
Deriving Transfer Rules from Dominance-Preserving Alignments
Adam Meyers, Roman Yangarber, Ralph Grishman,

Catherine Macleod, Antonio Moreno-Sandoval*
New York University

715 Broadway, 7th Floor, NY, NY 10003, USA
tUniversidad Autdnoma de Madrid
Cantoblanco, 28049-Madrid, SPAIN

meyers/roman/grishman/macleod©cs, nyu. edu
sandoval©lola.lllf.uam.es

1 I n t r o d u c t i o n

Automatic acquisition of translation rules from
parallel sentence-Migned text takes a variety of
forms. Some machine translation (MT) svstems
treat aligned sentences as unstructured word se-
quences. Other systems, including our own ((Gr-
ishman, 1994) and (Meyers et al., 1996)), syn-
tactically analyze sentences (parse) before ac-
quiring transfer rules (cf. (Kaji et al., 1992),
(Matsumoto et al., 1993), and (Kitamura and
Matsumoto, 1995)). This has the advantage of
acquiring structurM as well as lexical correspon-
dences. A syntactically analyzed, aligned cor~
pus may serve ~s an example base for a form of
example-based NIT (cf. (Sato and Nagao, 1990),
(I{aji et al.. 1992), and (Furuse and Iida. 1994)).

This paper I describes: (1) an efficient algo-
rithm for aligning a pair of source/target lan-
guage parse trees; ~nd (2) a procedure for de-
riving transfer rules from this alignment. Each
transfer rule consists of a pair of tree fragments
derived bv "cutting up" the source and target
trees. A set of transfer rules whose left-hand
sides match a source language parse tree is used
to generate a target language parse tree from
their set of right-hand sides, which is a transla.-
tion of the source tree. This technique resembles
work on MT using synchronous Tree-Adjoining
Grammars (cf. (Abeille et al., 1990)).

The Proteus translation system learns transfer
rules from pairs of aligned source and target reg-
ularized parses, Proteus's representation of pred-
icate argument s t ructure(cf . Figure 1)? Then
it uses these transfer rules to map source lan-

L We thank Cr is t ina Olmeda Moreno for work on pars-
ing our Spanish text. This research was suppor ted by
Nat, ional Science Fotmdat.ion Grant, [R.[-9303013.

2Regularized parses (henceforth, "pmse trees") are
like F-s t ruc tures of Lexical }"tmctiou G r a m m a r (LEG),
except, that a depenclency st.ruct.ure is used."

guage regularized parses generated by ou r source
language parser into target language regularized
parses. Finally a generator converts target reg-
ularized parses into target language sentences.

All Mignment f is a I-to-1 partial mapping
from source nodes to target nodes. We con-
sider only alignments which preserve the dom-
inance relationship: If node a dominates node
b in the source tree. then f (a) dominates f(b)
in the target tree. In Figure 1. source nodes ,4.
B, C and D map to the corresponding target
nodes, marked with a prime, e.g., f (A) = A'.
The alignment)nay be represented by the set
{(A, A'), (B, V'), (C', C'). (D, D')}. We ~ .an as-
sign a score to each Mignment f , based on the
(weighted) number of pairs in f ; finding the best
alignment translates into finding the alignment
with the highest score. Our algorithms are based
on (Farach et al., 199.5) and related work.

We needed efficient alignment algorithms be-
cause: (1) Corpus-based training requires pro-
cessing a lot of text; and (2) An exhaustive
search of all alignments is too computationally
expensive for realistically sized parse trees.

