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A b s t r a c t  

In wide-coverage lexicalized grammars many of 
the elementary structures have substructures in 
common. This means that  in conventional pars- 
ing algorithms some of the computat ion associ- 
ated with different structures is duplicated. In 
this paper we describe a precompilation tech- 
nique for such grammars which allows some of 
this computat ion to be shared. In our approach 
the elementary structures of the grammar are 
transformed into finite state automata  which 
can be merged and minimised using standard al- 
gorithms, and then parsed using an automaton- 
based parser. We present algorithms for con- 
structing automata  from elementary structures, 
merging and minimising them, and string recog- 
nition and parse recovery with the resulting 
grammar. 

1 I n t r o d u c t i o n  

It is well-known that fully lexicalised grammar 
formalisms such as LTAG (Joshi and Schabes, 
1991) are difficult to parse with efficiently. Each 
word in the parser's input string introduces an 
elementary tree into the parse table for each 
of its possible readings, and there is often a 
substantial overlap in structure between these 
trees. A conventional parsing algorithm (Vijay- 
Shanker and Joshi, 1985) views the trees as in- 
dependent,  and so is likely to duplicate tile pro- 
cessing of this common structure. Parsing could 
be made more efficient (empirically if not for- 
mally), if the shared structure could be identi- 
fied and processed only once. 

Recent work by Evans and Weir (1997) and 
Chen and Vijay-Shanker (1997) addresses this 
problem from two different perspectives. Evans 
and Weir (1997) outline a technique for com- 
piling LTAG grammars into automata  which are 

then merged to introduce some sharing of struc- 
ture. Chen and Vijay-Shanker (1997) use un- 
derspecified tree descriptions to represent sets 
of trees during parsing. Tile present paper takes 
the former approach, but extends our previous 
work by: 

• showing how merged automata  can be min- 
irnised, so that  they share as much struc- 
ture as possible; 

• showing that  by precompiling additional 
information, parsing can be broken down 
into recognition followed by parse recovery; 

• providing a formal treatment of the algo- 
ri thms for transforming and minimising the 
grammar, recognition and parse recovery. 

In the following sections we outline the basic 
approach, and describe informally our improve- 
ments to the previous account. We then give a 
formal account of the optimisation process and 
a possible parsing algorithm that makes use of 
it 1 . 

2 A u t o m a t o n - b a s e d  p a r s i n g  
Conventional LTAG parsers (Vijay-Shanker and 
Joshi, 1985; Schabes and Joshi, 1988; Vijay- 
Shanker and Weir, 1993) maintain a pa r s e  ta-  
ble, a set of i t e m s  corresponding to complete 
and partial constituents. Parsing proceeds by 
first seeding the table with items anchored on 
the input string, and then repeatedly scanning 
the table for p a r s e r  ac t ions .  Parser actions 
introduce new items into the table licensed by 
one or more items already in the table. The 
main types of parser actions are: 

1. extending a constituent by incorporating 
a complete subconstituent (on the left or 

1However, due to lack of space, no proofs and only 
minimal informal descriptions are given in this paper. 
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right); 
2. extending a consti tuent by adjoining a sur- 

rounding complete auxiliary constituent; 
3. predicting the span of the foot node of an 

auxiliary consti tuent (to the left or right). 

Parsing is complete when all possible parser ac- 
tions have been executed. 

In a completed parse table it is possible to 
trace the sequence of items corresponding to the 
recognition of an elementary tree f rom its lexi- 
cal anchor upwards. Each item in the sequence 
corresponds to a node in the tree (with the se- 
quence as a whole corresponding to a complete 
traversal of the tree), and each step corresponds 
to the parser action that  licensed the next item, 
given the current  one. From this perspective, 
parser actions can be restated relative to the 
items in such a sequence as: 

1. subst i tute a complete subconsti tuent (on 
the left or right); 

2. adjoin a surrounding complete auxiliary 
constituent;  

3. predict the span of the tree's foot node (to 
the left or right). 

The recognition of the tree can thus be viewed 
as the computat ion of a finite state atttomaton, 
whose states correspond to a traversal of the 
tree and whose input symbols are these re la-  
t i v i s e d  parser actions. 

