
Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing, pages 419–428,
Honolulu, October 2008. c©2008 Association for Computational Linguistics

Scalable Language Processing Algorithms for the Masses: A Case Study in
Computing Word Co-occurrence Matrices with MapReduce

Jimmy Lin
The iSchool, University of Maryland

National Center for Biotechnology Information, National Library of Medicine
jimmylin@umd.edu

Abstract

This paper explores the challenge of scaling
up language processing algorithms to increas-
ingly large datasets. While cluster comput-
ing has been available in commercial environ-
ments for several years, academic researchers
have fallen behind in their ability to work on
large datasets. I discuss two barriers contribut-
ing to this problem: lack of a suitable pro-
gramming model for managing concurrency
and difficulty in obtaining access to hardware.
Hadoop, an open-source implementation of
Google’s MapReduce framework, provides a
compelling solution to both issues. Its simple
programming model hides system-level de-
tails from the developer, and its ability to run
on commodity hardware puts cluster comput-
ing within the reach of many academic re-
search groups. This paper illustrates these
points with a case study in building word co-
occurrence matrices from large corpora. I con-
clude with an analysis of an alternative com-
puting model based on renting instead of buy-
ing computer clusters.

1 Introduction

Over the past couple of decades, the field of compu-
tational linguistics (and more broadly, human lan-
guage technologies) has seen the emergence and
later dominance of empirical techniques and data-
driven research. Concomitant with this trend is a
coherent research thread that focuses on exploiting
increasingly-large datasets. Banko and Brill (2001)
were among the first to demonstrate the importance
of dataset size as a significant factor governing pre-
diction accuracy in a supervised machine learning

task. In fact, they argued that size of training set
was perhaps more important than the choice of ma-
chine learning algorithm itself. Similarly, exper-
iments in question answering have shown the ef-
fectiveness of simple pattern-matching techniques
when applied to large quantities of data (Brill et al.,
2001; Dumais et al., 2002). More recently, this
line of argumentation has been echoed in experi-
ments with Web-scale language models. Brants et
al. (2007) showed that for statistical machine trans-
lation, a simple smoothing technique (dubbed Stupid
Backoff) approaches the quality of the Kneser-Ney
algorithm as the amount of training data increases,
and with the simple method one can process signifi-
cantly more data.

Challenges in scaling algorithms to increasingly-
large datasets have become a serious issue for re-
searchers. It is clear that datasets readily available
today and the types of analyses that researchers wish
to conduct have outgrown the capabilities of individ-
ual computers. The only practical recourse is to dis-
tribute the computation across multiple cores, pro-
cessors, or machines. The consequences of failing
to scale include misleading generalizations on arti-
ficially small datasets and limited practical applica-
bility in real-world contexts, both undesirable.

This paper focuses on two barriers to develop-
ing scalable language processing algorithms: chal-
lenges associated with parallel programming and
access to hardware. Google’s MapReduce frame-
work (Dean and Ghemawat, 2004) provides an at-
tractive programming model for developing scal-
able algorithms, and with the release of Hadoop,
an open-source implementation of MapReduce lead

419

by Yahoo, cost-effective cluster computing is within
the reach of most academic research groups. It
is emphasized that this work focuses on large-
data algorithms from the perspective of academia—
colleagues in commercial environments have long
enjoyed the advantages of cluster computing. How-
ever, it is only recently that such capabilities have
become practical for academic research groups.
These points are illustrated by a case study in build-
ing large word co-occurrence matrices, a simple task
that underlies many NLP algorithms.

The remainder of the paper is organized as fol-
lows: the next section overviews the MapReduce
framework and why it provides a compelling solu-
tion to the issues sketched above. Section 3 intro-
duces the task of building word co-occurrence ma-
trices, which provides an illustrative case study. Two
separate algorithms are presented in Section 4. The
experimental setup is described in Section 5, fol-
lowed by presentation of results in Section 6. Im-
plications and generalizations are discussed follow-
ing that. Before concluding, I explore an alternative
model of computing based on renting instead of buy-
ing hardware, which makes cluster computing prac-
tical for everyone.

