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Abstract 

Semantic inference is a core component of 
many natural language applications. In re-
sponse, several researchers have developed 
algorithms for automatically learning infer-
ence rules from textual corpora. However, 
these rules are often either imprecise or un-
derspecified in directionality. In this paper 
we propose an algorithm called LEDIR that 
filters incorrect inference rules and identi-
fies the directionality of correct ones. 
Based on an extension to Harris’s distribu-
tional hypothesis, we use selectional pref-
erences to gather evidence of inference di-
rectionality and plausibility. Experiments 
show empirical evidence that our approach 
can classify inference rules significantly 
better than several baselines. 

1 Introduction 

Paraphrases are textual expressions that convey the 
same meaning using different surface forms. Tex-
tual entailment is a similar phenomenon, in which 
the presence of one expression licenses the validity 
of another. Paraphrases and inference rules are 
known to improve performance in various NLP 
applications like Question Answering (Harabagiu 
and Hickl 2006), summarization (Barzilay et al. 
1999) and Information Retrieval (Anick and Tipir-
neni 1999).  

Paraphrase and entailment involve inference 
rules that license a conclusion when a premise is 
given.  Deciding whether a proposed inference rule 
is fully valid is difficult, however, and most NL 
systems instead focus on plausible inference.  In 
this case, one statement has some likelihood of 

being identical in meaning to, or derivable from, 
the other.  In the rest of this paper we discuss plau-
sible inference only.   

Given the importance of inference, several re-
searchers have developed inference rule collec-
tions. While manually built resources like Word-
Net (Fellbaum 1998) and Cyc (Lenat 1995) have 
been around for years, for coverage and domain 
adaptability reasons many recent approaches have 
focused on automatic acquisition of paraphrases 
(Barzilay and McKeown 2001) and inference rules 
(Lin and Pantel 2001; Szpektor et al. 2004). The 
downside of these approaches is that they often 
result in incorrect inference rules or in inference 
rules that are underspecified in directionality (i.e. 
asymmetric but are wrongly considered symmet-
ric). For example, consider an inference rule from 
DIRT (Lin and Pantel 2001): 

X eats Y ⇔ X likes Y  (1)   
All rules in DIRT are considered symmetric. 
Though here, one is most likely to infer that “X 
eats Y” ⇒ “X likes Y”, because if someone eats 
something, he most probably likes it1, but if he 
likes something he might not necessarily be able to 
eat it. So for example, given the sentence “I eat 
spicy food”, one is mostly likely to infer that “I like 
spicy food”. On the other hand, given the sentence 
“I like rollerblading”, one cannot infer that “I eat 
rollerblading”. 

In this paper, we propose an algorithm called 
LEDIR (pronounced “leader”) for LEarning Di-
rectionality of Inference Rules. Our algorithm fil-
ters incorrect inference rules and identifies the di-
rectionality of the correct ones. Our algorithm 

                                                
1 There could be certain usages of “X eats Y” where, one 
might not be able to infer “X likes Y” (for example meta-
phorical). But, in most cases, this inference holds. 
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works with any resource that produces inference 
rules of the form shown in example (1). We use 
both the distributional hypothesis and selectional 
preferences as the basis for our algorithm. We pro-
vide empirical evidence to validate the following 
main contribution:  
Claim: Relational selectional preferences can be 
used to automatically determine the plausibility 
and directionality of an inference rule. 

2 Related Work 

In this section, we describe applications that can 
benefit by using inference rules and their direc-
tionality.  We then talk about some previous work 
in this area. 

2.1 Applications 

Open domain question answering approaches often 
cast QA as the problem of finding some kind of 
semantic inference between a question and its an-
swer(s) (Moldovan et al. 2003; Echiabi and Marcu 
2003). Harabagiu and Hickl (2006) recently dem-
onstrated that textual entailment inference informa-
tion, which in this system is a set of directional 
inference relations, improves the performance of a 
QA system significantly even without using any 
other form of semantic inference. This evidence 
supports the idea that learning the directionality of 
other sets of inference rules may improve QA per-
formance. 

