Cube Pruning as Heuristic Search

Mark Hopkinsand Greg L angmead
Language Weaver, Inc.
4640 Admiralty Way, Suite 1210
Marina del Rey, CA 90292
{mhopki ns, gl angmead}@ anguageweaver. com

Abstract (Pearl, 1984). We show that cube pruning is essen-
tially equivalent to A* search on a specific search
Cube pruning is a fast inexact method for space with specific heuristics. This simple obser-
generating the items of a beam decoder. vation affords a deeper insight into how and why
In this paper, we show that cube pruning cybe pruning works. We show how this insight en-
is essentially equivalent to A* searchona aples us to easily develop faster and exact variants
specific search space with specific heuris- of cube pruning for tree-to-string transducer-based

tics. We use this insight to develop faster MT (Galley et al., 2004; Galley et al., 2006; DeN-
and exact variants of cube pruning. ero et al., 2009).

1 Introduction 2 Motivating Example

In recent years, an intense research focus on m&e begin by describing the problem that cube
chine translation (MT) has raised the quality ofpruning addresses. Consider a synchronous
MT systems to the degree that they are now viablgontext-free grammar (SCFG) that includes the
for a variety of real-world applications. Becausefollowing rules:

of this, the research community has turned its at-

tention to a major drawback of such systems: they A — (Ag Bg, Ag Ba) (1)
are still quite slow. Recent years have seen a flurry B — (Ag Bg, Bg Am) 2
of innovative techniques designed to tackle this A — (Bg Ag, ¢ Bgb Ag) (3)
problem. These include cube pruning (Chiang, B — (Bg Ag, Bg Ag) 4)

2007), cube growing (Huang and Chiang, 2007),

early pruning (Moore and Quirk, 2007), clos- Figure 1 shows CKY decoding in progress. CKY
ing spans (Roark and Hollingshead, 2008; Roarks a bottom-up algorithm that works by building
and Hollingshead, 2009), coarse-to-fine methodsbjects known astems over increasingly larger
(Petrov et al., 2008), pervasive laziness (Pust angpansof an input sentence (in the context of SCFG
Knight, 2009), and many more. decoding, the items represent partial translations

This massive interest in speed is bringing rapidof the input sentence). To limit running time, it is
progress to the field, but it comes with a certaincommon practice to keep only the“best” items
amount of baggage. Each technique brings its owper span (this is known aseam decoding At
terminology (from thecubesof (Chiang, 2007) this point in Figure 1, every span of size 2 or less
to thelazy listsof (Pust and Knight, 2009)) into has already been filled, and now we want to fill
the mix. Often, it is not entirely clear why they span|2, 5] with the n items of lowest cost. Cube
work. Many apply only to specialized MT situ- pruning addresses the problem of how to compute
ations. Without a deeper understanding of theséhen-best items efficiently.
methods, it is difficult for the practitioner to com- We can be more precise if we introduce some
bine them and adapt them to new use cases. terminology. An SCFQule has the form X—

In this paper, we attempt to bring some clarity (o, ¢, ~), where X is a nonterminal (called the
to the situation by taking a closer look at one ofpostconditiol), o, ¢ are strings that may contain
these existing methods. Specifically, we cast théerminals and nonterminals, ardis a 1-1 corre-
popular technique afube pruningChiang, 2007) spondence between equivalent nonterminals of
in the well-understood terms of heuristic searchandp.

62

Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, pages 62-71,
Singapore, 6-7 August 2009. (©2009 ACL and AFNLP

new boundary words). As a shorthand, we intro-

T 2?27 duce the notatiom; > r < 15 to describe an item
created by applying formula (5) to ruteand items
SPAN [2,4] 0 SPAN [4,5] [/1, L2.
(i) © When we create a new item, it is scored using
(i - the following formula:
(iv) __[2,4,B,b0b] it
A
o — cost(ty > 7 << 19) = cost(r)
(viii) - + COSt(Ll) (6)
(ix) - + COSt(LQ)
® (xiv) + interaction(r, k1, k2)

