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Abstract 

We introduce the relative rank differential sta-
tistic which is a non-parametric approach to 
document and dialog analysis based on word 
frequency rank-statistics. We also present a 
simple method to establish semantic saliency in 
dialog, documents, and dialog segments using 
these word frequency rank statistics.  Applica-
tions of our technique include the dynamic 
tracking of topic and semantic evolution in a 
dialog, topic detection, automatic generation of 
document tags, and new story or event detec-
tion in conversational speech and text. Our ap-
proach benefits from the robustness, simplicity 
and efficiency of non-parametric and rank 
based approaches and consistently outper-
formed term-frequency and TF-IDF cosine dis-
tance approaches in several experiments con-
ducted. 

1 Background 

Existing research in dialog analysis has focused on 
several specific problems including dialog act de-
tection (e.g., Byron and Heeman 1998), segmenta-
tion and chunking (e.g., Hearst 1993), topic detec-
tion (e.g., Zimmerman et al 2005), distillation and 
summarization (e.g., Mishne et al 2005) etc. The 
breath of this research reflects the increasing im-
portance that dialog analysis has for multiple do-
mains and applications. While historically, dialog 
analysis research has initially leveraged the corre-
sponding techniques originally intended for textual 
document analysis, techniques tailored specifically 
for dialog processing eventually should be able to 
address the sparseness, noise, and time considera-
tions intrinsic to dialog and conversations. 

The approach proposed in this paper focuses on the 
relative change of rank ordering of words occur-
ring in a conversation according to their frequen-
cies. Our approach emphasizes relatively improb-
able terms by focusing on terms that are relatively 
unlikely to appear frequently and thus weighting 
their change in rank more once they are observed. 
Our technique achieves this in a non-parametric 
fashion without explicitly computing probabilities, 
without the assumption of an underlying distribu-
tion, and without the computation of likelihoods.  
In general, non-parametric approaches to data 
analysis are well known and present several attrac-
tive characteristics (as a general reference see Hol-
lander and Wolfe 1999). Non-parametric ap-
proaches require few assumptions about the data 
analyzed and can present computational advan-
tages over parametric approaches especially when 
the underlying distributions of the data are not 
normal. In specific, our approach uses rank order 
statistics of word-feature frequencies to compute a 
relative rank-differential statistic.  
This paper is organized as follows: in Section 2 we 
introduce and describe our basic approach (the 
relative rank differential RRD function and its 
sorted list). In Section 3 we address the temporal 
nature of dialogs and describe considerations to 
dynamically update the RRD statistics in an on-
line fashion especially for the case of shifting tem-
poral windows of analysis. In Section 4 we relate 
the RRD approach to relevant existing and previ-
ous dialog and text analysis approaches. In Section 
5 we illustrate the usefulness of our metric by ana-
lyzing a set of conversations in various ways using 
the RRD. Specifically, in that section we will em-
pirically demonstrate its robustness to noise and 
data sparseness compared to the popular term fre-
quency and TF-IDF cosine distance approaches in 
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a dialog classification task. And finally, in Section 
6, we present some concluding remarks and future 
directions  

2 The Relative Rank Differential 

Let ...},,{ 321
uuuu dddd =  denote the ranked 

dictionary of a language (i.e., the ordered list of 
words sorted in decreasing order of frequency). 
The superscript u denotes that this ranked list is 
based on the universal language. Specifically, the 

word 
u

id  is the thi  entry in ud  if its frequency of 

occurrence in the language denoted by )( u
idf  is 

larger than )( u
jdf  for every j  where ji <  (for 

notational simplicity we assume that no two words 
share the same frequency). In the case where want 
to relax this assumption we simply allow ji <  

when )()( u
j

u
i dfdf =  as long as 

u
id  precedes 

u
jd  lexicographically, or under any other desired 

precedence criteria.  For ud  we assume that 

0)( >u
idf  for every entry (i.e., each word has 

been observed at least once in the language).  