This perspective suggests a re-casting of the 
conventional LTAG parser in terms of such au- 
tomata  2. For this automaton-based parser, the 
g rammar  structures are not trees, but au tomata  
corresponding to tree traversals whose inputs 
are strings of relativised parser actions. Items 
in the parse table reference automaton states 
instead of tree addresses, and if the automa- 
ton state is final, the item represents a complete 
constituent.  Parser actions arise as before, but 
are executed by relativising them with respect 
to the incomplete i tem participating in the ac- 
tion, and passing this relativised parser action 
as the next input symbol for the automaton ref- 
erenced by that  item. The resulting state of 
that  au tomaton  is then used as the referent of 
the newly licensed item. 

On a first pass, this re-casting is exactly that: it 
does nothing new or different from the original 

~Evans and Weir (1997) provides a longer informal 
introduction to this approach. 

parser on the original grammar.  However there 
are a number of subtle differences3: 

• the au tomata  are more abstract than the 
trees: the only grammatical  information 
they contain are the input symbols and the 
root node labels, indicating the category of 
the consti tuent the au tomaton  reeognises; 

,, au tomata  for several trees can be merged 
together and optimised using standard 
well-studied techniques, resulting in a sin- 
gle automaton that  recognises many trees 
at once, sharing as many of the common 
parser actions as possible. 

It is this final point which is the focus of this 
paper. By representing trees as automata,  we 
can merge trees together and apply standard 
optinfisation techniques to share their common 
structure. The parser will remain unchanged, 
but will operate more efficiently where struc- 
ture has been shared. Additionally, because 
the au tomata  are more abstract  than the trees, 
capturing precisely the parser's view of the 
trees, sharing may occur between trees which 
are structurally quite different, but which hap- 
pen to have common parser actions associated 
with them. 

3 M e r g i n g  a n d  m i n i m i s i n g  a u t o m a t a  
Combining the au tomata  for several trees can 
be achieved using a variety of s tandard algo- 
ri thms (Huffman, 1954; Moore, 1956). How- 
ever any transformations must respect one im- 
portant  feature: once the parser reaches a fi- 
nal state it needs to know what tree it has just  
recognised 4. When au tomata  for trees with dif- 
ferent root categories are merged, the resulting 
automaton needs to somehow indicate to the 
parser what trees are associated with its final 
states. 

In Evans and Weir (1997), we combined au- 
tomata  by introducing a new initial state with 
e-transitions to each of the original initial states, 

3A further difference is that the traversal encoded 
in the automaton captures part of the parser's control 
strategy. However for simplicity we assume here a fixed 
parser control strategy (bottom-up, anchor-out) and do 
not pursue this point further - Evans and Weir (1997) 
offers some discussion. 

4For recognition alone it only needs to know the root 
category of the tree, but to recover the parse it needs to 
identify the tree itself. 
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and then determinising the resulting automa- 
ton to induce some sharing of structure. To 
recover trees, final au tomaton  states were an- 
notated with the number  of the tree the final 
state is associated with, which the parser can 
then readily access. 

However, the drawback of this approach is that  
differently annota ted  final states can never be 
merged, which restricts the scope for structure 
sharing (minirnisation, for example, is not pos- 
sible since all the final states are distinct). To 
overcome this, we propose an alternative ap- 
proach as follows: 

• each au tomaton  transit ion is annotated 
with the set of trees which pass through 
it: when transitions are merged in au- 
tomaton optimisation, their annotations 
are unioned; 

• the parser maintains for each item in the 
table the set of trees that  are valid for the 
item: initially this is all the valid trees for 
the automaton,  but  gets intersected with 
the annota t ion of any transition followed; 
also if two paths through the automaton 
meet (i.e., an item is about to be added 
for a second time), their annotations get 
unioned. 

This approach supports arbi t rary merging of 
states, including merging all the final states into 
one. The parser maintains a dynamic record of 
which trees are valid for states (in particular fi- 
nal states) in the parse table. This means that  
we can minimise our au tomata  as well as deter- 
minising them, and so share more structure (for 
example, common processing at the end of the 
recognition process as well as the beginning). 