2 3 4

We assume that each grammar ruldas an
associated cost, denotedst(r). The interac-
tion cost denotedinteraction(r, k1, k2), uses the
carry information to compute cost components
that cannot be incorporated offline into the rule
costs (again, for our purposes, this is a language

Usually SCFG rules are represented like the exq,qqel score).

ample rules (1)-(4). The subscripts indicate cor- ¢ pe pruning addresses the problem of effi-

responding nonterminals (according9. Define cjently computing the: items of lowest cost for
thepreconditionf a rule as the ordered sequence, given span.

of its nonterminals. For clarity of presentation, we
will henceforth restrict our focus to binary rules, 3 Item Generation asHeuristic Search
i.e. rules of the form: Z— (X Y,). Observe
that all the rules of our example are binary rules.
An itemis a triple that contains a span and two
strings. We refer to these strings as fhastcon-
dition and thecarry, respectively. Theostcon-

Figure 1: CKY decoding in progress. We want to
fill span [2,5] with the lowest cost items.

Refer again to the example in Figure 1. We want to
fill span [2,5]. There are 26 distinct ways to apply
formula (5), which result in 10 unigue items. One
approach to finding the lowest-castitems: per-

form all 26 distinct inferences, compute the cost of

_dltlon tells us Whlc.h rules may b.e applleq o thethe 10 unique items created, then choose the low-
item. Thecarry gives us extra information re- estn

guwed tp corr_ectly score the item (in SCFG decod- The 26 different ways to form the items can be

ing, typically it consists of boundary words for an . .

. structured as a search tree. See Figure 2. First

n-gram language modef).To flatten the notation, .

) ; we choose the subspans, then the rule precondi-

we will generally represent items as a 4-tuple, e.g,. . .

2,4, X, a0 b] tions, then the rule, and finally the subitems. No-
RO o : tice that this search space is already quite large,
In CKY, new items are created by applying rules) .

o] even for such a simple example. In a realistic situ-
to existing items: : . :
ation, we are likely to have a search tree with thou-
r:Z— Xg Ym,¢) lo,0,X,k51] [6,8,Y,k2] sands (possibly millions) of nodes, and we may
[, B,Z, carry(r, k1, K2)] only want to find the best 100 or so goal nodes.
(5) To explore this entire search space seems waste-

In other words, we are allowed to apply aful. Can we do better?

rule » to a pair of itemsiy,o if the item Why not perform heuristic search directly on

spans are complementary amdconditions(r) = this search space to find the lowest-costems?

(postcondition(¢1), postcondition(t2)). The new In order to do this, we just need to add heuristics

item has the same postcondition as the applietb the internal nodes of the space.

rule. We form the carry for the new item through Before doing so, it will help to elaborate on

an application-dependent functioarry that com- some of the details of the search tree. Let

bines the carries of its subitems (e.g. if the carry igules(X, Y) be the subset of rules with precondi-
n-gram boundary words, thesarry computes the tions (X, Y), sorted by increasing cost. Similarly,

INote that the carry is a generic concept that can store any 2Without loss of generality, we assume an additive cost
kind of non-local scoring information. function.

63

choose subspans

[2,5A,b ¢ b]
cost =7.48

accept item(3,5,B,1)?

[2,5A,a ¢ b]
cost = 12.26

[25Ab¢a] [25Ab+b]

Figure 2: Item creation, structured as a searclrigure 3: The lookahead heuristic. We set the
space. rule(X, Y, k) denotes theé: lowest-cost heuristics for rule and item nodes by looking

rule with preconditiongX,Y). item(«,3,X,k) ahead at the cost of the greedy solution from that
denotes thek!” lowest-cost item of spafi, 3] point in the search space.

with postcondition X.

letitems(a, 3, X) be the subset of items with span Figure 2 shows two complete search paths for
[, 3] and postcondition X, also sorted by increas-Ur €xample, terminated tgoal nodeg(in black).
ing cost. Finally, letule(X, Y, k) denote thek!" Notice that the internal nodes of the search space

rule of rules(X, Y) and letitem(a, 3, X, k) denote €an be classified by the type of decision they
the k' item ofitems(a, 3, X). govern. To distinguish between these nodes, we