2 MapReduce

The only practical solution to large-data challenges
today is to distribute the computation across mul-
tiple cores, processors, or machines. The de-
velopment of parallel algorithms involves a num-
ber of tradeoffs. First is that of cost: a decision
must be made between “exotic” hardware (e.g.,
large shared memory machines, InfiniBand inter-
connect) and commodity hardware. There is signif-
icant evidence (Barroso et al., 2003) that solutions
based on the latter are more cost effective—and for
resource-constrained academic NLP groups, com-
modity hardware is often the only practical route.

Given appropriate hardware, researchers must
still contend with the challenge of developing soft-
ware. Quite simply, parallel programming is diffi-
cult. Due to communication and synchronization
issues, concurrent operations are notoriously chal-
lenging to reason about. Reliability and fault tol-
erance become important design considerations on
clusters containing large numbers of unreliable com-

modity parts. With traditional parallel programming
models (e.g., MPI), the developer shoulders the bur-
den of explicitly managing concurrency. As a result,
a significant amount of the programmer’s attention
is devoted to system-level details, leaving less time
for focusing on the actual problem.

Recently, MapReduce (Dean and Ghemawat,
2004) has emerged as an attractive alternative to
existing parallel programming models. The Map-
Reduce abstraction shields the programmer from
having to explicitly worry about system-level is-
sues such as synchronization, inter-process commu-
nication, and fault tolerance. The runtime is able
to transparently distribute computations across large
clusters of commodity hardware with good scaling
characteristics. This frees the programmer to focus
on solving the problem at hand.

MapReduce builds on the observation that many
information processing tasks have the same basic
structure: a computation is applied over a large num-
ber of records (e.g., Web pages, bitext pairs, or nodes
in a graph) to generate partial results, which are
then aggregated in some fashion. Naturally, the per-
record computation and aggregation function vary
according to task, but the basic structure remains
fixed. Taking inspiration from higher-order func-
tions in functional programming, MapReduce pro-
vides an abstraction at the point of these two opera-
tions. Specifically, the programmer defines a “map-
per” and a “reducer” with the following signatures:

map: (k1, v1)→ [(k2, v2)]
reduce: (k2, [v2])→ [(k3, v3)]

Key-value pairs form the basic data structure in
MapReduce. The mapper is applied to every input
key-value pair to generate an arbitrary number of in-
termediate key-value pairs ([. . .] is used to denote a
list). The reducer is applied to all values associated
with the same intermediate key to generate output
key-value pairs. This two-stage processing structure
is illustrated in Figure 1.

Under the framework, a programmer needs only
to provide implementations of the mapper and re-
ducer. On top of a distributed file system (Ghe-
mawat et al., 2003), the runtime transparently han-
dles all other aspects of execution, on clusters rang-
ing from a few to a few thousand nodes. The run-
time is responsible for scheduling map and reduce

420

Shuffling: group values by keys

map map map map

reduce reduce reduce

input input input input

output output output

Figure 1: Illustration of the MapReduce framework: the
“mapper” is applied to all input records, which generates
results that are aggregated by the “reducer”. The runtime
groups together values by keys.

workers on commodity hardware assumed to be un-
reliable, and thus is tolerant to various faults through
a number of error recovery mechanisms. In the dis-
tributed file system, data blocks are stored on the
local disks of machines in the cluster—the Map-
Reduce runtime handles the scheduling of mappers
on machines where the necessary data resides. It
also manages the potentially very large sorting prob-
lem between the map and reduce phases whereby in-
termediate key-value pairs must be grouped by key.

As an optimization, MapReduce supports the use
of “combiners”, which are similar to reducers except
that they operate directly on the output of mappers
(in memory, before intermediate output is written to
disk). Combiners operate in isolation on each node
in the cluster and cannot use partial results from
other nodes. Since the output of mappers (i.e., the
key-value pairs) must ultimately be shuffled to the
appropriate reducer over a network, combiners al-
low a programmer to aggregate partial results, thus
reducing network traffic. In cases where an opera-
tion is both associative and commutative, reducers
can directly serve as combiners.

Google’s proprietary implementation of Map-
Reduce is in C++ and not available to the public.
However, the existence of Hadoop, an open-source
implementation in Java spearheaded by Yahoo, al-
lows anyone to take advantage of MapReduce. The
growing popularity of this technology has stimu-
lated a flurry of recent work, on applications in ma-
chine learning (Chu et al., 2006), machine transla-
tion (Dyer et al., 2008), and document retrieval (El-
sayed et al., 2008).