4 R e c o g n i t i o n  a n d  p a r s e  r e c o v e r y  
We noted above that  a parsing algorithm 
needs to be able to access the tree that  
an au tomaton  has recognised. The algo- 
r i thm we describe below actually needs rather 
more information than this, because it uses a 
two-phase recognition/parse-recovery approach. 
The recognition phase only needs to know, for 
each complete item, what the root label of the 
tree recognised is. This can be recovered from 
the ~valid tree' annotat ion of the complete item 
itself (there may be more than one valid tree, 
corresponding to a phrase which has more than 

one parse which happen to have been merged to- 
gether). Parse recovery, however, involves run- 
ning the recogniser 'backwards'  over the com- 
pleted parse table, identifying for each item, the 
items and actions which licensed it. 

A complication arises because the automata,  es- 
pecially the merged automata,  do not directly 
correspond to tree structure.  The recogniser re- 
turns the tree recognised, and a search of the 
parse table reveals the parser action which com- 
pleted its recognition, but that  information in 
itself may not be enough to locate exactly where 
in the tree the action took place. However, the 
additional information required is static, and 
so can be pre-compiled as the au tomata  them- 
selves are built up. For each action transition 
(the action, plus the start  and finish states) 
we record the tree address that  the transition 
reaches (we catl this the ac t i on - s i t e ,  or just 
a-site for short). During parse recovery, when 
the parse table indicates an action that  licensed 
an item, we look up the relevant transition to 
discover where in the tree (or trees, if we are 
traversing several simultaneously) the present 
item must be, so that  we can correctly construct 
a derivation tree. 

5 T e c h n i c a l  d e t a i l s  

5.1 C o n s t r u c t i n g  t h e  a u t o m a t a  
We identify each node in an elementary tree 7 
with an e l e m e n t a r y  a d d r e s s  7/i. The root 
of 7 has the address 7 /e  where e is the empty 
string. Given a node v/i, its n children are ad- 
dressed from left to right with the addresses 
7/il , . . .v/in,  respectively. For convenience, 
let anchor (7) and foot (7) denote the elemen- 
tary address of the node that  is the anchor and 
footnode (if it has one) of 7, respectively; and 
label (7/i)  and parent (7/i)  denote the label of 
7/i and the address of the parent of v/i, respec- 
tively. 

In this paper we make the following assumup- 
tions about elementary trees. Each tree has a 
single anchor node and therefore a single spine 5. 
In the algorithms below we assume that  nodes 
not on the spine have no children. In practice, 
not all e lementary LTAG trees meet these con- 
ditions, and we discuss how the approach de- 
scribed here might be extended to the more gen- 

5The path from the root to the anchor node. 
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eral case in Section 6. 

Let "y/i be an elementary address of a 
node on the spine of 7 with n children 
~ f / i l , . . . , ' , / i l k , . . . , ~ / i n  for n > 1, where k is 
such that  "~ilk dominates anchor ("/). 

7 / i k + l  i f j = l & n > k  
7~i j - 1  i f2_<j_<k 

nex t (3 ' / i j )=  3" / i j+ l  i f k < j  < n  
7/i  otherwise 

next defines a function that  traverses a spine, 
start ing at the anchor. Traversal of an elemen- 
tary tree during recognition yields a sequence of 
p a r s e r  ac t ions ,  which we annotate  as follows: 
the two actions A and ~ indicate a substitu- 
tion of a tree rooted with A to the left or right, 
respectively; __A, and ~_A_ indicate the presence 
of the foot node, a node labelled A, to the left 
or right, respectively; Finally A indicates an 
adjunet ion of a tree with root and foot labelled 
A. These actions consti tute the input language 
of the au tomaton  that  traverses the tree. This 
au tomaton  is defined as follows (note that we 
use e-transitions between nodes to ease the con- 
struction - we assume these are removed using 
a s tandard algorithm). 