A path through the search tree consists of thdVill refer to them assubspan nodegprecondition
following sequence of decisions: nodesrule nodesanditem nodes

We can now proceed to attach heuristics to the
1. Set;,j,ktol. nodes and run a heuristic search protocol, say A*,
on this search space. For subspan and precondition
nodes, we attach trivial uninformative heuristics,
i.e. h = —oco. For goal nodes, the heuristic is the
actual cost of the item they represent. For rule and
4. Choose the second preconditidh of the item nodes, we will use a simple type of heuristic,
rule. often referred to in the literature asl@okahead
heuristic Since the rule nodes and item nodes are
5. While rule not yet accepted and < ordered, respectively, by rule and item cost, it is
[rules(X,Y)|: possible to “look ahead” at a greedy solution from
any of those nodes. See Figure 3. This greedy so-
lution is reached by choosing to accept every de-
cision presented until we hit a goal node.

6. While item not yet accepted for subspan |f these heuristics were admissible (i.e. lower
[, 8] andy < |items(a, §, X)|: bounds on the cost of the best reachable goal

node), this would enable us to exactly generate the

n-best items without exhausting the search space

(assuming the heuristics are strong enough for A*

7. While item not yet accepted for subsgjans] 0 do some pruning). Here, the lookahead heuris-
andk < |items(3, 3, Y)|: tics are clearly not admissible, however the hope

is that A* will generaten “good” items, and that

(@) Choose to accept/rejetdm(d, 3,Y, k). the time savings will be worth sacrificing exact-
If reject, then increment. ness for.

2. Choose the subsparjs; 9], [9, 5].

3. Choose the first preconditio¥ of the rule.

(a) Choose to accept/rejeatie(X,Y,). If
reject, then incremerit

(a) Choose to accept/rejaegm(a, 4, X, 7).
If reject, then increment.

64

4 CubePruning asHeuristic Search 4.3 Phase3: FindingtheFirst Item

In this section, we will compare cube pruning with CUP€ pruning now pops the lowest-cost item from
our A* search protocol, by tracing through their the CP heap. This means that CP has decided to

respective behaviors on the simple example of Figk€ep the item. After doing so, it forms the “one-

ure 1. off” items and pushes those onto the CP heap. See
Figure 5(left). The popped item is:

4.1 Phasel: Initialization

To fill span[a, 3], cube pruning (CP) begins by item (viii) > rule (1)< item (xii)

constructing @ubefor each tuple of the form: CP then pushes the following one-off successors

onto the CP heap:
([, 0], [6,8], X, Y)

where X and Y are nonterminals. A cube consists
of three axesrules(X, Y) anditems(c, 6, X) and . _ . N
items(d, 3,Y). Figure 4(left) shows the nontrivial item (ix) > rule (1) < item (xii)
cubes for our example scenario. item (viii) > rule (1) < item (xiii)

Contrast this with A*, which begins by adding
the root node of our search space to an empty heap Contrast this with A*, which pops the lowest-
(ordered by heuristic cost). It proceeds to repeatc0Stsearch nodérom the A* heap. Here we need
edly pop the lowest-cost node from the heap, thet® assume that our A* protocol differs slightly
add its children to the heap (we refer to this Op_from standard A*. Specifically, it will practice
eration awisiting the node). Note that before A* node-tying meaning that when it visits a rule node
ever visits a rule node, it will have visited every Of an item node, then it also (atomically) visits all
subspan and precondition node (because they 4iodes on the path to its lookahead goal node. See
have costh = —oo). Figure 4(right) shows the Figure 5(right). Observe that all of these nodes
state of A* at this point in the search. We assumdlave the same heuristic cost, thus standard A* is
that we do not generate dead-end nodes (a Simpugely to visit these nodes in succession without
matter of checking that there exist applicable rulegh€ need to enforce node-tying, but it would not
and items for the chosen subspans and precond?—e guaranteed (because the heuristics are not ad-
tions). Observe the correspondence between tHoissible). A* keeps the goal node it finds and adds
cubes and the heap contents at this point in the athe successors to the heap, scored with their looka-

item (viii) > rule (2)< item (xii)

search. head heuristics. Again, note the direct correspon-
dence between what CP and A* keep, and what
4.2 Phase2: Seedingthe Heap they add to their respective heaps.