Eliminating dominance violations greatly re-
duced our search space. Similar work (e.g.,
(Matsumoto et al., 1993)) considers ~dl possible
matches. Although. our system cannot ¢~ccount
for actual dominance violations in a given bi-
text, there are no such violations in our corpus
and many hypothetical cases can be aw)ided by
adopting (;he appropriate grammar. Cases of ad-
juncts aligning with heads and vice versa are not
dominance violations if we replace our depen-
dency analysis with one in which internal nodes
have category labels and the head constituents
are marked by H E A D arcs and we assume the
following CategoriM Grammar (CG) style anal-
yses. Suppose that verb (VI.) maps to adverb
(A'I) and adverb (A2) maps to verb (V'2), where

843

Source Tree Target Tree
("D = volver ~ . -a~

......................
Excel vuelve a calcular vaiores en libro de trabajo Excel recalculates values in workbook

Figure l: A Pair of Aligned Trees

A2 modifies V1 and A'I modifies V'2. We as-
sume the following structures: [VP [VP1 V1 ...]
A2] and [VD [VP2 V'2 ...] A'I]. No dominance
violation exists because no dominance relation
holds between V1 and A2 or V'2 and A'I. Y.
Matsumoto (p.c.) notes that the subordinate
clause of a source sentence may align with the
main clause of a target language and vice versa,
e.g., X after Y aligns with Y' before X'. where
X, X', Y and Y' are all clauses. Assuming a CG
style analysis, [S X [after Y]] aligns with [S Y"
[before X']] with no dominance violations.

2 T h e L e a s t - C o m m o n - A n c e s t o r
C o n s t r a i n t

Our earlier tree alignment algorithms (cf. (Mey-
ers et al., 1996)) were designed to produce align-
ments which preserve the least common ancestor
relationship: If nodes a and b map into nodes
a' = f(a) and b' = f(b), then I(LCA(a,b)) =
LCA(I(a), f(b)) = LCA(a',b'). The least com-
mon ancestor (LCA) of a and b is tile lowest node
in the tree dominating both a and b. The LCA-
preserving approach imposes limitations on the
quality of the resulting alignments. In Figure l,
the LCA-preserving Mgorithm will match node
I:2 with node D' and report that as the best match
overall. The score S(D, D') would take into ac-
count only the match (E, D'), which in turn in-
cludes (B, B') and (C, C'). (S(D, D') would be
penalized for collapsing the arc from D to E.)

We seek a better alignment scheme, in which
the score S(D, D') could benefit from S(A, A').
We are willing to pay a small penalty to collapse
the path from D to E, and align the resulting
structure. This leads to new algorithms where
the LCA-preserving restriction is replaced by the
weaker, dominance-preserving constraint. The
rationale behind allowing an edge, say (v, u) to

be collapsed when matching two nodes v and v'.
is that we may find some children of u which cor-
respond well to some children of v', while other
children of ~, correspond well to other children of
v'. (This is not possible if LCA's are preserved.)
The algorithm relies on the assumption that two
different children of v will not match well with
the same child of v'.

3 T h e D o m i n a n c e - P r e s e r v i n g
A l g o r i t h m

Let T and T ~ be the source and the target trees.
We use a dynamic programming algorithm to
compute, in a bottom-up fashion, the scores for
matching each node in T against each node in T'.
There are O(n 2) such scores, n = max(IT],]T'l)
is number of nodes in the trees. Let the d(v) be
the degree of a node v. We denote children of t,
by vl, / = 1 , . . . , d(v), and arc (v, vi) by ffi.

For all pairs of nodes v E T and v' E T', the
algorithm computes the score function S(v, v').
S(v, v') corresponds to tile best match found be-
tween the subtrees rooted at v in T and at v' in
T'. The values o r s are stored in a IT[x IT'I ma-
trix, also denoted by S. Initially, we fill the ma-
trix S with undefined values, and invoke the pro-
cedure SCOREdo~, described below, to con>
pute S(root (T), root(T')), the score for matching
the root nodes of the trees. During the compu-
tation of the score for the roots, the procedure
recursively finds the best-scoring matches for all
the nodes in the trees. This yields the best align-
ment of the entire trees.

Table l(a) shows tile values of S for the trees
in Figure 1. Whenever we compute a score for
internal nodes, we also record the best way of
pairing up their children in Table t(b). 3 Tile

a Children pairings include child/child pairs and par-
ent/child pairs: (D.D')'s pairing is {(A, A'), (E, D')}.

844

alignment, implicit in these children pairings, is
used in a later phase (Section 4) to recover the
alignment for the entire trees.