3 Word Co-occurrence Matrices

To illustrate the arguments outlined above, I present
a case study using MapReduce to build word co-
occurrence matrices from large corpora, a common
task in natural language processing. Formally, the
co-occurrence matrix of a corpus is a square N ×
N matrix where N corresponds to the number of
unique words in the corpus. A cell mij contains the
number of times word wi co-occurs with word wj

within a specific context—a natural unit such as a
sentence or a certain window of m words (where m
is an application-dependent parameter). Note that
the upper and lower triangles of the matrix are iden-
tical since co-occurrence is a symmetric relation.

This task is quite common in corpus linguistics
and provides the starting point to many other algo-
rithms, e.g., for computing statistics such as point-
wise mutual information (Church and Hanks, 1990),
for unsupervised sense clustering (Schütze, 1998),
and more generally, a large body of work in lexi-
cal semantics based on distributional profiles, dat-
ing back to Firth (1957) and Harris (1968). The
task also has applications in information retrieval,
e.g., (Schütze and Pedersen, 1998; Xu and Croft,
1998), and other related fields as well. More gen-
erally, this problem relates to the task of estimating
distributions of discrete events from a large number
of observations (more on this in Section 7).

It is obvious that the space requirement for this
problem is O(N2), where N is the size of the vocab-
ulary, which for real-world English corpora can be
hundreds of thousands of words. The computation
of the word co-occurrence matrix is quite simple if
the entire matrix fits into memory—however, in the
case where the matrix is too big to fit in memory,
a naive implementation can be very slow as mem-
ory is paged to disk. For large corpora, one needs
to optimize disk access and avoid costly seeks. As
illustrated in the next section, MapReduce handles
exactly these issues transparently, allowing the pro-
grammer to express the algorithm in a straightfor-
ward manner.

A bit more discussion of the task before mov-
ing on: in many applications, researchers have
discovered that building the complete word co-
occurrence matrix may not be necessary. For ex-
ample, Schütze (1998) discusses feature selection

421

techniques in defining context vectors; Mohammad
and Hirst (2006) present evidence that conceptual
distance is better captured via distributional profiles
mediated by thesaurus categories. These objections,
however, miss the point—the focus of this paper
is on practical cluster computing for academic re-
searchers; this particular task serves merely as an
illustrative example. In addition, for rapid proto-
typing, it may be useful to start with the complete
co-occurrence matrix (especially if it can be built ef-
ficiently), and then explore how algorithms can be
optimized for specific applications and tasks.

4 MapReduce Implementation

This section presents two MapReduce algorithms
for building word co-occurrence matrices for large
corpora. The goal is to illustrate how the prob-
lem can be concisely captured in the MapReduce
programming model, and how the runtime hides
many of the system-level details associated with dis-
tributed computing.

Pseudo-code for the first, more straightforward,
algorithm is shown in Figure 2. Unique document
ids and the corresponding texts make up the input
key-value pairs. The mapper takes each input doc-
ument and emits intermediate key-value pairs with
each co-occurring word pair as the key and the inte-
ger one as the value. In the pseudo-code, EMIT de-
notes the creation of an intermediate key-value pair
that is collected (and appropriately sorted) by the
MapReduce runtime. The reducer simply sums up
all the values associated with the same co-occurring
word pair, arriving at the absolute counts of the joint
event in the corpus (corresponding to each cell in the
co-occurrence matrix).

For convenience, I refer to this algorithm as the
“pairs” approach. Since co-occurrence is a symmet-
ric relation, it suffices to compute half of the matrix.
However, for conceptual clarity and to generalize to
instances where the relation may not be symmetric,
the algorithm computes the entire matrix.

The Java implementation of this algorithm is quite
concise—less than fifty lines long. Notice the Map-
Reduce runtime guarantees that all values associated
with the same key will be gathered together at the re-
duce stage. Thus, the programmer does not need to
explicitly manage the collection and distribution of

1: procedure MAP1(n, d)
2: for all w ∈ d do
3: for all u ∈ NEIGHBORS(w) do
4: EMIT((w, u), 1)

1: procedure REDUCE1(p, [v1, v2, . . .])
2: for all v ∈ [v1, v2, . . .] do
3: sum← sum + v

4: EMIT(p, sum)

Figure 2: Pseudo-code for the “pairs” approach for com-
puting word co-occurrence matrices.