Cube pruning proceeds by computing the “best"44 Phase 4: Findina Subsequent Items
item of each cubé€[c, 4], [6, 4], X, Y),i.e. ' ' g =tbs

Cube pruning and A* continue to repeat Phase
item (v, 8, X, 1) > rule(X,Y,1) < item(d, 3,Y,1) 3 until & unique items have been kept. While

we could continue to trace through the example,
Because of the interaction cost, there is no guararby now it should be clear: cube pruning and our
tee that this will really be the best item of the cube A* protocol with node-tying are doing the same
however it is likely to be a good item because thething at each step. In fact, they aesactly the
costs of the individual components are low. Thesesame algorithmWe do not present a formal proof
items are added to a heap (to avoid confusion, waere; this statement should be regarded as confi-
will henceforth refer to the two heaps as G® dent conjecture.
heapand theA* heap, and prioritized by their The node-tying turns out to be an unnecessary
costs. artifact. In our early experiments, we discovered

Consider again the example. CP seeds its heabat node-tying has no impact on speed or qual-

with the “best” items of the 4 cubes. There is nowity. Hence, for the remainder of the paper, we
a direct correspondence between the CP heap aniew cube pruning in very simple terms: as noth-
the A* heap. Moreover, the costs associated witling more than standard A* search on the search
the heap elements also correspond. See Figure Space of Section 3.

65

cube: [2,3],[3,5],A,B

B i) [) | [2,4] [4,5]

@]
- -
rules(A,B) (xii)

items(2,3,A)
(xiii)

(xiv)

items(3,5,B)

cube: [2,3],[3,5],B,A

@] @ (x) |
- (xi))
rules(B,A) items(2,3,B)
items(3,5,A)

cube: [2,4],[4,5],A,B

@ ol o o] HEAP
- B
esaB) |V items(2,4,A) | [23L1351A8 |
Vi) |y items(4,5,8) | [23L351BA |
cube: [2,4],[4,5],B,A | [24][45]BA |
I2HE) Gii) | (i | | 1241451AB |
(v) -
rules(B,A) items(2,4,B)
items(4,5,A)

Figure 4: (left) Cube formation for our example. (right) The A* protocélernall subspan and precon-
dition nodes have been visited. Notice the correspondence betweerbteeand the A* heap contents.

CP HEAP A
1. A* visits T T
1.CP pops [2!332::;?}53;1%17 1151 the tOp node
the top item i) [2,3],[3,5],A,B

[2,3][3,5] cost(1, viii, xii)

[2,3],[3,5],B,A,1,1,1

[2,31,[3,51,A,8,1,1,1 -
cost(1,vii xii cost(3xx) [2,3],E%5],3,A
[2,41,14,51,A,,1,1,1 cost(3,xx)
COSt(1,I’,VD [2,4],[4,5],A,B
[2,41,14,51,B,A,1,1,1 cost(1,,vi)
2. CP generates cost(3.ikv) [2,41,14,5],B,A
one-offs from cost(3,iii,v)
the same cube
2. ...and all nodes on
[2,31,[3,51,A,B,2,1,1 3. CP pushes the path to the
cost(2, viii,Xii these onto the lookahead (equal cost) 3. A* pushes
heap .

successors on
[2,31,[3,51,A,8,1,2,1 1 vili i the hea
cost(1,ix, i) cost(1, viii,xij p

[2,3],[3,5]1,A,B,2

[2,3],[3,5].A,B,1,1,2 cost(1, viii, xii) cost(2, viii, xii

[2,3],[3,5],A,B,1,2
cost(1,ix,xii)

[2,3],[3,5],A,B,1,1,2

Figure 5: (left) One step of cube pruning. (right) One step of the A* mmito In this figure,
cost(r, 11, 12) = cost(t] > 1 < 13).