 In Multi-Document Summarization (MDS), 
paraphrasing is useful for determining sentences 
that have similar meanings (Barzilay et al. 1999). 
Knowing the directionality between the inference 
rules here could allow the MDS system to choose 
either the more specific or general sentence de-
pending on the purpose of the summary. 

In IR, paraphrases have been used for query ex-
pansion, which is known to promote effective re-
trieval (Anick and Tipirneni 1999). Knowing the 
directionality of rules here could help in making a 
query more general or specific depending on the 
user needs. 

2.2 Learning Inference Rules 

Automatically learning paraphrases and inference 
rules from text is a topic that has received much 
attention lately. Barzilay and McKeown (2001) for 
paraphrases, DIRT (Lin and Pantel 2001) and 
TEASE (Szpektor et al. 2004) for inference rules, 

are recent approaches that have achieved promis-
ing results. While all these approaches produce 
collections of inference rules that have good recall, 
they suffer from the complementary problem of 
low precision. They also make no attempt to dis-
tinguish between symmetric and asymmetric infer-
ence rules. Given the potential positive impact 
shown in Section 2.1 of learning the directionality 
of inference rules, there is a need for methods, 
such as the one we present, to improve existing 
automatically created resources. 

2.3 Learning Directionality 

There have been a few approaches at learning the 
directionality of restricted sets of semantic rela-
tions, mostly between verbs. Chklovski and Pantel 
(2004) used lexico-syntactic patterns over the Web 
to detect certain types of symmetric and asymmet-
ric relations between verbs. They manually exam-
ined and obtained lexico-syntactic patterns that 
help identify the types of relations they considered 
and used these lexico-syntactic patterns over the 
Web to detect these relations among a set of candi-
date verb pairs. Their approach however is limited 
only to verbs and to specific types of verb-verb 
relations. 

Zanzotto et al. (2006) explored a selectional 
preference-based approach to learn asymmetric 
inference rules between verbs. They used the selec-
tional preferences of a single verb, i.e. the semantic 
types of a verb’s arguments, to infer an asymmetric 
inference between the verb and the verb form of its 
argument type. Their approach however applies 
also only to verbs and is limited to some specific 
types of verb-argument pairs. 

Torisawa (2006) presented a method to acquire 
inference rules with temporal constraints, between 
verbs. They used co-occurrences between verbs in 
Japanese coordinated sentences and co-occurrences 
between verbs and nouns to learn the verb-verb 
inference rules. Like the previous two methods, 
their approach too deals only with verbs and is lim-
ited to learning inference rules that are temporal in 
nature. 

Geffet and Dagan (2005) proposed an extension 
to the distributional hypothesis to discover entail-
ment relation between words. They model the con-
text of a word using its syntactic features and com-
pare the contexts of two words for strict inclusion 
to infer lexical entailment. In principle, their work 
is the most similar to ours. Their method however 
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is limited to lexical entailment and they show its 
effectiveness for nouns. Our method on the other 
hand deals with inference rules between binary 
relations and includes inference rules between ver-
bal relations, non-verbal relations and multi-word 
relations. Our definition of context and the meth-
odology for obtaining context similarity and over-
lap is also much different from theirs. 

3 Learning Directionality of Inference 
Rules 

The aim of this paper is to filter out incorrect infer-
ence rules and to identify the directionality of the 
correct ones. 

Let pi ⇔ pj be an inference rule where each p is 
a binary semantic relation between two entities x 
and y. Let <x, p, y> be an instance of relation p. 
Formal problem definition: Given the inference 
rule pi ⇔ pj, we want to conclude which one of the 
following is more appropriate: 

1. pi ⇔ pj 
2. pi ⇒ pj 
3. pi ⇐ pj 
4. No plausible inference 
Consider the example (1) from section 1. There, 

it is most plausible to conclude  “X eats Y” ⇒ “X 
likes Y”.  