1: procedure MAP2(n, d)
2: INITIALIZE(H)
3: for all w ∈ d do
4: for all u ∈ NEIGHBORS(w) do
5: H{u} ← H{u}+ 1
6: EMIT(w, H)

1: procedure REDUCE2(w, [H1, H2, H3, . . .])
2: INITIALIZE(Hf)
3: for all H ∈ [H1, H2, H3, . . .] do
4: MERGE(Hf , H)

5: EMIT(w, Hf)

Figure 3: Pseudo-code for the “stripes” approach for
computing word co-occurrence matrices.

partial results across a cluster. In addition, the pro-
grammer does not need to explicitly partition the in-
put data and schedule workers. This example shows
the extent to which distributed processing can be
dominated by system issues, and how an appropriate
abstraction can significantly simplify development.

It is immediately obvious that Algorithm 1 gen-
erates an immense number of key-value pairs. Al-
though this can be mitigated with the use of a com-
biner (since addition is commutative and associa-
tive), the approach still results in a large amount of
network traffic. An alternative approach is presented
in Figure 3, first reported in Dyer et al. (2008).
The major difference is that counts of co-occurring
words are first stored in an associative array (H).
The output of the mapper is a number of key-value
pairs with words as keys and the corresponding asso-
ciative arrays as the values. The reducer performs an
element-wise sum of all associative arrays with the
same key (denoted by the function MERGE), thus ac-

422

cumulating counts that correspond to the same cell
in the co-occurrence matrix. Once again, a com-
biner can be used to cut down on the network traffic
by merging partial results. In the final output, each
key-value pair corresponds to a row in the word co-
occurrence matrix. For convenience, I refer to this
as the “stripes” approach.

Compared to the “pairs” approach, the “stripes”
approach results in far fewer intermediate key-value
pairs, although each is significantly larger (and there
is overhead in serializing and deserializing associa-
tive arrays). A critical assumption of the “stripes”
approach is that at any point in time, each associa-
tive array is small enough to fit into memory (other-
wise, memory paging may result in a serious loss of
efficiency). This is true for most corpora, since the
size of the associative array is bounded by the vo-
cabulary size. Section 6 compares the efficiency of
both algorithms.1

5 Experimental Setup

Work reported in this paper used the English Gi-
gaword corpus (version 3),2 which consists of
newswire documents from six separate sources, to-
taling 7.15 million documents (6.8 GB compressed,
19.4 GB uncompressed). Some experiments used
only documents from the Associated Press World-
stream (APW), which contains 2.27 million docu-
ments (1.8 GB compressed, 5.7 GB uncompressed).
By LDC’s count, the entire collection contains ap-
proximately 2.97 billion words.

Prior to working with Hadoop, the corpus was
first preprocessed. All XML markup was removed,
followed by tokenization and stopword removal us-
ing standard tools from the Lucene search engine.
All tokens were replaced with unique integers for a
more efficient encoding. The data was then packed
into a Hadoop-specific binary file format. The entire
Gigaword corpus took up 4.69 GB in this format; the
APW sub-corpus, 1.32 GB.

Initial experiments used Hadoop version 0.16.0
running on a 20-machine cluster (1 master, 19
slaves). This cluster was made available to the Uni-

1Implementations of both algorithms are included in
Cloud9, an open source Hadoop library that I have been de-
veloping to support research and education, available from my
homepage.

2LDC catalog number LDC2007T07

versity of Maryland as part of the Google/IBM Aca-
demic Cloud Computing Initiative. Each machine
has two single-core processors (running at either 2.4
GHz or 2.8 GHz), 4 GB memory. The cluster has an
aggregate storage capacity of 1.7 TB. Hadoop ran on
top of a virtualization layer, which has a small but
measurable impact on performance; see (Barham et
al., 2003). Section 6 reports experimental results
using this cluster; Section 8 explores an alternative
model of computing based on “renting cycles”.

6 Results

First, I compared the running time of the “pairs” and
“stripes” approaches discussed in Section 4. Run-
ning times on the 20-machine cluster are shown
in Figure 4 for the APW section of the Gigaword
corpus: the x-axis shows different percentages of
the sub-corpus (arbitrarily selected) and the y-axis
shows running time in seconds. For these experi-
ments, the co-occurrence window was set to two,
i.e., wi is said to co-occur with wj if they are no
more than two words apart (after tokenization and
stopword removal).