Similarly, let now ...},,{ 321
SSSS dddd =  de-

note the corresponding ranked dictionary for a dia-
log, or dialog segment,  S    (ordered, as in the 
case of the language dictionary, in decreasing order 
of frequency)1. The superscript S denotes that this 

ranked list is based on the dialog S. The word 
S

id  

is the thi  entry in sd  if its frequency of occurrence 

in the conversation segment S denoted by )( S
idf  

is larger than )( S
jdf  for every j  where ji < .  

In this case we allow  0)( ≥S
idf  for every i  so 

that the cardinality of ud  is the same as  sd . 
Let )(wrd  denote the rank of word w  in the 

ranked dictionary d  so that, for example,  

idr u
iud

=)( . 

                                                
1 We only consider at this point the case in which both speak-
ers’ parts in a dialog interaction are considered jointly (i.e., 
single channel), however, our method can be easily extended 
to separate conversation channels. Also, for simplicity we 
consider at this point only words (or phrases) as features. 

Based now on a dialog segment and a universal 
language, any given word w   will be associated 

with a rank in ud  (the universal ranked dictionary) 

and a rank in sd , the dialog segment ranked dic-
tionary.  

Let us define now for every word the relative 
rank differential (RRD) function or statistic2 given 
by: 

( )α)(

)()(
)(,

wr

wrwr
wc

u

su

us

d

dd

dd

−
=  

 
The relative rank-differential is the ratio of the 

absolute difference (or change) in rank between the 
word’s original position in the universal dictionary 
and the segment s. The exponent α  in the de-
nominator allows us to emphasize or deemphasize 
changes in terms according to their position or rank 
in the language (or universal) dictionary. Typically 
we will want to increase the denominator’s value 
(i.e., deemphasize) for terms that have very low 
frequency (and their rank value in the universal 
dictionary is large) so that only relatively big 
changes in rank will result in substantial values of 
this function.  

When alpha is zero, the RRD focuses on every 
word identically as we consider only the absolute 
change in rank. For alpha equal to 1.0 the relative 
change in rank gets scaled down linearly according 
to its rank, while for alphas larger than 1.0 the nu-
merator will scale down or reduce to a larger extent 
the value of relative rank differential for words that 
have large rank value. 

Based on each word’s relative rank differential 
we can compute the ranked list of words sorted in 
decreasing order by their corresponding value of 
relative rank differential. Let this sorted list of 

words be denoted by  ,...},{),( 21 wwddR Su = . So 

that  )( iwc  is larger  than )( jwc 3 for every j  

where ji < .   
We now provide some intuition on the ranked 
RRD lists and the RRD function. The ranked 
dictionary of a language contains information 

                                                
2 For brevity, we refer to the Relative Rank Differential of a 
word given two utterances as a statistic. It is not, strictly 
speaking, a metric or a distance, but rather a function. 
3 For simplicity, c is written without subscripts when these are 
apparent from the context. 
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about the frequency of all words in a language (i.e., 
across the universe of conversations) while the 
segment counterpart pertains a single conversation 
or segment thereof. The relative rank differential 
tells us how different a word is ranked in a 
conversation segment from the universal language, 
but this difference is normalized by the universal 
rank of the word. Intuitively, and especially when 
alpha equals 1.0, the RRD denotes some sort of 
percent change in rank. This also means that this 
function is less sensitive to small changes in 
frequency in the case of frequent words and to 
small changes in rank in case of infrequent words. 

Finally, the sorted list ),( Su ddR  contains in order 
of importance the most relatively salient terms of a 
dialog segment, as measured by relative changes or 
differences in rank. 

3 Collecting Rank Statistics  

We now discuss how to extend the metrics de-
scribed in the previous section to consider finite-
time sliding windows of analysis, that is, we de-
scribe how to update rank statistics, specifically the 
ranked lists and relative rank differential informa-
tion for every feature in an on-line fashion.  This is 
useful when tracking the evolution of single dia-
logs, when focusing the analysis to span shorter 
regions, as well as to supporting dynamic real-time 
analytics of large number of dialogs. 