Let ~' be an elementary tree with terminal and 
nonterminal  alphabets VT and VN, respectively. 
Each state of the following automaton specifies 
the elementary address 7 / i  being visited. When 
the node is first visited we use the state -[-[7/i]; 
when ready to move on we use the state T[~/i]. 
Define as follows the finite state automaton 
M = (Q, E, _l_ [anchor ('y)], 6, F).  Q is the set 
of states, E is the input alphabet,  q0 is the ini- 
tial state, 5 is the transit ion relation, and F is 
the set of final states. 

Q = { T['Ui ], ±[3"/i] [3"/i is an address in 7 }; 

- - , ,  ,~+ IA e VN ; 
F = { T[3"/e] }; and 
6 includes the following transitions: 
(±[foot ('7)], __A,, T[foot (3')]) if foot (3') is to the right 
of anchor (3") 
(_t_[foot (3')], ÷A, T[foot (3')]), if foot (3') is to the left 
of anchor (3") 
{ (T[3"/i], e, ±[next (3'/i)]) I 3"/i is an address in 3' 

{ (±[3'/i],_~, -r[3'/i]) I 3"/i substitution node, 
label (3"/i) = A, 
7/ i  to right of anchor (3') } 

{ (±[^//il, ,d_, "r[~/i]) I 3"/i substitution node, 
label (3"/i) = A, 
? / i  to left of anchor (~r') } 

( (±[3'/i], ~ ,  T[3'/i]) I ~//i adjunction node 
label (3"/i) = A } 

{ (_1_[3'/i], ~, T[3'/i D I ?/ i  adjunction node } 
{ (T[7/i], ~ ,  T[3"/i]) I 3"/i adjunction node, 

label (3"/i) = d } 
In order to recover derivation trees, we also 
define the partial function a-site(q,a,q ~) for 
(q, a, q') E 5 which provides information about 
the site within the elementary tree of actions 
occurring in the automaton.  

q,) = ~ 3"/i i f a ¢ ( ~ ;  q' = T[~//i] a-site(q, a~ 
undefined otherwise ( 

5.2 C o m b i n i n g  A u t o m a t a  
Suppose we have a set of trees F = 
{3 '1 , . . . , 7n  }. Let M . n , . . .  ,M.Y~ be the e-free 
au tomata  that  are built from members of the 
set F using the above construction, where for 
1 < k < n, Mk = (Qk ,Ek ,qk ,bk ,  Fk). 
Construction of a single au tomaton  for F is a 
two step process. First we build an automa- 
ton that  accepts all elementary computations 
for trees in F; then we apply the s tandard au- 
tomaton determinization and minimization al- 
gorithms to produce an equivalent, compact au- 
tomaton. The first step is achieved simply by 
introducing a new initial state with e-transitions 
to each of the qk: 

Let M = (Q, E, q0, 5, F) where 

Q = ( q0 } u Ul<k<  Oi; 
Z = I.Jl<k<, Ek 
F = Ul<k<,~ F~ 
5 = Ul<~<,~(q0, e, qk) U U~<k<~ 5k. 

We determinize and then minimize M using 
the s tandard set-of-states constructions to pro- 
duce Mr  = (Q', E, Q0,5 ' ,F ' ) .  Whenever two 
states are merged in either the determinizing 
or minimizing algorithms the resulting state is 
named by the union of the states from which it 
is formed. 

For each transit ion (QI ,a ,  Q2) E 5' we define 
the function a-sites(Q1, a, Q2) to be a set of el- 
ementary nodes as follows: 

a-sites(Q1, a, Q2) = [.Jq~ eQ~,q2eQ2 a-site(ql, a, q2) 

Given a transit ion in Mr ,  this function returns 
all the nodes in all merged trees which that  tran- 
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sition reaches. 

Finally, we define: 

cross(Q1, a, Q2) = { 3' 17/i E a-sites(Q1, a, Q2) } 

This  gives tha t  subset of those trees whose el- 
ementary  computa t ions  take the Mr  through 
state Q1 to Q2. These are the transit ion an- 
nota t ions  referred to above, used to constrain 
the parser 's  set of valid trees. 

5.3 The Recognition Phase 
This  section illustrates a simple bo t tom-up  
parsing a lgor i thm that  makes use of minimized 
a u t o m a t a  produced  from sets of trees that  an- 
chor the same input  symbol. 