P r o c e d u r e SCOREgo,~: For a pair of nodes,
(v, v'), recursively compute the score S(v, v'):

Construct an intermediate child-scoring ma-
trix M = M(v,v ') , for the children of v and v';
the dimensions of M are (d(v) + t) x (d(v') + 1).
Tha t is, the number of rows in M is one more
than the number of children of v, and the number
of columns is one more than number of children
of v'. We label row d(v) + t and column d(v') + 1
with a "*" Fill the matr ix M:

1. Vi, j , where 1 <_ i <_ d(v) , l <_ j <_ d(v')
compute the corresponding entry in ,g[ij:

The function Lex,~o&(V,v') > 0 (used be-
low) is the quali ty of translation, i.e. the
measure of how closely the label (word) at
source node v corresponds to the label at
target node v ~ in the bilingual dictionary,
and Lex,~(ff , if') >_ 0 is the corresponding
measure for arc labels.

2. Fill the last colurnn as follows: Vi, where
t _< i < d(v) compute the entries:

Pen(iY4) > 0 is the penalty for collapsing tile
edge ffi, which depends on tile value of tile
label of that edge.

3. Symmetrically, g j s.t. 1 _< j <
d(v') fill the last row with the entries:

M.s =

4. The entry M . . is disfavored: ,~,l.~ = -:x)

For example, during the calculation of the
scores S(D, D') and S (E , D') from Table t, the
corresponding matrices M (D, D') and :'vl (E, D')
are filled in as in Table 2. The proper values for
the parameter fimctions used above, such as tile
penalty function Pen and the translat ion mea-
sures, are chosen empirically, and consti tute the
tunable parameters of the procedure. Normally,
we will expect that the values of Lexnod~ will be
much larger than the values of Le:r.~,.~: and Pen.
In the example we used the following settings:
[. Lex,~od~ = 100 for an exact translation, as for
(A, A'), (B, B;) and (C, C') , and 0 otherwise.
2. all values of Lex~c are set to zero
3. all penalties Pen are set to 1

Now, using the values in M, compute the score
for matching v and v':

S(v,v ') = Lex,~o&(v,v')+ max ~ Mij ([)
PEEP (i,j)eP

Here P is a legitimate pairing of v and its chil-
dren against v' and its children. A legitimate
pairing P is a set of elements of the matr ix M.
that conform to tile following conditions:

1. each row and each column of M may con-
tr ibute at most one element to P, except
that the row and the column labeled * may
contribute more than one element to P

2. if P contains an element Mij correspond-
ing to the node pair (to, w~), and some child
node u appears in the Children-Pair ing for
(w, w'), then the row or column of u may
not, contribute any elements to P.

We use £79 = £ /) (v , v') to denote the set of all
legitimate pairings. There are O(d!) such pair-
ings, where d is the greater of the degrees of v
and # . The sunlmation in (1) ranges over all
the pairs (i , j) that appear in a legitimate pair-
ing P E £79(v, v'). We evaluate this summation
for all O(d!) legitimate pairings in /279, and then

) select the pairing [best with the maximum score.
/3)¢~ is then stored in the Children-Pair ing ma-
trix entry for (v, v').

Table 2 shows how scores are calculated. The
best score for S(E, D') is 200, tile sum of the
scores for (B, B') and (C ,C ') . S (D, O') =
299 = S(A, A') + S(E, D') - 1, a penalty of 1
for collapsing tile edge from D to E.

We can reduce the computatJon time of the
max term in (1), if we do not consider all O(d!)
pairings of the children of v and #. Instead
of exhaustively computing the maximal-scoring
pairing Pbe.~t in (1), we can build it in a 9reedy
fashion: successively choos the d highest-scoring,
mutually disjoint pairs from the O(d "2) possible
pairs of children of v and v'.