To approach this, we decompose the word 
events (words as they occur in time) into arriving 
and departing events. An arriving event at time t is 
a word that is covered by the analysis window at 
its specific time as the finite length window slides 
in time, and a departing word at time t is a feature 
that stops falling within the window of analysis.  
For simplicity, and without loss of generality, we 
now assume that we are performing the analysis in 
real time and that the sliding window of analysis 
spans from current time t back to (t-T), where T is 
the length of the window of analysis. 

An arriving word at current time t falls into our 
current window of analysis and thus needs to be 
processed. To account for these events efficiently, 
we need a new structure: the temporal event FIFO 
list (i.e., a queue where events get registered) that 
keeps track of events as they arrive in time. As an 
event (word tw ) arrives it is registered and proc-

essed as follows: 

1. Find the corresponding identifier of tw  in 

the universal ranked dictionary and add it 

as 
u

id  at the end of the temporal event list 

together with its time stamp. 

2. The corresponding entry in sd , the ranked 
segment dictionary, is located through an 

index list that maps s
k

u
i dd → and the 

segment frequency associated is incre-

mented 1)()( += s
k

s
k dfdf  

3. Verify if the rank of the feature needs to be 
updated in the segment rank list. In other 

words evaluate whether )()( 1
s
k

s
k dfdf >−  

still holds true after the update. If this is 
not true then shift feature up in the rank list 
(to a higher rank) and shift down the 
predecessor feature in the rank list. In this 
single shift-up-down operation, update the 
index list and the value of k.  

4. For every feature shifted down in 3 down 
re-compute the relative rank differential 
RRD function and verify if its position 

needs to be modified in ),( Su ddR  (a sec-
ond index list is needed to compute this ef-
ficiently). 

5. Repeat step 3 iteratively until feature is not 
able to push up any further in the ranked 
list. 

 
The process for dealing with departing events is 

quite similar to the arriving process just described. 
Of course, as the analysis window slides in time, it 
is necessary to keep track of the temporal event 
FIFO list to make sure that the events at the top are 
removed as soon as they fall out of the analysis 
window.  The process is then:   

1. The departing event is identified and its 
corresponding identifier in the universal 

ranked dictionary 
u

id  is removed from the 

top of the temporal event list. 

2.  Its location in sd the ranked segment dic-
tionary is located through the index list. 
The corresponding segment frequency as-
sociated is decreased as follows: 

1)()( −= s
k

s
k dfdf . 

3. Verify if the rank of the feature needs to be 
updated in the segment rank list. In other 
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words evaluate if )()( 1
s
k

s
k dfdf <+  still 

holds true after the update. If not shift fea-
ture down in rank (to a lower rank, denot-
ing less frequent occurrence) and shift the 
successor feature up in the rank list. In this 
single shift up-down operation, update the 
index list and the value of k.  

4. For every feature shifted up in step 3 re-
compute the relative rank differential and 
verify if its location needs to be modified 

in ),( Su ddR   
5. Repeat step 3 until the feature is not able to 

shift down any further in the ranked list. 
 

The procedures just described are efficiently 
implementable as they simply identify entries in 
rank lists through index lists, update values by in-
crementing and decrementing variables, and per-
formed some localized and limited re-sorting. Ad-
ditionally, simple operations like adding data at the 
end and removing data at the beginning of the 
FIFO list are needed making it altogether computa-
tionally inexpensive. 

4 Related Techniques 

Our work relates to several existing techniques as 
follows. Many techniques of text and dialog analy-
sis utilize a word frequency vector based approach 
(e.g., Chu-Carroll et al 1999) in which lexical fea-
tures counts (term frequencies) are used to popu-
late the vector. Sometimes the term frequency is 
normalized by document size and weighted by the 
inverse document frequency (TF-IDF). The TF-
IDF and TF metrics are the base of other ap-
proaches like discriminative classification (Kuo 
and Lee 2003; and Li and Huerta 2004), Text Till-
ing or topic chains (Hearst 1993; Zechner 2001), 
and latent semantic indexing (Landauer et al 1998). 
Ultimately, these types of approaches are the foun-
dation of complex classification and document un-
derstanding systems which use these features to-
gether with possibly more sophisticated classifica-
tion algorithms (e.g., D’Avanzo et al 2007).  
When using TF and TF-IDF approaches, it is im-
portant to notice that by normalizing the term fre-
quency by the document length, TF-based ap-
proaches are effectively equivalent to estimation of 
a multinomial distribution. The variance of the es-
timate will be larger as the number of observations 
decreases. Recently, approaches that explicitly es-