The  input  to the parser takes the form of a se- 
quence of minimized au tomata ,  one for each of 
the symbols in the input .  Let the input  string 
be w = a l . . . a n  and the associated au toma ta  
be M I , . . .  Mn where Mk = (Qk, Ek, qk, 5k, Fk) 
for 1 < k < n. Let treesof(Mk) = Fk where Fk 
is a set of the names of those elementary trees 
tha t  were used to construct  the au toma ta  Mk. 

During the recognition phase of the algorithm, 
a set I of i t e m s  are created. An i tem has 
the form (T, q, [l, r, l', r']) where T is a set of 
e lementary  tree names,  q is a au toma ta  state 
and l , r , l ' , r '  E { 0 , . . .  , n , - -  } such tha t  either 
l < l ' < r ' < r o r l < r a n d l ' = r ' = - .  The  in- 
dices l, l', # ,  r are posit ions between input  sym- 
bols (posit ion 0 is before the first input  symbols 
and posi t ion n is after the final input  symbol) 
and we use Wp,p, to denote  that  substr ing of the 
input  w between posit ions p and p'. I can be 
viewed as a four dimensional  array, each entry 
of which contains a set of pairs comprising of a 
set of nonterminals  and an au toma ta  state. 

Roughly  speaking,  an i tem (T, q, [I, r, l', r]) is in- 
eluded in I when for every 7 E T, anchored 
by some ak (where I < k _< r and if l' # - 
then  k < l' or r '  _< k); q is a state in Qk, such 
tha t  some elementary subcomputa t ion  reaching 
q from the initial state,  qk, of Mk is an ini- 
tial subst r ing of the e lementary  computa t ion  for 
7 tha t  reaches the e lementary  address 7/i,  the 
subtree rooted at 7/i  spans Wt,r, and i fT / i  dom- 
inates a foot node then  that  foot node spans 
We,r,, otherwise l' = r '  = - 

The  input  is accepted if an i tem 
(T, qf,[O,n, , ]) is added  to I where T 
contains some initial tree rooted in the start  

symbol S and ql E Fk for some k. 

When  adding i tems to I we use the procedure 
add(T, q, [l, r, l', r']) which is defined such that  
if there is already an entry (T', q, [l, r, l', r']) E 
I for some T'  then replace this with the entry 
(T U T',  q, [l, r , l ' ,  rq)6; otherwise add the new 
entry (T, q, [/, r, l', r']) to I. 

I is initialized as follows. For each k E 
{ 1 , . . .  , n  } call add(T,  q k , [ k -  1 , k , - , - ] )  where 
T = treesof(Mk) and qk is the initial state of 
the au toma ta  Mk. 

We now present the rules with which the com- 
plete set I is built. These rules correspond 
closely to the familiar steps in existing bot tom- 
up LTAG parser, in particular,  the way that  
we use the four indices is exactly the same as 
in other approaches (Vijay-Shanker and Joshi, 
1985). As a result a s tandard  control s trategy 
can be used to control the order in which these 
rules are applied to existing entries of I.  

1. If (T,q,[l ,r , l ' ,r ']) ,(T' ,qs,[r,r",  - ,  - ] ) E l ,  
qf E Fk for some k, (q,A,q~) E 5k, for 
some U, label (~,l/e) = A from some ~/i E 
T ~ ~z T" = T VI cross(q,A,q~) then call 
add(T" ,  q', [1, r", l', r']). 

2. If <T, q, [l, r, l', r']), iT' ,  q$, [l", l, - ,  -]> e I,  
qf E Fk for some k, (q,A,q ')  E 5k, for 
some k', l abe l (7 ' /e )  = A from some 71 E 
T'  gz T"  = T A c r o s s ( q , a , q ' )  then call 
add(T" ,  q', [l", r, l', r']>. 

3. I f (T,q , [1 ,  r , - , - ] )  E I ,  (q, A , q , )  e S k  for 

some k & T'  = T A cross(q,_A,,q')  then 
for each r ~ such that  r < r / < n call 
add(T ' ,  q', [/, r ' ,  r, r']). 