66

5 Augmented Cube Pruning

_ o . _ h(6,X,Y) = cost(rule(X,Y,1))
Viewed in this light, the idiosyncracies of cube .
pruning begin to reveal themselves. On the one + cost(item(a, 5, X, 1))
hand, rule and item nodes are associated with + cost(item(d, 3,Y,1))
strong but inadmissible heuristics (the short expla- + ih(4,X,Y)
nation for why cube pruning is an inexact algo-) o
rithm). On the other hand, subspan and precondiln€ first three terms are admissible because
tion nodes are associated with weak trivial heuris®ach is simply the minimum possible cost of
tics. This should be regarded neither as a surprisg®Me choice remaining to be made. To con-
nor a criticism, considering cube pruning’s originsStUct theinteraction: heuristicih(d, X, Y), con-
in hierarchical phrase-based MT models (ChiangSider that in a translation model with an inte-

2007), which have only a small number of distinct9rateéd n-gram language model, the interaction
nenterminals. costinteraction(r, K1, K2) iS computed by adding

the language model costs of any new complete
grams that are created by combining the carries

t20-s‘;rr.|ng Itlransduc]er-zbase_dDMl\'ll' (Galle?/ ;t aLI"(boundary words) with each other and with the
004; Galley et al., 2006; DeNero et al., 009)'Iexical items on the rule’s target side, taking into

Transducer-based MT relies on SCFGs with Iarg(?’alccount any reordering that the rule may perform.

nonterminal sets. Binarizing the grammars (Zhanqu construct a backoff-style estimate of these
et al., 2006) further increases the size of these SEtﬁew n-grams by looking atitem(a, 6,X,1) =

due to the introduction of virtual nonterminals. 0,8, X, r1], item(8, 3,Y, 1) = [6,5,Y,], and

A key benefit of the heuristic search viewpointryle(X,Y,1). We setih(6,X,Y) to be a linear
is that it is well positioned to take advantage ofcombination of the backoff-grams of the carries

such insights into the structure of a particular de+,; andx,, as well as any:-grams introduced by
coding problem. In the case of transducer-baseghe rule. For instance, if

MT, the large set of preconditions encourages us
to introduce a nontrivial heuristic for the precon-

But the situation is much different in tree-

dition nodes. The inclusion of these heuristics into k1 = abocd
the CP search will enable A* to eliminate cer- ke = efogh
tain preconditions from consideration, giving us aryle(X,Y,1) = Z — Xg Ym, Xgghi Yg)
speedup. For this reason we call this strategy-
mented cube pruning then
5.1 Heuristicson preconditions ih(6,X,Y) = 7 -LM(a) +72-LM(ab)
Recall that th I f I node is given b T LME 4o LM(e D
ecall that the total cost of a goal node is given by LM LM(ah
Equation (6), which has four terms. We will form e 9 + 72 (gh)
the heuristic for a precondition node by creating + 73 LM(g hi)
a separate heuristic for each of the four terms angne coefficients of the combination are free pa-
using the sum as the overall heuristic. rameters that we can tune to trade off between

To describe these heuristics, we will make intu-more pruning and more admissability. Setting the
itive use of the wildcard operaterto extend our coefficients to zero gives perfect admissibility but

existing notation. For instanceems(c, 3, *) will is also weak.
denote the union atems(«, 3, X) over all possi- The heuristic for the first precondition node is
ble X, sorted by cost. computed similarly:

We associate the heuristig(d, X, Y) with the h(8,X,%) = cost(rule(X,*,1))

search node reached by choosing subspang,
[0, 8], precondition X (for spafw, d]), and precon-
dition Y (for span[d, 5]). The heuristic is the sum
of four terms, mirroring Equation (6):

cost(item(c, 6, X, 1))
cost(item(d, 3, %, 1))
ih(0, X, *)

+ o+ +

67

Standard CP Augmented CP

nodes (k) BLEU |time|nodes (k) BLEU |time

80 349 [25 |52 347 1.9

148 36.1 [3.9 |92 359 (2.4

345 37.2 |7.9 [200 37.3 |54 2l

520 37.7 [13.4/302 37.7 |85 B

725 38.2 [17.1/407 38.0 [10.7

1092 38.3 [27.1/619 38.2 [16.3 o momemeace
1812 38.6 [45.9/1064 [38.5 [27.7

Table 1. Results of standard and augmented cube

pruning. The number of (thousands of) search _
nodes visited is given along with BLEU and av- Figure 7: Time spent by standard and augmented

erage time to decode one sentence, in seconds. CUP€ pruning, average seconds per sentence.