tablish this parametric assumption and perform 
parameter inference have been presented in (Blei et 
al 2003). This work is an example of the potential 
complexity associated when performing parameter 
inference.  
  The area of adaptation of frequency parameters 
for ASR, specifically the work of (Church 2000), is 
relevant to our work in the sense that both ap-
proaches emphasize the importance of and present 
a method to update the lexical or semantic feature 
statistics on-line. 
In the area of non-parametric processing of dialog 
and text, the work of (Huffaker et al 2006), is very 
close to the work in this paper as it deals with non-
parametric statistics of the word frequencies (rank 
of occurrences) and uses the Spearman’s Correla-
tion Coefficient. Our work differs from this ap-
proach in two ways: first, the Relative Rank Dif-
ferential tells us about the relative change in rank 
(while SCC focuses in the absolute change) and 
secondly, from the ranked RDD list, we can iden-
tify the saliency of each term (as opposed to sim-
ply computing the overall similarity between two 
passages). 

5 Experiments 

In order to illustrate the application of the RRD 
statistic, we conducted two sets of experiments 
based on conversations recorded in a large cus-
tomer contact center for an American car manufac-
turer. In the first group of experiments we took a 
corpus of 258 hand transcribed dialogs and con-
ducted classification experiments using the basic 
RRD statistic as feature. We compared its per-
formance against term frequency and TF-IDF 
based cosine distance approaches. The second set 
of experiments is based on ASR transcribed speech 
and for this we used a second corpus consisting of 
a set of 44 conversations spanning over 3 hours of 
conversational speech.  
In the first set of experiments we intend to illus-
trate two things: first the usefulness of RRD as a 
feature in terms of representational accuracy and 
second, its robustness to noise and data sparseness 
compared to other popular features. In the second 
set of experiments we illustrate the versatility and 
potential of our technique to be applied in dialog-
oriented analysis. 
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5.1 RRD for Dialog matching 

For this set of experiments we used a corpus of 258 
hand transcribed conversations. Each dialog was 
treated like a single document.  Using the set of 
dialogs we constructed different query vectors and 
affected these queries using various noise condi-
tions, and then we utilized these vectors to perform 
a simple document query classification experiment. 
We measured the cosine distance between the 
noisy query vector and the document vector of 
each document in this corpus. A noisy query is 
constructing by adding zero mean additive gaus-
sian noise to the query vector with amplitude pro-
portional to the value of a parameter N and with 
floor value of zero to avoid negative valued fea-
tures. We allow, in these experiments, for counts to 
have non-integer values; as the dialog becomes 
larger, the Gaussian assumption holds true due to 
the Central Limit Theorem, independently of the 
actual underlying distribution of the noise source. 
This distortion is intended to mimic the variation 
between two similar dialogs (or utterances) that are 
essentially similar, except for a additive zero mean 
random changes. A good statistic should be able to 
show robustness to these types of distortions. A 
correct match is counted when the closest match 
for each query is the generating document.  
 

 N=0.0 N=.05 N=0.1 N=0.2 N=0.4 

TF-
cosine 

99.6 98.0 84.9 60.0 32.5 

TF-
IDF 
cosine 

99.6 99.6 97.3 88.0 67.4 

RRD-
dot 

99.6 99.6 97.6 91.8 70.9 

Table 1.  Query match accuracy for 3 features un-
der several query noise conditions. 
 
