data can sig-
nificantly save human labeling costs and makes
rank function learning more efficient. In the case
that dedicated training data is limited, while non-
dedicated training data is helpful, using dedicated
skip-next pairs is the most effective way to further
improve the learning. Heuristic rule approach pro-
vides more useful click pairs compared with se-
quential supervised learning approach. The qual-
ity of click pairs is critical for the efficacy of the
approach. Therefore, an interesting topic is how
to further reduce the inconsistency between skip-
above pairs and human labeling so that such data
may also be useful for task-specific ranking.
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