20 30

40 50

Average time per sentence (s)

Standard CPAugmented CP
7 subspan 12936 12792
®r precondition 851458 379954
i rule 33734 33331
S¥L item 119703 118889
5 i goal 74618 74159
o TOTAL 1092449 |619125
; T amech BLEU 38.33 38.22
e, Table 2: Breakdown of visited search nodes by

1x10° 1.5x10° 2x10°

Search nodes visited

0 500000

type (for a fixed beam size).

Figure 6: NOdeS.V'S'ted by standard and aug_from that table are also plotted in Figure 6 and
mented cube pruning.

Figure 7. Each line gives the number of nodes
visited by the heuristic search, the average time
We also apply analogous heuristics to the subspatw decode one sentence, and the BLEU of the out-
nodes. put. The number of items kept by each span (the
beam) is increased in each subsequent line of the
table to indicate how the two algorithms differ at
We evaluated all of the algorithms in this paper onvarious beam sizes. This also gives a more com-
a syntax-based Arabic-English translation systenplete picture of the speed/BLEU tradeoff offered
based on (Galley et al., 2006), with rules extractedy each algorithm. Because the two algorithms
from 200 million words of parallel data from NIST make the same sorts of lookahead computations
2008 and GALE data collections, and with a 4-with the same implementation, they can be most
gram language model trained on 1 billion wordsdirectly compared by examining the number of
of monolingual English data from the LDC Giga- visited nodes. Augmenting cube pruning with ad-
word corpus. We evaluated the system’s performissible heuristics on the precondition nodes leads
mance on the NIST 2008 test corpus, which conto a substantial decrease in visited nodes, by 35-
sists of 1357 Arabic sentences from a mixture 0#44%. The reduction in nodes converges to a con-
newswire and web domains, with four English ref-sistent 40% as the beam increases. The BLEU
erence translations. We report BLEU scores (Pawith augmented cube pruning drops by an average
pineni et al., 2002) on untokenized, recapitalizecbf 0.1 compared to standard cube pruning. This is
output. due to the additional inadmissibility of the interac-
tion heuristic.

To see in more detail how the heuristics affect
The results for augmented cube pruning are comthe search, we give in Table 2 the number of nodes
pared against cube pruning in Table 1. The dataf each type visited by both variants for one beam

5.2 Experimental setup

5.3 Resultsfor Augmented Cube Pruning

68

size. The precondition heuristic enables A* to
prune more than half the precondition nodes.

6 Exact Cube Pruning

37~

Common wisdom is that the speed of cube prun- § i

ing more than compensates for its inexactness (re-

call that this inexactness is due to the fact that it *[o s

uses A* search with inadmissible heuristics). Es- | T e

pecially when we move into transducer-based MT, =

the search space becomes so large that brute-force O™ peragetime per sentence (4 © °

item generation is much too slow to be practi-

cal. Still, within the heuristic search framework Figure 8: Time spent by standard and exact cube

we may ask the question: is it possible to applypruning, average seconds per sentence.

strictly admissible heuristics to the cube pruning

search space, and in so doing, create a version of

cube pruning that is both fasnd exact, one that Doing this split enables us to precompute a

finds then bestitems for each span and not just strong and admissible heuristic on the interaction

n gooditems? One might not expect such a techcost. Namely, for a given spaj, 3], we pre-

nique to outperform cube pruning in practice, butcomputeih,g, (3, X,Y), which is the best LM

for a given use case, it would give us a relativelycost of combining carries fromtems(a,d, X)

fast way of assessing the BLEU drop incurred byand items(d, 3,Y). Notice that this statistic is

the inexactness of cube pruning. only straightforward to compute once we can as-
Recall again that the total cost of a goal nodesume that the rules are concatenation rules or

is given by Equation (6), which has four terms. Itinversion rules. For the lexical rules, we set

is easy enough to devise strong lower bounds foih,4,,,(5,X,Y) = 0, an admissible but weak

the first three of these terms by extending the reaheuristic that we can fortunately get away with be-

soning of Section 5. Table 3 shows these heuriseause of the small number of lexical rules.