Our algorithm LEDIR uses selectional prefer-
ences along the lines of Resnik (1996) and Pantel 
et al. (2007) to determine the plausibility and di-
rectionality of inference rules. 

3.1 Underlying Assumption 

Many approaches to modeling lexical semantics 
have relied on the distributional hypothesis (Harris 
1954), which states that words that appear in the 
same contexts tend to have similar meanings. The 
idea is that context is a good indicator of a word 
meaning. Lin and Pantel (2001) proposed an exten-
sion to the distributional hypothesis and applied it 
to paths in dependency trees, where if two paths 
tend to occur in similar contexts it is hypothesized 
that the meanings of the paths tend to be similar. 

In this paper, we assume and propose a further 
extension to the distributional hypothesis and call 
it the “Directionality Hypothesis”. 
Directionality Hypothesis: If two binary semantic 
relations tend to occur in similar contexts and the 
first one occurs in significantly more contexts than 

the second, then the second most likely implies the 
first and not vice versa. 

The intuition here is that of generality. The more 
general a relation, more the types (and number) of 
contexts in which it is likely to appear. Consider 
the example (1) from section 1. The fact is that 
there are many more things that someone might 
like than those that someone might eat. Hence, by 
applying the directionality hypothesis, one can in-
fer that “X eats Y” ⇒ “X likes Y”. 

The key to applying the distributional hypothe-
sis to the problem at hand is to model the contexts 
appropriately and to introduce a measure for calcu-
lating context similarity. Concepts in semantic 
space, due to their abstractive power, are much 
richer for reasoning about inferences than simple 
surface words. Hence, we model the context of a 
relation p of the form <x, p, y> by using the seman-
tic classes C(x) and C(y) of words that can be in-
stantiated for x and y respectively. To measure 
context similarity of two relations, we calculate the 
overlap coefficient (Manning and Schütze, 1999) 
between their contexts. 

3.2 Selectional Preferences 

The selectional preferences of a predicate is the set 
of semantic classes that its arguments can belong 
to (Wilks 1975). Resnik (1996) gave an informa-
tion theoretical formulation of the idea. Pantel et 
al. (2007) extended this idea to non-verbal rela-
tions by defining the relational selectional prefer-
ences (RSPs) of a binary relation p as the set of 
semantic classes C(x) and C(y) of words that can 
occur in positions x and y respectively. 

The set of semantic classes C(x) and C(y) can be 
obtained either from a manually created taxonomy 
like WordNet as proposed in the above previous 
approaches or by using automatically generated 
classes from the output of a word clustering algo-
rithm as proposed in Pantel et al. (2007). For ex-
ample given a relation like “X likes Y”, its RSPs 
from WordNet could be {individual, so-
cial_group…} for X and {individual, food, activ-
ity…} for Y. 

In this paper, we deployed both the Joint Rela-
tional Model (JRM) and Independent Relational 
Model (IRM) proposed by Pantel et al. (2007) to 
obtain the selectional preferences for a relation p. 
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Model 1: Joint Relational Model (JRM) 
The JRM uses a large corpus to learn the selec-
tional preferences of a binary semantic relation by 
considering its arguments jointly. 

Given a relation p and large corpus of English 
text, we first find all occurrences of relation p in 
the corpus. For every instance <x, p, y> in the cor-
pus, we obtain the sets C(x) and C(y) of the seman-
tic classes that x and y belong to. We then accumu-
late the frequencies of the triples <c(x), p, c(y)> by 
assuming that every c(x) ∈ C(x) can co-occur with 
every  c(y) ∈ C(y) and vice versa. Every triple 
<c(x), p, c(y)> obtained in this manner is a candi-
date selectional preference for p. Following Pantel 
et al. (2007), we rank these candidates using 
Pointwise mutual information (Cover and Thomas 
1991). The ranking function is defined as the 
strength of association between two semantic 
classes, cx and cy

2, given the relation p: 

! 

pmi cx p; cy p( ) = log
P cx,cy p( )

P cx p( )P cy p( )
                   (3.1) 

Let |cx, p, cy| denote the frequency of observing 
the instance <c(x), p, c(y)>. We estimate the prob-
abilities of Equation 3.1 using maximum likeli-
hood estimates over our corpus: 

! 