Results demonstrate that the stripes approach is
far more efficient than the pairs approach: 666 sec-
onds (11m 6s) compared to 3758 seconds (62m 38s)
for the entire APW sub-corpus (improvement by a
factor of 5.7). On the entire sub-corpus, the map-
pers in the pairs approach generated 2.6 billion in-
termediate key-value pairs totally 31.2 GB. After the
combiners, this was reduced to 1.1 billion key-value
pairs, which roughly quantifies the amount of data
involved in the shuffling and sorting of the keys. On
the other hand, the mappers in the stripes approach
generated 653 million intermediate key-value pairs
totally 48.1 GB; after the combiners, only 28.8 mil-
lion key-value pairs were left. The stripes approach
provides more opportunities for combiners to aggre-
gate intermediate results, thus greatly reducing net-
work traffic in the sort and shuffle phase.

Figure 4 also shows that both algorithms exhibit
highly desirable scaling characteristics—linear in
the corpus size. This is confirmed by a linear regres-
sion applied to the running time data, which yields
R2 values close to one. Given that the stripes algo-
rithm is more efficient, it is used in the remainder of
the experiments.

423

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 20 40 60 80 100

ru
nn

in
g

tim
e

(s
ec

on
ds

)

percentage of the APW sub-corpora of the English Gigaword

Efficiency comparison of approaches to computing word co-occurrence matrices

R2 = 0.992

R2 = 0.999

"stripes" approach
"pairs" approach

Figure 4: Running time of the two algorithms (“stripes” vs. “pairs”) for computing word co-occurrence matrices on
the APW section of the Gigaword corpus. The cluster used for this experiment contains 20 machines, each with two
single-core processors.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 1 2 3 4 5 6 7

ru
nn

in
g

tim
e

(s
ec

on
ds

)

window size (number of words)

Running time for different widow sizes

R2 = 0.992

Figure 5: Running times for computing word co-occurrence matrices from the entire Gigaword corpus with varying
window sizes. The cluster used for this experiment contains 20 machines, each with two single-core processors.

424

With a window size of two, computing the word
co-occurrence matrix for the entire Gigaword corpus
(7.15 million documents) takes 37m 11s on the 20-
machine cluster. Figure 5 shows the running time
as a function of window size. With a window of
six words, running time on the complete Gigaword
corpus rises to 1h 23m 45s. Once again, the stripes
algorithm exhibits the highly desirable characteris-
tic of linear scaling in terms of window size, as con-
firmed by the linear regression with an R2 value very
close to one.

7 Discussion

The elegance of the programming model and good
scaling characteristics of resulting implementations
make MapReduce a compelling tool for a variety
of natural language processing tasks. In fact, Map-
Reduce excels at a large class of problems in NLP
that involves estimating probability distributions of
discrete events from a large number of observations
according to the maximum likelihood criterion:

PMLE(B|A) =
c(A, B)
c(A)

=
c(A, B)∑
B′ c(A, B′)

(1)

In practice, it matters little whether these events
are words, syntactic categories, word alignment
links, or any construct of interest to researchers. Ab-
solute counts in the stripes algorithm presented in
Section 4 can be easily converted into conditional
probabilities by a final normalization step. Recently,
Dyer et al. (2008) used this approach for word align-
ment and phrase extraction in statistical machine
translation. Of course, many applications require
smoothing of the estimated distributions—this prob-
lem also has known solutions in MapReduce (Brants
et al., 2007).

Synchronization is perhaps the single largest bot-
tleneck in distributed computing. In MapReduce,
this is handled in the shuffling and sorting of key-
value pairs between the map and reduce phases. De-
velopment of efficient MapReduce algorithms criti-
cally depends on careful control of intermediate out-
put. Since the network link between different nodes
in a cluster is by far the component with the largest
latency, any reduction in the size of intermediate
output or a reduction in the number of key-value
pairs will have significant impact on efficiency.