Table 1 shows the percent correct matches for the 
TF, TF-IDF and Relative Rank Differential fea-
tures, under various levels of query noise. As we 
can see, in clean conditions the accuracy of the 3 
features is quite high but as the noise conditions 
increase the accuracy of the 3 techniques decreases 
substantially. However, the TF feature is much 
more sensitive to noise than the other two tech-
niques. We can see that our technique is better than 
both TF and TF-IDF in noisy conditions. 
We also conducted experiments to test the com-
parative robustness or the RRD feature to query 

data sparseness. To measure this, we evaluated the 
accuracy in query-document match when using a 
random subset of the document as query.  Figure 1 
show the results of this experiment using the RRD 
feature, the Term Frequency, and the TF-IDF fea-
ture vectors. We can see that with as little as 5% of 
the document size as query, the RRD achieves 
close to 90% accuracy while the TF-IDF feature 
needs up to 20% to achieve the same performance, 
and the TF counts only need close to 70%.   
These results empirically demonstrate that RRD 
statistics are more robust to noise and to term cov-
erage sparseness than TF and TF-IDF. 

 
Figure1.  Query match accuracy for 3 feature types 
under various query data sparseness conditions 

5.2 ASR Based experiments 

For the experiments of this section we used 44 dia-
logs. Manual transcriptions for these 44 conversa-
tions were obtained in order to evaluate the speech 
recognition accuracy. While we could have used 
the manual transcripts to perform the analysis, the 
results reported here are based on the recognition 
output. The reason for using ASR transcripts as 
opposed to human transcription is that we wanted 
to evaluate how useful our approach would be in a 
real ASR based solution dealing with large 
amounts of noisy data at this level of ASR error. 
Each dialog was recorded in two separate channels 
(one for the agent and one for the customer) and 
automatically transcribed separately using a large 
vocabulary two-stage automatic speech recognizer 
system. In the first stage, a speaker independent 
recognition pass is performed after which the re-
sulting hypothesis is used to compensate and adapt 
feature and models. Using the adapted feature and 
models the second stage recognition is performed. 
After recognition, the single best hypothesis with 
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time stamps for the agent and customer are weaved 
back together.  
The overall Word Error Rate is about 24% and var-
ies significantly between the set of agents and the 
set of customers (the set of agents being more ac-
curate).  
The universal dictionary we used consists exclu-
sively of the words occurring in the corpus which 
total 2046 unique words. Call length ranged from 
just less than 1 minute to more than 20 minutes 
with most of the calls lasting between 2 and 3 min-
utes. The corpus consists of close to 30k tokens 
and does not distinguish between agent channel 
and customer channel.  A universal dictionary of 
ranked words is built from the set of dialogs and 
each dialog is treated as a segment.  
 
   Dialog Tagging and Topic Saliency 
In this analysis we look at complete dialogs. A use-
ful application of the methods we describe in this 
work is to identify and separate calls that are inter-
esting from non-interesting calls4, furthermore, one 
could also be interested in singling out which spe-
cific terms make this dialog salient. An application 
of this approach is the automatic generation of tags 
(e.g., social-network style of document tagging). In 
our approach, we will identify calls whose top en-
tries in their sorted relative rank differential lists 
are above a certain threshold and deem these calls 
as semantically salient.  
We now describe in detail how an interesting call 
can be distinguished from a non-interesting call 
using the relative rank differential statistic. 
 Figure 2 below shows the ranked dictionary 

...},,{ 321
SSSS dddd =  (i.e., the universal rank id’s 

as a function of their observed ranks) and Figure 3 
shows the plot of the sorted relative rank differen-

tial list ),( Su ddR  for when the segment corre-
sponds to an interesting call (as defined above). 
The chosen call, specifically shows as topic AIR-
BAG deployment in the context of a car accident.  
Specifically, Figure 2 shows the corresponding 
rank in the universal ranked dictionary versus the 
rank in the dialog or segment. We can see that the 

                                                
4 For the purpose of this work, we simply define as an inter-
esting call a call that deals with an infrequent or rare topic 
which influences the distribution of keywords and key-phrases. 
Examples of calls in our domain meeting this criterion are 
calls dealing with accidents and airbags. 
 