4. If (T, q, [l, r, - ,  - ] )  E I,  (q,÷A__,q') E ~k 

for some k & T'  = T M cross(q,÷A,q~) 
then for each l' such that  0 < l' < l call 
add(T' ,  q', [/', r, l', l]). 

5. If (T,q,[l ,r , l ' ,r ']) , (T' ,qf ,[ l" ,r", l ,r])  G I, 
qf E Fk for some k, ( q ,A ,q ' )  E 5k' for 
some k', label (~//e) = A from some ~/ E 
T'  & T"  = T V~ e ro s s (q ,~ ,q ' )  then call 
add(T" ,  q', [l", r", l', r']). 

°This replacement is t reated as a new entry in the 
table. If the old entry has already licenced other entries, 
this may result in some duplicate processing. This could 
be eliminated by a more sophisticated treatment of tree 
sets. 

376 



The  running t ime of this a lgori thm is O(rfi) 
since the last rule must  be embedded  within six 
loops each of which varies with n. Note that  
a l though the thi rd  and four th  rules both  take 
O(n) steps, they need only be embedded  within 
the 1 and r loops. 

5.4 Recover ing  Parse  Trees 
Once the set of i tems I has been completed, the 
final task of the parser is to a recover derivation 
tree 7. This  involves retracing the steps of the 
recognit ion process in reverse. At each point, 
we look for a rule tha t  would have caused the 
inclusion of i tem in I. Each of these rules in- 
volves some transi t ion (q, a, q') ~ 5k for some k 
where a is one of the parser actions, and from 
this t ransi t ion we consult  the set of elementary 
addresses in a-sites(q, a, q') to establish how to 
build the derivation tree. We eventually reach 
i tems added dur ing the initialization phase and 
the process ends. Given the way our parser has 
been designed, some search will be needed to 
find the i tems we need. As usual, the need for 
such search can be reduced through the inclu- 
sion of pointers  in items, though  this is at the 
cost of increasing parsing time. There are var- 
ious points  in the following description where 
nonde te rmin i sm exists. By exploring all possi- 
ble paths,  it would be s traightforward to pro- 
duce an A N D / O R  derivation tree that  encodes 
all derivat ion trees for the input  string. 

We use the procedure  der((T,  q, [l, r, l', r']), r) 
which completes the part ial  derivation tree r by 
backing up th rough  the moves of the au tomata  
in which q is a state. 

A derivation tree for the input  is returned 
by the call der(<T, qf, [O, n, - ,  - ] ) ,  ~-) where 
(T, qf , [O, n, - ,  -]) E I such that  T contains 
some initial tree 7 rooted with the start  non- 
terminal  S and qI is the final state of some au- 
t oma ta  Mk, 1 < k <_ n. r is a derivation tree 
containing just  one node labelled with name 7. 

In general, on a call to der(<T, q, [l, r, l', r']), T) 
we examine I to find a rule tha t  has caused this 
i tem to be included in I. There  are six rules 
to consider, corresponding to the five recogniser 
rules, plus lexical in t roduct ion,  as follows: 

1. If (T ' ,q ' , [ l , r" , I ' , r ' ]>, (T" ,q f , [ r" , r , - , - ] l  e 

TDerivation trees are labelled with tree names and 
edges are labelled with tree addresses. 

I,  qI E Fk for some k, ( q ' , A , q )  E 6k, for 
some k', 7 is the label of the root of % 
3' E T',  label (-'//e) = A from some 7' E T" 
& ~//i E a-sites(q', A , q ) ,  then  let z' be the 
derivation tree containing a single node 
labelled 7', and let T" be the result of at- 
taching der((T",  q/, [r", r, - , - ] ) ,  ~-') under  
the root of T with an edge labelled the tree 
address i. We then complete  the derivation 
tree by calling der((T' ,  q', [l, r", l', r']}, T"). 