P cx p( ) =
cx, p,"

", p,"
P cy p( ) =

", p,cy

", p,"

P cx,cy p( ) =
cx, p,cy

", p,"

                 (3.2) 

We estimate the above frequencies using: 

  

! 

cx, p," =
w, p,"

C w( )w#cx

$ ", p,cy =
", p,w

C w( )w#cy

$

cx, p,cy =
w
1
, p,w

2

C w
1( ) % C w

2( )w1 #cx ,w2 #cy

$

       (3.3) 

where |x, p, y| denotes the frequency of observing 
the instance <x, p, y> and |C(w)| denotes the num-
ber of classes to which word w belongs. |C(w)| dis-
tributes w’s mass equally among all of its senses 
C(w). 
Model 2: Independent Relational Model (IRM) 
Due to sparse data, the JRM is likely to miss some 
pair(s) of valid relational selectional preferences. 
Hence we use the IRM, which models the argu-
ments of a binary semantic relation independently. 

                                                
2 cx and cy are shorthand for c(x) and c(y) in our equations. 

Similar to JRM, we find all instances of the 
form <x, p, y> for a relation p. We then find the 
sets C(x) and C(y) of the semantic classes that x 
and y belong to and accumulate the frequencies of 
the triples <c(x), p, *> and <*, p, c(y)> where c(x) 
∈ C(x) and  c(y) ∈ C(y). 

All the tuples <c(x), p, *> and <*, p, c(y)> are 
the independent candidate RSPs for a relation p 
and we rank them according to equation 3.3. 

Once we have the independently learnt RSPs, 
we need to convert them into a joint representation 
for use by the inference plausibility and direction-
ality model. To do this, we obtain the Cartesian 
product between the sets <C(x), p, *>  and <*, p, 
C(y)> for a relation p. The Cartesian product be-
tween two sets A and B is given by: 

! 

A " B = a,b( ) :#a$ A and #b$ B{ }         (3.4) 

Similarly we obtain: 

! 

Cx, p," # ", p,Cy =
cx, p,cy : $ cx, p," % Cx, p," and

$ ", p,cy % ", p,Cy

& 
' 
( 

) ( 

* 
+ 
( 

, ( 

  (3.5) 

The Cartesian product in equation 3.5 gives the 
joint representation of the RSPs of the relation p 
learnt using IRM. In the joint representation, the 
IRM RSPs have the form <c(x), p, c(y)>  which is 
the same form as the JRM RSPs. 

3.3 Inference plausibility and directionality 
model 

Our model for determining inference plausibility 
and directionality is based on the intuition that for 
an inference to hold between two semantic rela-
tions there must exist sufficient overlap between 
their contexts and the directionality of the infer-
ence depends on the quantitative comparison be-
tween their contexts. 

Here we model the context of a relation by the 
selectional preferences of that relation. We deter-
mine the plausibility of an inference based on the 
overlap coefficient (Manning and Schütze, 1999) 
between the selectional preferences of the two 
paths. We determine the directionality based on the 
difference in the number of selectional preferences 
of the relations when the inference seems plausi-
ble.  