right-most part of the plot is largely monotonic, 
meaning that most entries of lesser frequency occur 
in the same ranked order both in the universal and 
the specific dialog (including zero times for the 
segment), while a subset across the whole range of 
the universal dictionary were substantially relo-
cated up in the rank (i.e., occurred more frequently 
in the dialog than in the language). If the plot was a 
single straight line each word would have the same 
rank both in the language and in the dialog. 
 We argue that while the terms of interest lie in that 
subset of interest in the graph (the terms whose 
rank increased substantially), not all of those words 
are equally interesting or important and rather than 
simply looking at absolute changes in rank we fo-
cus on the relative-rank differential RRD metric. 
Thus, Figure 3 shows the sorted values of the rela-
tive rank differential list (with 3.1=α ). The top 
entries and their rank in the universal dictionary (in 
parentheses) are: AIRBAGS (253), AS (55), 
FRONT (321), DEPLOY (369),  SIDE (279), AC-
CIDENT (687). As we can see, the top entries are 
distributed across a broad range of ranks in the 
universal dictionary and relate to the topic of the 
conversation, which from the top ranked entries are 
evidently the deployment of front and side airbags 
during an accident, and thus, for this call were able 
to identify its semantic saliency from the corpus of 
conversations. 
Other interesting or salient calls also showed a 
similar this profile in the RRD curve. 
The question now is what the behavior of our ap-
proach for uninteresting calls is. We repeated the 
procedure above for a call which we deemed se-
mantically un-interesting (i.e., dealing with a 
common topic like call transfer and other routine 
procedures). Figure 4 shows the sorted relative 
rank differential values and, especially when com-
pared with Figure 2, we see a large monotonic 
component on the higher ranked terms and not so 
marked discontinuities in the low and mid-range 
part of the curve. 
  We computed the relative rank differential RRD 
metric for each feature similarly as with the inter-
esting call, and ranked the words based on these 
values. The distribution of the ranked values is 
shown in Figure 5.  The resulting words with top 
values are CLEAR (1113), INFORMATION (122) 
BUYING (1941), and CLEARLY (1910). From 
these words we cannot really tell what is the spe-
cific topic of the conversation is as easily as with 
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the interesting call. More importantly, we can now 
compare Figures 3 and 5 and see that the highest 
relative rank differential value of the top entry in 
Figure 3 (larger than 10) is significantly larger than 
the largest relative rank differential value in Figure 
5 (just above 7) reflecting the fact that the relative 
rank differential metric could be a useful parameter 
in evaluating semantic saliency of a segment using 
a static threshold. As an interesting point, con-
ceivably the highly ranked features based on RRD 
could reflect language utilization idiosyncrasies. 

 
Figure 2. Ranked dictionary entry vs Universal 
Rank for a salient call  

 
 
Figure 3.  Sorted relative rank differential values 

of ),( Su ddR  for a semantically salient call. 
 

 
Figure 4.  Ranked dictionary entry vs Universal 

Rank for a non-salient call 

 
 
Figure 5.  Sorted relative rank differential values 

of ),( Su ddR  for a non-interesting (semantically 
non-salient) call. 
 

6 Conclusions 

In this paper we presented a novel non parametric 
rank-statistics based method for the semantic 
analysis of conversations and dialogs. Our method 
is implementable in segment-based or dialog-based 
modalities, as well as in batch form and in on-line 
or dynamic form. Applications of our method in-
clude topic detection, event tracking, story/topic 
monitoring, new-event detection, summarization, 
information filtering, etc. Because our approach is 
based on non-parametric statistics it has favorable 
intrinsic benefits, like making no assumptions 
about the underlying data, which makes it suitable 
for the use of both lexical semantic features as well 
as classifier-based semantic features. Furthermore, 
our approach could, in the future, benefit from 
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classical non-parametric approaches like block-
treatment analysis etc.  
We demonstrated that our approach is as effective 
in query classification as TF and TF-IDF in low 
noise and no noise (i.e., distortion) conditions, and 
consistently better than those techniques in noisy 
conditions. We also found RRD to be more robust 
to query data sparseness than TF and TF-IDF.  
These results provide a motivation to combine our 
statistic with other techniques like topic chains, 
textilling, latent semantic indexing, and discrimi-
nant classification approaches; specifically RRD 
could replace TF and TF-IDF based features. 
  Future work could focus on applying ranking sta-
tistics to techniques for mining and tracking tem-
poral and time-changing parameters in conjunction 
with techniques like (Agrawal and Srikant 1995; 
Pratt 2001;  Last et al 2001). 
Another area of possible future work is the detec-
tion and separation of multiple underlying trends in 
dialogs. Our approach is also suited for the analy-
sis of large streams of real time conversations, and 
this is a very important area of focus as presently 
more and more conversational data gets  generated 
through channels like chat, mobile telephony, VoIP  
etc. 