1. Initialize the set. of highest scoring pairs

2. Pb~,.,, +- Pb~.~eu{(i, j)} where Mij is the next
largest entry in the matrix, which that sat-
isfies both conditions 1 and 2 of legitimate
pairings

845

Source
Nodes

A
B
C
D
E
F

Target Nodes

A ' B ' C '
100 0 0

0 100 0
0 0 100
0 0 0
0 0 0
0 0 0

D ~ A ~
0 A
0 B
0 Source C

299 Nodes D -
200 E

0 F -

Target Nodes

B ' C ' DI

(,4, A') (S , o')
(B, B')(C, C')

Table l: (a) A Final Score Matrix: (b) Chi ldren-Pair ing Matr ix

Source
Chil-
dren

Target Children
t: ,4' 2: B' 3: C ' *: D '

1: B 0 1 0 0 0 99
2: C ' 0 0 100 99
*: E 0 99 99 - ~ c

'The Score S(} = 100 + 1.00 = 200

~ource
Chil-
dren

Target Children
t: .4' 2: B' 3: C ' *: D'

t: A 1 0 0 0 0 99
2: E? 0 99 99 199
*: D 9 9 98 98 - : v

The Score S() = 199 + 100 = 299

Table 2: Comput ing Child-Scoring Matr ices

3. Repeat the above step until no more pairs
can be added to Pb~t, at most d times.
where d = min(d(v) , d(v ')) .

4. Compute the result:
S (v , "v') = LeXnode(U, v') + ~(i,j)ePb..~, *~/[ij

The greedy algor i thm aligns trees with n
nodes and maximal degree d in O (n 2 d 2) time.

4 A c q u i r i n g T r a n s f e r R u l e s

This section describes the procedure for deriving
transfer rules from aligned parse trees.

First, the best-scoring Mignment is recovered
from the Chi ldren-Pai r ing matrix, (Table l (b)) . 4
S tar t by including the root node-pair in the
alignment, (here (D, D')) . Then, for each pair
(v, i/) a lready in the alignment, repeat the fol-
lowing steps, until no more pairs can be added to
the alignment: (t) look up the Children=Pairing
for (v.v ') ; (2) for each pair in the children-
pairing, if it does not include either v or v', add
the pair to the al ignment , (e.g. (,4, ,4'), etc.).

4When sentences in the bitext have multiple parses,
we align structure sharing forests of trees. [f one pair
of trees has the highest scoring alignment, we acquire
transfer rules from that alignment. When more than one
pair of trees tie for the highest score, we acquire t.ransfer
rules from the set of pairs of aligned subtrees which are
shared by each of these high scoring alignments.

In tile running example, the final align-
ment (t :A) i s {(D, D'), (A, A'), (B, S ') , (C, C ')) .
Based on this Mignment we can "chop up" the
trees into fragments , or subs t ruc tures ((Mat-
sumoto et al., 1993)), where each subst ructure
of a tree is a connected group of nodes in the
tree. together with their joining arcs. In Fig-
ure 1, dashed arrows connect aligned pairs of
source and target substructures . These corre-
spondences become our t ransfer rules.

[rot" each pair of aligned nodes (v, v') in F,4,
there is a pail' of subst ructures hi Figure l such
that v and v / are the roots of the source and tar-
get substructures . These substructures include
all unaligned source and target nodes v~ and
vl~ below v and v', which have no intervening

/
aligned nodes y or y' dominat ing .v~ or v, .

The t ransfer rules derived from Figure [may
be writ ten as follows:
f . < root : E x c e l > -+ < root : F x c e l >
2. < root : v a l o r e s > -* < root : v a l u e s >
3. < root : l ibro, de : t r a b a j o > --+ < root
w o r k b o o k >
4. < root : vo lver , aub j : z l , a :< root
ca lcu lar , obj : x 2 , e n :x3 > > --+
< root : r e c a l c u l a t e , s u b j : T r (: c t) , o b j
T r (x 2) , i n : T r (x a) >
Each subs t ruc ture is represented as a list con-

846

taining a root lexical item, and a set of arc-
value pairs. An arc (role) al with head (value)
h is written as al : h, where h is a fixed la-
bel (word), a substructure or a variable. If the
source substructure has n of the leaves labeled
with variables zl , . . . , z n , the target will have
n of the leaves labeled with Tr(xl) , . . . ,Tr(xn),
where Tr(x) is the lexical translation function.
This general structure allows us to capture re-
lations between multi-word expressions in the
source and target languages.