Given a candidate inference rule pi ⇔ pj, we 
first obtain the RSPs <C(x), pi, C(y)>  for pi and 
<C(x), pj, C(y)> for pj.  We then calculate the over-
lap coefficient between their respective RSPs. 
Overlap coefficient is one of the many distribu-
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tional similarity measures used to calculate the 
similarity between two vectors A and B: 

! 

sim A,B( ) =
A" B

min A , B( )
           (3.6) 

The overlap coefficient between the selectional 
preferences of pi and pj is calculated as: 

! 

sim pi, p j( ) =
Cx, pi,Cy " Cx, p j ,Cy

min Cx, pi,Cy ,Cx, p j ,Cy( )
          (3.7) 

If sim(pi,pj) is above a certain empirically de-
termined threshold α (≤1), we conclude that the 
inference is plausible, i.e.: 

If  

! 

sim pi, p j( ) "#  

we conclude the inference is plausible 
else 
 we conclude the inference is not plausible 
For a plausible inference, we then compute the 

ratio between the number of selectional prefer-
ences |C(x), pi, C(y)|  for pi and |C(x), pj, C(y)| for pj 
and compare it against an empirically determined 
threshold β (≥1) to determine the direction of in-
ference. So the algorithm is: 

If   

! 

Cx, pi,Cy

Cx, p j ,Cy

" #
      we conclude pi ⇐ pj 

else if  

! 

Cx, pi,Cy

Cx, p j ,Cy

"
1

#

    we conclude pi ⇒ pj 

else                 we conclude pi ⇔ pj 

4 Experimental Setup 

In this section, we describe our experimental setup 
to validate our claim that LEDIR can be used to 
determine plausibility and directionality of an in-
ference rule. 

Given an inference rule of the form pi ⇔ pj, we 
want to use automatically learned relational selec-
tional preferences to determine whether the infer-
ence rule is valid and if it is valid then what its di-
rectionality is.  

4.1 Inference Rules 

LEDIR can work with any set of binary semantic 
inference rules. For the purpose of this paper, we 
chose the inference rules from the DIRT resource 
(Lin and Pantel 2001). DIRT consists of 12 million 
rules extracted from 1GB of newspaper text (AP 
Newswire, San Jose Mercury and Wall Street 

Journal). For example, “X eats Y” ⇔ “X likes Y” is 
an inference rule from DIRT. 

4.2 Semantic Classes 

Appropriate choice of semantic classes is crucial 
for learning relational selectional preferences. The 
ideal set should have semantic classes that have the 
right balance between abstraction and discrimina-
tion, the two important characteristics that are of-
ten conflicting. A very general class has limited 
discriminative power, while a very specific class 
has limited abstractive power. Finding the right 
balance here is a separate research problem of its 
own. 

Since the ideal set of universally acceptable se-
mantic classes in unavailable, we decided to use 
the Pantel et al. (2007) approach of using two sets 
of semantic classes. This approach gave us the ad-
vantage of being able to experiment with sets of 
classes that vary a lot in the way they are generated 
but try to maintain the granularity by obtaining 
approximately the same number of classes. 

The first set of semantic classes was obtained by 
running the CBC clustering algorithm (Pantel and 
Lin, 2002) on TREC-9 and TREC-2002 newswire 
collections consisting of over 600 million words. 
This resulted in 1628 clusters, each representing a 
semantic class. 

The second set of semantic classes was obtained 
by using WordNet 2.1 (Fellbaum 1998). We ob-
tained a cut in the WordNet noun hierarchy3 by 
manual inspection and used all the synsets below a 
cut point as the semantic class at that node. Our 
inspection showed that the synsets at depth four 
formed the most natural semantic classes4. A cut at 
depth four resulted in a set of 1287 semantic 
classes, a set that is much coarser grained than 
WordNet which has an average depth of 12. This 
seems to be a depth that gives a reasonable abstrac-
tion while maintaining good discriminative power. 
It would however be interesting to experiment with 
more sophisticated algorithms for extracting se-
mantic classes from WordNet and see their effect 

                                                
3 Since we are dealing with only noun binary relations, we 
use only WordNet noun Hierarchy. 
4 By natural, here, we simply mean that a manual inspection 
by the authors showed that, at depth four, the resulting clus-
ters had struck a better granularity balance than other cutoff 
points. We acknowledge that this is a very coarse way of ex-
tracting concepts from WordNet. 
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on the relational selectional preferences, something 
we do not address this in this paper. 