8 Computing on Demand

The central theme of this paper is practical clus-
ter computing for NLP researchers in the academic
environment. I have identified two key aspects of
what it means to be “practical”: the first is an appro-
priate programming model for simplifying concur-
rency management; the second is access to hardware
resources. The Hadoop implementation of Map-
Reduce addresses the first point and to a large ex-
tent the second point as well. The cluster used for
experiments in Section 6 is modest by today’s stan-
dards and within the capabilities of many academic
research groups. It is not even a requirement for the
computers to be rack-mounted units in a machine
room (although that is clearly preferable); there are
plenty of descriptions on the Web about Hadoop
clusters built from a handful of desktop machines
connected by gigabit Ethernet.

Even without access to hardware, cluster comput-
ing remains within the reach of resource-constrained
academics. “Utility computing” is an emerging con-
cept whereby anyone can provision clusters on de-
mand from a third-party provider. Instead of up-
front capital investment to acquire a cluster and re-
occurring maintenance and administration costs, one
could “rent” computing cycles as they are needed—
this is not a new idea (Rappa, 2004). One such ser-
vice is provided by Amazon, called Elastic Compute
Cloud (EC2).3 With EC2, researchers could dynam-
ically create a Hadoop cluster on-the-fly and tear
down the cluster once experiments are complete. To
demonstrate the use of this technology, I replicated
some of the previous experiments on EC2 to provide
a case study of this emerging model of computing.

Virtualized computation units in EC2 are called
instances. At the time of these experiments, the ba-
sic instance offers, according to Amazon, 1.7 GB
of memory, 1 EC2 Compute Unit (1 virtual core
with 1 EC2 Compute Unit), and 160 GB of instance
storage. Each instance-hour costs $0.10 (all prices
given in USD). Computational resources are simply
charged by the instance-hour, so that a ten-instance
cluster for ten hours costs the same as a hundred-
instance cluster for one hour (both $10)—the Ama-
zon infrastructure allows one to dynamically provi-
sion and release resources as necessary. This is at-

3http://www.amazon.com/ec2

425

 0

 1000

 2000

 3000

 4000

 5000

 10 20 30 40 50 60 70 80 90

1x

2x

3x

4x

1x 2x 3x 4x

ru
nn

in
g

tim
e

(s
ec

on
ds

)

re
la

tiv
e

sp
ee

du
p

size of EC2 cluster (number of slave instances)

Computing word co-occurrence matrices on Amazon EC2

relative size of EC2 cluster

$2.76

$2.92

$2.89

$2.64

$2.69
$2.63

$2.59

20-machine cluster

R2 = 0.997

Figure 6: Running time analysis on Amazon EC2 with various cluster sizes; solid squares are annotated with the cost
of each experiment. Alternate axes (circles) plot scaling characteristics in terms increasing cluster size.

tractive for researchers, who could on a limited basis
allocate clusters much larger than they could other-
wise afford if forced to purchase the hardware out-
right. Through virtualization technology, Amazon
is able to parcel out allotments of processor cycles
while maintaining high overall utilization across a
data center and exploiting economies of scale.

Using EC2, I built word co-occurrence matrices
from the entire English Gigaword corpus (window
of two) on clusters of various sizes, ranging from
20 slave instances all the way up to 80 slave in-
stances. The entire cluster consists of the slave in-
stances plus a master controller instance that serves
as the job submission queue; the clusters ran Hadoop
version 0.17.0 (the latest release at the time these
experiments were conducted). Running times are
shown in Figure 6 (solid squares), with varying clus-
ter sizes on the x-axis. Each data point is anno-
tated with the cost of running the complete experi-
ment.4 Results show that computing the complete
word co-occurrence matrix costs, quite literally, a
couple of dollars—certainly affordable by any aca-
demic researcher without access to hardware. For
reference, Figure 6 also plots the running time of
the same experiment on the 20-machine cluster used

4Note that Amazon bills in whole instance-hour increments;
these figures assume fractional accounting.

in Section 6 (which contains 38 worker cores, each
roughly comparable to an instance).

The alternate set of axes in Figure 6 shows the
scaling characteristics of various cluster sizes. The
circles plot the relative size and speedup of the
EC2 experiments, with respect to the 20-slave clus-
ter. The results show highly desirable linear scaling
characteristics.