tics. The major challenge is to devise an effective

lower bound on the fourth term of the cost func-

tion, the interaction heuristic, which in our case is

6.1 Resultsfor Exact Cube Pruning

the incremental language model cost. Computing theihegm (5, X,Y) heuristic is not
~ We take advantage of the following observa-cheap. To be fair, we first compare exact CP to
tions: standard CP in terms of overall running time, in-

_ cluding the computational cost of this overhead.

1. In a given span, many boundary word pat-yye p|at this comparison in Figure 8. Surprisingly,

terns are repeatedn other words, for a par- e time/quality tradeoff of exact CP is extremely
ticular span(a, 5] and carry, we often see gjmijar to standard CP, suggesting that exact cube

many |tems of the.fornja,ﬁ, X, ”]’_ yvhere pruning is actually a practical alternative to stan-

the only difference is the postcondition X. 4414 cp, and not just of theoretical value. We

2. Most rules do not introduce lexical itemin found that the BLEU IOS_S of standard cube prun-
other words, most of the grammar rules haveng at moderate beam sizes was between 0.4 and

the form Z — (Xo Y1, X0 Y1) (concatena-
tion rules) or Z— (X Y1, Y1 Xo) (inver- Another surprise comes when we contrast the

sion rules). number of visited search nodes of exact CP and
standard CP. See Figure 9. While we initially ex-

The idea is simple. We split the search into thregected that exact CP must visit fewer nodes to
searches: one for concatenation rules, one for immake up for the computational overhead of its ex-
version rules, and one for lexical rules. Eachpensive heuristics, this did not turn out to be the
search finds the—best items that can be createdcase, suggesting that the computational cost of
using its respective set of rules. We then take thesstandard CP’s lookahead heuristics is just as ex-
3n items and keep the best pensive as the precomputationiof,, (J, X, Y).

69

heuristic components
subspan | preconditionl| precondition2 rule iteml item2
h(9) h(d,X) h(d,X,Y) h(6,X,Y, i) | h(6,X,Y,4,5) |h(6,X,Y,4,7,k)
r | rule(k,x, 1) rule(X,*,1) | rule(X,Y,1) | rule(X,Y,1) rule(X,Y,1) rule(X,Y, 1)
11 |item(a, 0, %, 1) |item(cv, 0, X, 1) | item(c, 6, X, 1) |item(a, 8, X, 1) |item(av, 0, X, j) | item(ax, 3, X, j)
Lo |item(d, B, %, 1) | item(6, B, *,1) |item(d, B,Y, 1) |item(6, 5,Y,1)|item(d, B,Y,1) | item(d, 5,Y, k)
ih| hagm (9, %, %) | theam (0, X, %) | ihagm (6, X, Y) | ihaam (0, X, Y) | ihagm (6, X,Y) | ihggm (5, X,Y)

Table 3: Admissible heuristics for exact CP. We attach heurigiicX, Y, i, j, k) to the search node
reached by choosing subspdnsd], [6, 3], preconditions X and Y, thé" rule of rules(X,Y), the j*
item of item(a, 6, X), and thek?” item of item (4, 3, Y). To form the heuristic for a particular type of
search node (column), compute the followirgst(r) + cost(t1) + cost(t2) + ih

cisions in a different order, would be more

effective.