4.3 Implementation 

We implemented LEDIR with both the JRM and 
IRM models using inference rules from DIRT and 
semantic classes from both CBC and WordNet. We 
parsed the 1999 AP newswire collection consisting 
of 31 million words with Minipar (Lin 1993) and 
used this to obtain the probability statistics for the 
models (as described in section 3.2).  

We performed both system-wide evaluations 
and intrinsic evaluations with different values of α 
and β parameters. Section 5 presents these results 
and our error analysis. 

4.4 Gold Standard Construction 

In order to evaluate the performance of the differ-
ent systems, we compare their outputs against a 
manually annotated gold standard. To create this 
gold standard, we randomly sampled 160 inference 
rules of the form pi ⇔ pj from DIRT. We discarded 
three rules since they contained nominalizations5.  

For every inference rule of the form pi ⇔ pj, the 
annotation guideline asked annotators (in this pa-
per we used two annotators) to choose the most 
appropriate of the four options: 

1. pi ⇔ pj 
2. pi ⇒ pj 
3. pi ⇐ pj 
4. No plausible inference 

To help the annotators with their decisions, the 
annotators were provided with 10 randomly chosen 
instances for each inference rule. These instances, 
extracted from DIRT, provided the annotators with 
context where the inference could hold. So for ex-
ample, for the inference rule “X eats Y” ⇔ “X likes 
Y”, an example instance would be “I eat spicy 
food” ⇔ “I like spicy food”. The annotation guide-
line however gave the annotators the freedom to 
think of examples other than the ones provided to 
make their decisions. 

The annotators found that while some decisions 
were quite easy to make, the more complex ones 
                                                

5 For the purpose of simplicity, we in our experiments did 
not use DIRT rules containing nominalizations. The algo-
rithm however can be applied without change to inference 
rules containing nominalization. In fact, in the resource that 
we plan to release soon, we have applied the algorithm 
without change to DIRT rules containing nominalizations. 

often involved the choice between bi-directionality 
and one of the directions. To minimize disagree-
ments and to get a better understanding of the task, 
the annotators trained themselves by annotating 
several samples together. 

We divided the set of 157 inference rules, into a 
development set of 57 inference rules and a blind 
test set of 100 inference rules. Our two annotators 
annotated the development test set together to train 
themselves. The blind test set was then annotated 
individually to test whether the task is well de-
fined. We used the kappa statistic (Siegel and 
Castellan Jr. 1988) to calculate the inter-annotator 
agreement, resulting in κ=0.63. The annotators 
then looked at the disagreements together to build 
the final gold standard. 

All this resulted in a final gold standard of 100 
annotated DIRT rules. 

4.5 Baselines 

To get an objective assessment of the quality of the 
results obtained by using our models, we compared 
the output of our systems against three baselines: 
B-random: Randomly assigns one of the four pos-
sible tags to each candidate inference rule.  
B-frequent: Assigns the most frequently occurring 
tag in the gold standard to each candidate infer-
ence rule. 
B-DIRT: Assumes each inference rule is bidirec-
tional and assigns the bidirectional tag to each 
candidate inference rule. 

5 Experimental Results 

In this section, we provide empirical evidence to 
validate our claim that the plausibility and direc-
tionality of an inference rule can be determined 
using LEDIR. 