The above figures include only the cost of running
the instances. One must additionally pay for band-
width when transferring data in and out of EC2. At
the time these experiments were conducted, Ama-
zon charged $0.10 per GB for data transferred in and
$0.17 per GB for data transferred out. To comple-
ment EC2, Amazon offers persistent storage via the
Simple Storage Service (S3),5 at a cost of $0.15 per
GB per month. There is no charge for data transfers
between EC2 and S3. The availability of this service
means that one can choose between paying for data
transfer or paying for persistent storage on a cyclic
basis—the tradeoff naturally depends on the amount
of data and its permanence.

The cost analysis presented above assumes
optimally-efficient use of Amazon’s services; end-
to-end cost might better quantify real-world usage
conditions. In total, the experiments reported in this

5http://www.amazon.com/s3

426

section resulted in a bill of approximately thirty dol-
lars. The figure includes all costs associated with in-
stance usage and data transfer costs. It also includes
time taken to learn the Amazon tools (I previously
had no experience with either EC2 or S3) and to
run preliminary experiments on smaller datasets (be-
fore scaling up to the complete corpus). The lack of
fractional accounting on instance-hours contributed
to the larger-than-expected costs, but such wastage
would naturally be reduced with more experiments
and higher sustained use. Overall, these cost appear
to be very reasonable, considering that the largest
cluster in these experiments (1 master + 80 slave in-
stances) might be too expensive for most academic
research groups to own and maintain.

Consider another example that illustrates the pos-
sibilities of utility computing. Brants et al. (2007)
described experiments on building language models
with increasingly-large corpora using MapReduce.
Their paper reported experiments on a corpus con-
taining 31 billion tokens (about an order of magni-
tude larger than the English Gigaword): on 400 ma-
chines, the model estimation took 8 hours.6 With
EC2, such an experiment would cost a few hundred
dollars—sufficiently affordable that availability of
data becomes the limiting factor, not computational
resources themselves.

The availability of “computing-on-demand” ser-
vices and Hadoop make cluster computing practi-
cal for academic researchers. Although Amazon is
currently the most prominent provider of such ser-
vices, they are not the sole player in an emerging
market—in the future there will be a vibrant market
with many competing providers. Considering the
tradeoffs between “buying” and “renting”, I would
recommend the following model for an academic re-
search group: purchase a modest cluster for devel-
opment and for running smaller experiments; use a
computing-on-demand service for scaling up and for
running larger experiments (since it would be more
difficult to economically justify a large cluster if it
does not receive high sustained utilization).

If the concept of utility computing takes hold, it
would have a significant impact on computer sci-
ence research in general: the natural implication is

6Brants et al. were affiliated with Google, so access to hard-
ware was not an issue.

that algorithms should not only be analyzed in tradi-
tional terms such as asymptotic complexity, but also
in terms of monetary costs, in relationship to dataset
and cluster size. One can argue that cost is a more di-
rect and practical measure of algorithmic efficiency.

9 Conclusion

This paper address two challenges faced by aca-
demic research groups in scaling up natural lan-
guage processing algorithms to large corpora: the
lack of an appropriate programming model for ex-
pressing the problem and the difficulty in getting ac-
cess to hardware. With this case study in building
word co-occurrence matrices from large corpora, I
demonstrate that MapReduce, via the open source
Hadoop implementation, provides a compelling so-
lution. A large class of algorithms in computa-
tional linguistics can be readily expressed in Map-
Reduce, and the resulting code can be transparently
distributed across commodity clusters. Finally, the
“cycle-renting” model of computing makes access
to large clusters affordable to researchers with lim-
ited resources. Together, these developments dra-
matically lower the entry barrier for academic re-
searchers who wish to explore large-data issues.

Acknowledgments

This work was supported by the Intramural Research
Program of the NIH, National Library of Medicine;
NSF under awards IIS-0705832 and IIS-0836560;
DARPA/IPTO Contract No. HR0011-06-2-0001 un-
der the GALE program. Any opinions, findings,
conclusions, or recommendations expressed in this
paper are the author’s and do not necessarily reflect
those of the sponsors. I would like to thank Ya-
hoo! for leading the development of Hadoop, IBM
and Google for hardware support via the Academic
Cloud Computing Initiative (ACCI), and Amazon
for EC2/S3 support. This paper provides a neutral
evaluation of EC2 and S3, and should not be inter-
preted as endorsement for the commercial services
offered by Amazon. I wish to thank Philip Resnik
and Doug Oard for comments on earlier drafts of
this paper, and Ben Shneiderman for helpful editing
suggestions. I am, as always, grateful to Esther and
Kiri for their kind support.