References 

Agrawal R. and Srikant  R. 1995. Mining Sequential 
Patterns. In Proc. of the 11th Int'l Conference on 
Data Engineering, Taipei, Taiwan. 

Berger, A. L., Pietra, V. J., and Pietra, S. A.  1996. A 
maximum entropy approach to natural language 
processing. Comp. Linguist. 22, 1  

Blei D., Ng A., and Jordan M. 2003. Latent Dirichlet 
allocation. J. of Machine Learning Research 

Byron, D. K. and Heeman, P. A. 1998. Discourse 
Marker Use in Task-Oriented Spoken Dialog. 
TR664, University of Rochester. 

Chu-Carroll, J, and Carpenter R. 1999. Vector-Based 
Natural Language Call Routing. Journal of Computa-
tional Linguistics, 25(30), pp. 361-388 

Church, K. 2000. Empirical estimates of adaptation: 
The chance of two Noriega 's is closer to p/2 than p2. 
In Coling 

D'Avanzo E., Elia A., Kuflik T., Vietri S. 2007. Univer-
sity of Salerno, LAKE System at DUC 2007, Proc. 
Document Understanding Conference 

Hearst, M. 1993. TextTiling: A Quantitative Approach 
to Discourse Segmentation, Technical Report 
UCB:S2K-93-24, Berkeley, CA 

Hollander & Wolfe 1999. Nonparametric Statistical 
Methods, Second Edition, John Wiley and Sons  

Huffaker, D., Jorgensen, J., Iacobelli, F., Tepper, P., & 
Cassell, J. 2006. Computational Measures for Lan-
guage Similarity across Time in Online Communities. 
Workshop on ACTS at HLT-NAACL, New York 
City, NY. 

Klinkenberg R. and Renz I. 1998. Adaptive information 
filtering: Learning in the presence of concept drifts. 
In Learning for Text Categorization, Menlo Park 

Kuo H.-K.J. and Lee C. H. Discriminative training of 
natural language call routers, IEEE Transactions on 
Speech and Audio Processing, Volume 11, Issue 1, 
Jan 2003 Page(s): 24 - 35. 

Landauer T., Foltz P. W., and  Laham D. Introduction to 
Latent Semantic Analysis Discourse Processes 25, 
1998.  

Last M., Klein Y., and  Kandel A., Knowledge Discov-
ery in Time Series Databases IEEE Trans. on Sys-
tems, Man, and Cybernetics 31B(2001). 

Li X. and  Huerta J.M., Discriminative Training of 
Compound word based Multinomial Classifiers for 
Speech Routing Proc. ICSLP 2004 

Mishne, G., Carmel, D., Hoory, R., Roytman, A., and 
Soffer, A. 2005. Automatic analysis of call-center 
conversations. In Proc. of the 14th ACM interna-
tional Conference on information and Knowledge.  

Pratt K. B.  Locating patterns in discrete time series. 
Master's thesis, Computer Science and Engineering, 
University of South Florida, 2001. 

Stanley K. O.  Learning concept drift with a committee 
of decision trees. Comp. Science Dept., University of 
Texas-Austin. TR  AI-03-302, 2003. 

Zechner K. Automatic Summarization of Spoken Dia-
logues in Unrestricted Domains. PhD thesis, LTI, 
CMU, 2001 

Zimmermann M.,  Liu Y., E. Shriberg, and A. Stolcke, 
Toward Joint Segmentation and Classification of 
Dialog Acts in Multiparty Meetings MLMI work-
shop, 2005 

972