5.1 Evaluation Criterion 

We want to measure the effectiveness of LEDIR 
for the task of determining the validity and direc-
tionality of a set of inference rules. We follow the 
standard approach of reporting system accuracy by 
comparing system outputs on a test set with a 
manually created gold standard. Using the gold 
standard described in Section 4.4, we measure the 
accuracy of our systems using the following for-
mula: 
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erencestaggedcorrectly
Accuracy

inf

inf
=

 

5.2 Result Summary 

We ran all our algorithms with different parameter 
combinations on the development set (the 57 DIRT 
rules described in Section 4.4). This resulted in a 
total of 420 experiments on the development set. 
Based on these experiments, we used the accuracy 
statistic to obtain the best parameter combination 
for each of our four systems. We then used these 
parameter values to obtain the corresponding per-
centage accuracies on the test set for each of the 
four systems. 

Model α  β Accuracy (%) 
B-random - - 25 
B-frequent - - 34 

B-DIRT - - 25 
CBC 0.15 2 38 JRM 
WN 0.55 2 38 
CBC 0.15 3 48 IRM 
WN 0.45 2 43 

Table 1: Summary of results on the test set 
Table 1 summarizes the results obtained on the 

test set for the three baselines and for each of the 
four systems using the best parameter combina-
tions obtained as described above. The overall best 
performing system uses the IRM algorithm with 
RSPs form CBC. Its performance is found to be 
significantly better than all the three baselines us-
ing the Student’s paired t-test (Manning and 
Schütze, 1999) at p<0.05. However, this system is 
not statistically significant when compared with 
the other LEDIR implementations (JRM and IRM 
with WordNet). 

5.3 Performance and Error Analysis 

The best performing system selected using the de-
velopment set is the IRM system using CBC with 
the parameters α=0.15 and β=3. In general, the 
results obtained on the test set show that the IRM 
tends to perform better than the JRM. This obser-
vation points at the sparseness of data available for 
learning RSPs for the more restrictive JRM, the 
reason why we introduced the IRM in the first 
place. A much larger corpus would be needed to 
obtain good enough coverage for the JRM. 

GOLD STANDARD  
⇔ ⇒ ⇐ NO 

⇔ 16 1 3 7 
⇒ 0 3 1 3 
⇐ 7 4 22 15 

SY
ST

E
M

 

NO 2 3 4 9 

Table 2: Confusion Matrix for the best performing 
system, IRM using CBC with α=0.15 and β=3. 

Table 2 shows the confusion matrix for the 
overall best performing system as selected using 
the development set (results are taken from the test 
set). The confusion matrix indicates that the system 
does a very good job of identifying the directional-
ity of the correct inference rules, but gets a big per-
formance hit from its inability to identify the incor-
rect inference rules accurately. We will analyze 
this observation in more detail below. 

Figure 1 plots the variation in accuracy of IRM 
with different RSPs and different values of α and 
β. The figure shows a very interesting trend.  It is 
clear that for all values of β, systems for IRM us-
ing CBC tend to reach their peak in the range 0.15 
≤ α ≤ 0.25, whereas the systems for IRM using 
WordNet (WN), tend to reach their peak in the 
range 0.4 ≤ α ≤ 0.6. This variation indicates the 
kind of impact the selection of semantic classes 
could have on the overall performance of the sys-
tem. This is not hard evidence, but it does suggest 
that finding the right set of semantic classes could 
be one big step towards improving system accu-
racy. 

 
Figure 1: Accuracy variation for IRM with differ-
ent values of α and β. 

Two other factors that have a big impact on the 
performance of our systems are the values of the 
system parameters α and β, which decide the plau-
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sibility and directionality of an inference rule, re-
spectively. To better study their effect on the sys-
tem performances, we studied the two parameters 
independently. 

 
Figure 2: Accuracy variation in predicting correct 
versus incorrect inference rules for different values 
of α. 

 
Figure 3: Accuracy variation in predicting direc-
tionality of correct inference rules for different 
values of β. 