427

References
Michele Banko and Eric Brill. 2001. Scaling to very very

large corpora for natural language disambiguation. In
Proceedings of the 39th Annual Meeting of the As-
sociation for Computational Linguistics (ACL 2001),
pages 26–33, Toulouse, France.

Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand,
Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and
Andrew Warfield. 2003. Xen and the art of virtualiza-
tion. In Proceedings of the 19th ACM Symposium on
Operating Systems Principles (SOSP-03), pages 164–
177, Bolton Landing, New York.

Luiz André Barroso, Jeffrey Dean, and Urs Hölzle. 2003.
Web search for a planet: The Google cluster architec-
ture. IEEE Micro, 23(2):22–28.

Thorsten Brants, Ashok C. Popat, Peng Xu, Franz J. Och,
and Jeffrey Dean. 2007. Large language models in
machine translation. In Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning, pages 858–867, Prague, Czech Re-
public.

Eric Brill, Jimmy Lin, Michele Banko, Susan Dumais,
and Andrew Ng. 2001. Data-intensive question an-
swering. In Proceedings of the Tenth Text REtrieval
Conference (TREC 2001), pages 393–400, Gaithers-
burg, Maryland.

Cheng-Tao Chu, Sang Kyun Kim, Yi-An Lin, YuanYuan
Yu, Gary Bradski, Andrew Ng, and Kunle Olukotun.
2006. Map-Reduce for machine learning on multi-
core. In Advances in Neural Information Processing
Systems 19 (NIPS 2006), pages 281–288, Vancouver,
British Columbia, Canada.

Kenneth W. Church and Patrick Hanks. 1990. Word
association norms, mutual information, and lexicog-
raphy. Computational Linguistics, 16(1):22–29.

Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce:
Simplified data processing on large clusters. In Pro-
ceedings of the 6th Symposium on Operating System
Design and Implementation (OSDI 2004), pages 137–
150, San Francisco, California.

Susan Dumais, Michele Banko, Eric Brill, Jimmy Lin,
and Andrew Ng. 2002. Web question answering:
Is more always better? In Proceedings of the 25th
Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval (SI-
GIR 2002), pages 291–298, Tampere, Finland.

Chris Dyer, Aaron Cordova, Alex Mont, and Jimmy Lin.
2008. Fast, easy, and cheap: Construction of statistical
machine translation models with MapReduce. In Pro-
ceedings of the Third Workshop on Statistical Machine
Translation at ACL 2008, pages 199–207, Columbus,
Ohio.

Tamer Elsayed, Jimmy Lin, and Douglas Oard. 2008.
Pairwise document similarity in large collections with
MapReduce. In Proceedings of the 46th Annual Meet-
ing of the Association for Computational Linguis-
tics (ACL 2008), Companion Volume, pages 265–268,
Columbus, Ohio.

John R. Firth. 1957. A synopsis of linguistic theory
1930–55. In Studies in Linguistic Analysis, Special
Volume of the Philological Society, pages 1–32. Black-
well, Oxford.

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Le-
ung. 2003. The Google File System. In Proceedings
of the 19th ACM Symposium on Operating Systems
Principles (SOSP-03), pages 29–43, Bolton Landing,
New York.

Zelig S. Harris. 1968. Mathematical Structures of Lan-
guage. Wiley, New York.

Saif Mohammad and Graeme Hirst. 2006. Distribu-
tional measures of concept-distance: A task-oriented
evaluation. In Proceedings of the 2006 Conference on
Empirical Methods in Natural Language Processing
(EMNLP 2006), pages 35–43, Sydney, Australia.

Michael A. Rappa. 2004. The utility business model
and the future of computing services. IBM Systems
Journal, 34(1):32–42.

Hinrich Schütze and Jan O. Pedersen. 1998. A
cooccurrence-based thesaurus and two applications to
information retrieval. Information Processing and
Management, 33(3):307–318.

Hinrich Schütze. 1998. Automatic word sense discrimi-
nation. Computational Linguistics, 24(1):97–123.

Jinxi Xu and W. Bruce Croft. 1998. Corpus-based
stemming using cooccurrence of word variants. ACM
Transactions on Information Systems, 16(1):61–81.

428