5 T r a n s l a t i o n

The described procedure for acquisition of trans-
fer rules from corpora is the basis for our trans-
lation system. A large collection of transfer rules
are collected from a training corpus. When new
text is to be translated, it is first parsed. The
source tree is matched against the left hand sides
of tile transfer rules which have been collected.
If a set of transfer rules whose left-hand sides
match tile parse tree is found, the corresponding
target structure is generated from the right hand
sides of these transfer rules. Typically, several
sets of transfer rules meet this criterion. They
are ranked by their frequency in the training cor-
pus. Once a target tree has been produced, it is
conve.rted to a word sequence by a target lan-
guage generator. Vv% have applied this approach
to the translation of Microsoft l-lelp files in En-
glish and Spanish. The sentences are moderately
simple and quite parallel in structure, which has
made the corpus suitable for our initial system
development. To date, we have been using a
training corpus of about 1,000 sentences, and a
test corpus of about 100 sentences.

6 E v a l u a t i o n

Real eva.luation of performance of MT systems
is time consuming and subjective. Neverthe-
less, some evaluation system is needed to insure
that incremental changes are for the be~/er, or
at least, are not detrimental. We measured the
success of our translation by how closely we re-
produced Microsoft's English (target language)
text. Our evaluation procedure computes the
ratio between (a) the complement of the inter-
section set of words in our translation and the
actual Microsoft sentence; and (b) the combined
lengths of these two sentences. An exact trans-
lation gives a score of 0. If the system generates

the sentence "A B C D E" and the actual sen-
tence is "A B C F", the score is 3/9 (the length
of D E F divided by the combined lengths of
A B C D E and A B C F.) The dominance-
preserving version of the program produced out-
put for 88 out of 91 test sentences. The average
score for these 88 sentences was 0.29:0.21 due
to incorrect word matches and 0.08 due to failure
to translate because insufficient confidence levels
were reached. The LCA-preserving version pro-
duced output for only 83 sentences with an aver-
age score of over 0.30: about 0.23 due to incor-
rect word matches and about 0.08 due to insuffi-
cient confidence levels. This crude scoring tech-
nique suggests that the dominance-preserving al-
gorithm improved our results: more sentences
were translated with higher quality. One limita-
tion of this scoring technique is that paraphrases
are penalized. An imperfect score (even .20)
may signify an adequate translation.

R e f e r e n c e s

A. Abeille, Y. Schabes. and A. K. aoshi. 1990.
Using Lexicalized Tags for Machine Transla-
tion. In COLING90.

M. Farach, T. M. Przytycka, and M. Thorup.
1995. On the agreement of many trees. Infor-
mation Processing Letters, 55:297--301.

O. Furuse and H. [ida. 1994. Constituent
Boundary Parsing for Example-Based Ma-
chine Translation. In COLINGOg.

R. Grishman. 1994. Iterative Alignrnent of Syn-
tactic Structures for a Bilingual Corpus: In
Proceedin9s of the Second A,nual Work'shop
for Very Lar9e Corpora, Tokyo.

H. Kaji, Y. Kids. and Y. Morimoto. 1992.
Learning Translation Templates from Bilin-
gual Text. In COLING92.

M. Kitamura and Y. Matsumoto. 1995. A Ma-
chine Translation System based on Transla-
tion Rules Acquired from Parallel Corpora. In
RANLP95.

Y. Matsumoto, H. Ishimoto. T. Utsuro, and
M. Na.gao. 1993. Structural Matching of Par-
allel Texts. In ACLg3.

A. Meyers, R. Yangarber, and R. Grishman.
1996. Alignment of Shared Forests for Bilin-
gual Corpora. In COLING96, pages 460-465.

S. Sato and M. Nagao. 1990. Toward Memory-
based Translation. In COLING90, volume 3,
pages 247-252.

847