Figure 2 shows the variation in the accuracy for 
the task of predicting the correct and incorrect in-
ference rules for the different systems when vary-
ing the value of α. To obtain this graph, we classi-
fied the inference rules in the test set only as cor-
rect and incorrect without further classification 
based on directionality. All of our four systems 
obtained accuracy scores in the range of 68-70% 
showing a good performance on the task of deter-
mining plausibility. This however is only a small 
improvement over the baseline score of 66% ob-
tained by assuming every inference to be plausible 
(as will be shown below, our system has most im-
pact not on determining plausibility but on deter-

mining directionality). Manual inspection of some 
system errors showed that the most common errors 
were due to the well-known ‘problem of an-
tonymy’ when applying the distributional hypothe-
sis. In DIRT, one can learn rules like “X loves Y” 
⇔ “X hates Y”. Since the plausibility of inference 
rules is determined by applying the distributional 
hypothesis and the antonym paths tend to take the 
same set of classes for X and Y, our models find it 
difficult to filter out the incorrect inference rules 
which DIRT ends up learning for this very same 
reason. To improve our system, one avenue of re-
search is to focus specifically on filtering incorrect 
inference rules involving antonyms (perhaps using 
methods similar to (Lin et al. 2003)). 

Figure 3 shows the variation in the accuracy for 
the task of predicting the directionality of the cor-
rect inference rules for the different systems when 
varying the value of β.  To obtain this graph, we 
separated the correct inference rules form the in-
correct ones and ran all the systems on only the 
correct ones, predicting only the directionality of 
each rule for different values of β. Too low a value 
of β means that the algorithms tend to predict most 
things as unidirectional and too high a value means 
that the algorithms tend to predict everything as 
bidirectional. It is clear from the figure that the 
performance of all the systems reach their peak 
performance in the range 2 ≤ β ≤ 4, which agrees 
with our intuition of obtaining the best system ac-
curacy in a medium range. It is also seen that the 
best accuracy for each of the models goes up as 
compared to the corresponding values obtained in 
the general framework. The best performing sys-
tem, IRM using CBC RSPs, reaches a peak accu-
racy of 63.64%, a much higher score than its accu-
racy score of 48% under the general framework 
and also a significant improvement over the base-
line score of 48.48% for this task. Paired t-test 
shows that the difference is statistically significant 
at p<0.05. The baseline score for this task is ob-
tained by assigning the most frequently occurring 
direction to all the correct inference rules. This 
paints a very encouraging picture about the ability 
of the algorithm to identify the directionality much 
more accurately if it can be provided with a cleaner 
set of inference rules. 
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6 Conclusion 

Semantic inferences are fundamental to under-
standing natural language and are an integral part 
of many natural language applications such as 
question answering, summarization and textual 
entailment. Given the availability of large amounts 
of text and with the increase in computation power, 
learning them automatically from large text cor-
pora has become increasingly feasible and popular. 
We introduced the Directionality Hypothesis, 
which states that if two paths share a significant 
number of relational selectional preferences 
(RSPs) and if the first has many more RSPs than 
the second, then the second path implies the first. 
Our experiments show empirical evidence that the 
Directionality Hypothesis with RSPs can indeed be 
used to filter incorrect inference rules and find the 
directionality of correct ones. We believe that this 
result is one step in the direction of solving the 
basic problem of semantic inference. 

Several questions must still be addressed. The 
models need to be improved in order to address the 
problem of incorrect inference rules. The distribu-
tional hypothesis does not provide a framework to 
address the issue with antonymy relations like “X 
loves Y” ⇔ “X hates Y” and hence other ideas need 
to be investigated. 

Ultimately, our goal is to improve the perform-
ance of NLP applications with better inferencing 
capabilities. Several recent data points, such as  
(Harabagiu and Hickl 2006), and others discussed 
in Section 2.1, give promise that refined inference 
rules for directionality may indeed improve ques-
tion answering, textual entailment and multi-
document summarization accuracies. It is our hope 
that methods such as the one proposed in this paper 
may one day be used to harness the richness of 
automatically created inference rule resources 
within large-scale NLP applications. 
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