3. What if we try a different search algorithm?
A* has nice guarantees (Dechter and Pearl,
1985), but it is space-consumptive and it is
not anytime. For a use case where we would

——O— suncanace like a finer-grained speed/quality tradeoff, it

might be useful to consider an anytime search

N T T algorithm, like depth-first branch-and-bound

500000 1x108 1.5010° 2108

36 —

——— ExactCP

35—

Search nodes visited (Zhang and Korf, 1995)
Figure 9: . Nodes visited by standard and exaCBy working towards a deeper and unifying under-
cube pruning. standing of the smorgasbord of current MT speed-
up techniques, our hope is to facilitate the task of
7 Implications implementing such methods, combining them ef-

fectively, and adapting them to new use cases.
This paper’s core idea is the utility of framing
CKY item generation as a heuristic search probAcknowledgments

lem. Once we recognize cube pruning as nothy, .\ 14 jike to thank Abdessamad Echihabi,

ing more than A* on a particular search SpaceKevin Knight, Daniel Marcu, Dragos Munteanu

ywth partlcu_lar heuristics, this deeper understandjOn Muslea, Radu Soricut, Wei Wang, and the
ing makes it easy to create faster and exact vari- .

. : anonymous reviewers for helpful comments and
ants for other use cases (in this paper, we fOCugldvice Thanks also to David Chiang for the use
on tree-to-string transducer-based MT). Depend- ' g

ing on one’s own particular use case, a variet on his LaTeX macros. This work was supported in
g on on P k Y Ohart by CCS grant 2008-1245117-000.
possibilities may present themselves:

1. What if we try different heuristicsIP this pa-
per, we do some preliminary inquiry into this
guestion, but it should be clear that our minorPavid Chiang. 2007. Hierarchical phrase-based trans-
changes are just the tip of the iceberg. One lation. Computational Linguistics33(2):201-228.
can easily imagine clever and creative heurisRina Dechter and Judea Pearl. 1985. Generalized best-

tics that outperform the simple ones we have first search strategies and the optimality of asur-
proposed here. nal of the ACM 32(3):505-536.

References

. : John DeNero, Mohit Bansal, Adam Pauls, and Dan
2. What if we try a different search spacehy Klein. 2009. Efficient parsing for transducer gram-

are we using this particular search space? mars. InProceedings of the Human Language Tech-
Perhaps a different one, one that makes de- nology Conference of the NAACL, Main Conference

70

Michel Galley, Mark Hopkins, Kevin Knight, and
Daniel Marcu. 2004. What'’s in a translation rule?
In Proceedings of HLT/NAACL

Michel Galley, Jonathan Graehl, Kevin Knight, Daniel
Marcu, Steve DeNeefe, Wei Wang, and Ignacio
Thayer. 2006. Scalable inference and training of
context-rich syntactic models. IRroceedings of
ACL-COLING

Liang Huang and David Chiang. 2007. Forest rescor-
ing: Faster decoding with integrated language mod-
els. InProceedings of ACL

Robert C. Moore and Chris Quirk. 2007. Faster
beam-search decoding for phrasal statistical ma-
chine translation. IfProceedings of MT Summit XI

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic
evaluation of machine translation. Froceedings
of 40th Annual Meeting of the Association for Com-
putational Linguisticspages 311-318.

Judea Pearl. 1984Heuristics Addison-Wesley.

Slav Petrov, Aria Haghighi, and Dan Klein. 2008.
Coarse-to-fine syntactic machine translation using
language projections. IAroceedings of EMNLP

Michael Pust and Kevin Knight. 2009. Faster mt de-
coding through pervasive laziness. Pnoceedings
of NAACL

Brian Roark and Kristy Hollingshead. 2008. Classi-
fying chart cells for quadratic complexity context-
free inference. InProceedings of the 22nd Inter-
national Conference on Computational Linguistics
(Coling 2008) pages 745—752.

Brian Roark and Kristy Hollingshead. 2009. Lin-
ear complexity context-free parsing pipelines via
chart constraints. IProceedings of Human Lan-
guage Technologies: The 2009 Annual Conference
of the North American Chapter of the Associa-
tion for Computational Linguisticppages 647—655,
Boulder, Colorado, June. Association for Computa-
tional Linguistics.

Weixiong Zhang and Richard E. Korf. 1995. Perfor-
mance of linear-space search algorithmastificial
Intelligence 79(2):241-292.

Hao Zhang, Liang Huang, Daniel Gildea, and Kevin
Knight. 2006. Synchronous binarization for ma-
chine translation. IiProceedings of the Human Lan-
guage Technology Conference of the NAACL, Main
Conferencepages 256—263.

71