2. If (T', q', [r", r, l', r']>, <T", qf, [l, r", - ,  - ])  e 
I, qf E Fk for some k, ( q ' ,A ,q )  ~ @ for 
some U 7 is the label of the root of y, 
7 E T', label (7 ' /e)  = A from some 7' E T" 
& 7/i  E a-sites(q', +__a, q), then let r '  be the 
derivation tree containing a single node 
labelled 7', and let r" be the result of at- 
taching der((T",  qs, [l, r",  - ,  - ] ) ,  r ' )  under  
the root of r with an edge labelled the tree 
address i. We then  complete  the derivation 
tree by calling der((T' ,  q', [r", r, l', r']>, r"). 

3. If r = r', <T' ,q ' , [ l , l ' , - , - ] )  ~ I and 

(q,,_A,,q) 6 c~ k for some k, 7 is the 
label of the root of T, 7 E T' and 
foot (7) E a-sites(q' ,_A,, q) then  make the 
call der((T' ,  q', [l, l', - ,  -]),  r). 

4. If l = l', <T ' ,q ' , [ r ' , r , - , - ] )  E I and 

(q , ,÷Aq , )  E 6k tbr some k, 3' is the 
label of the root of % 7 E T' and 
foot (3') E a-sites(q', ÷ A  q) then  make the 
call der(<T', q', [r', r, - ,  -]>, ~-). 

5. If <T',q',[l",r",l',r']), <T",qf,[l,r,l",r"]) E 
I, qs E Fk for some k, ( q ' , A , q )  E @ for 
some k', 7 is the label of the root of "r, 
3' E T' ,  label (7' /e) = A from some 7' E T" 
and "y/i E a-sites(q', A , q ) ,  then  let T' be 
the derivation tree containing a single node 
labelled 7% and let "r" be the result of at- 
taching der(<T",qi, [1, r,l",r"]), r') under  
the root of -r with  an edge labelled the tree 
address i. We then  complete  the derivation 
tree by calling der(<T', q', [/", r",  l', r']), ~-"). 

6. If I + 1 = r, r '  = l' = - q is the initial state 
of M~, 3' is the label of the root ofT-, 7 E T, 
then  re turn  the final derivation tree 7-. 

6 D i s c u s s i o n  
The approach described here offers empirical 
rather  than  formal improvements  in perfor- 
mance. In the worst case, none of the trees 
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word 
come 

break 

give 

no. of trees automaton no. of states no. of transitions trees per state 
133 merged 898 1130 1 

minimised 50 130 11.86 
177 merged 1240 1587 1 

minimised 68 182 12.13 
337 merged 2494 3177 1 

minimised 83 233 20.25 

Table 1: DTG compaction results (from Carroll et al. (1998)). 

in the grammar share any structure so no op- 
timisation is possible. However, in the typi- 
cal case, there is scope for substantial structure 
sharing among closely related trees. Carroll et 
al. (1998) report preliminary results using this 
technique on a wide-coverage DTG (a variant 
of LTAG) grammar. Table 1 gives statistics for 
three common verbs in the grammar: the total 
number of trees, the size of the merged automa- 
ton (before any optimisation has occurred) and 
the size of the minimised automaton. The fi- 
nal column gives the average of the number of 
trees that share each state in the automaton. 
These figures show substantial optimisation is 
possible, both in the space requirements of the 
grammar and in the sharing of processing state 
between trees during parsing. 

As mentioned earlier, the algorithms we have 
presented assume that elementary trees have 
one anchor and one spine. Some trees, how- 
ever, have secondary anchors (for example, a 
subcategorised preposition). One possible way 
of including such cases would be to construct 
automata from secondary anchors up the sec- 
ondary spine to the main spine. The automata 
for both the primary and secondary anchors 
associated with a lexieal item could then be 
merged, minimized and used for parsing as 
above. 

Using automata for parsing has a long his- 
tory dating back to transition networks (Woods, 
1970). More recent uses include Alshawi (1996) 
and Eisner (1997). These approaches differ from 
the present paper in their use of automata as 
part of the grammar formalism itself. Here, 
automata are used purely as a stepping-stone 
to parser optimisation: we make no linguistic 
claims about them. Indeed one view of this 
work is that it frees the linguistic descriptions 
from overt computational considerations. This 
work has perhaps more in common with the 

technology of LR parsing as a parser optimi- 
sation technique, and it would be interesting to 
compare our approach with a direct application 
of LR ideas to LTAGs. 
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