
FeasPar - A Feature Structure Parser Learning to Parse
Spoken Language

F i n n D a g B u ¢ a n d A l e x W a i b e l

In te rac t ive Sys t ems L abo ra t o r i e s

Univers i ty of Kar ls ruhe , G e r m a n y
and Carnegie Mellon Universi ty, USA

{finndag[waibel}~ira. uka. de

A b s t r a c t

We describe and experimentally evalu-
ate a system, FeasPar, that learns pars-
ing spontaneous speech. To train and
run FeasPar (Feature Structure Parser),
only limited handmodeled knowledge is
required.
The FeasPar architecture consists of neu-
ral networks and a search. The networks
spilt the incoming sentence into chunks,
which are labeled with feature values and
chunk relations. Then, the search finds
the most probable and consistent feature
structure.
FeasPar is trained, tested and evaluated
with the Spontaneous Schednling Task,
and compared with a handmodeled LR-
parser. The handmodeling effort for Fea-
sPar is 2 weeks. The handmodeling ef-
fort for the LR-parser was 4 months.
FeasPar performed better than the LR-
parser in all six comparisons that are
made.

1 I n t r o d u c t i o n

When building a speech parsing component for
small domains, an important goal is to get good
performance. If low hand labor is involved, then
it's even better.

Unification based formalisms, e.g.(Gazdar et
al., 1985; Kaplan and Bresnan, 1982; Pollard and
Sag,]987), have been very successful for analyz-
ing written language, because they have provided
parses with rich and detailed linguistic informa-
tion. However, these approaches have two major
drawbacks: first, they require hand-designed sym-
bolic knowledge like lexica and grammar rules,
and second, this knowledge is too rigid, causing
problems with ungranlmaticality and other devi-
ations from linguistic rules. These deviations are

manageable and low in number, when analyzing
written language, but not for spoken language.
The latter also contains spontaneous effects and
speech recognition errors. (On the other hand, the
good thing is that spoken language tend to contain
less complex structures than written language.)
Several methods have been suggested compensate
for these speech related problems: e.g. score and
penalties, probabilistic rules, and skipping words
(Dowding et al., 1993; Seneff, 1992; Lavie and
Tomita, 1993; Issar and Ward, 1993).

A small community have experimented with ei-
ther purely statistical approaches(Brown et al.,
1990; Schiitze, 1993) or connectionist based ap-
proaches (Berg, 1991; Miikkulainen and Dyer,
1991; Jain, 1991; Wermter and Weber, 1994).
The main problem when using statistical ap-
proaches for spoken language processing, is the
large amounts of data required to train these mod-
els. All connectionist approaches to our knowl-
edge, have suffered from one or more of the fol-
lowing problems: One, parses contains none or too
few linguistic attributes to be used in translation
or understanding, and/or it is not shown how to
use their parse formalism in a total NLP system.
Two, no clear and quantitative statement about
overall performance is made. Three, the approach
has not been evaluated with real world data, but
with highly regular sentences. Four, millions of
training sentences are required.

In this paper, we present a parser that produces
complex feature structures, as known from e.g.
GPSG(Gazdar et al., 1985). This parser requires
only minor hand labeling, and learns the parsing
task itself. It generalizes well, and is robust to-
wards spontaneous effects and speech recognition
errors.

The parser is trained and evaluated with the
Spontaneous Scheduling Task, which is a nego-
tiation situation, in which two subjects have to
decide on time and place for a meeting. The sub-
jects' calendars have conflicts, so that a few sug-

188

gestions have to go back and tbrth before finding
a t ime slot suitable for both. The data sets are
real-world data, containing spontaneous speech ef-
fects. 3?he training set consists of 560 sentences,
the deveJopment test set of 65 sentences, and
the unseen evaluation set of 120 sentences. For
clarity, tile examl)le sentences in this paper are
among the simpler in the training set. The parser
is trained with transcribed data only, but eval-
uated with transcribed and speech data (includ-
ing speech recognition errors). The parser pro-
duces feature structures, holding semantic infor-
mation. Feature structures are used as interlingua
in the JANUS speech-to-speech translation sys-
tem(Woszczyna el; al., 1994). Within our research
team, the design of the interlingua ILT was deter-
mined by the needs of uniticatkm based parser and
generator writers. Consequently, the ILT design
was ,lot tuned towards connectkmist systeins. On
the contrary, our parser must learn the form of tile
output provided by a unitication based parser.

This paper is organized as follows: First, a short
tutorial on feature structures, and how to build
them. Second, we describe the parser architec~
ture and how it works. Third, we describe the
lexicon. Fourth, we describe the tmrser's neural
aspects. Fifth, a search algorithm is motivated.
Then results and conclusion follow.

2 F e a t u r e S t r u c t u r e s

Feature s t ructures(Gazdar et al., 1985; Pollard
and Sag, 1987) are used as output fbrmalism for
l,basPar. Their core. syntactic properties and ter-
minology are:

1. A feature structure is a set of none, one or
several feature pairs.

2. A featurepair, e.g. (frame * c l a r i f y) , con-
sists of a feature, e.g. f r ame or t o p i c , and a
feature value.

3. A feature value is either:

(a) an atomic value, e.g. * c l a r i f y

(b) a complex value

4. A complex value is a feature structure.

3 T h e C h u n k ' n ' L a b e l P r i n c i p l e

In contrast to tim standard feature structure deti-
nition of Section 2, an alternative view-point is to
look at a feature structure as a tree 1, where sets

tThis assumes that structure sharing is not possi-
ble, see Section 3.1.2.

((speech-a-6-t *confirm)
(sentence-type *state)
(frame *clarify)
(topic ((frame *simple-time)

(day-of-week monday)))
(adverb perhaps)
(clarified ((frame *simple-time)

(day-of-week monday)
__ (day 27))))

Figure 1: Feature structure with the meaning "by
monday i assume you mean monday the twenty sev-
enth"

of feature pairs with atomic wdues make up tile
braimhes, and the ln'anches are connected with
relations. Atomic feature pairs belonging to the
same branches, have the same relation to all other
branches. Further, when comparing the sentence
with its feature structure, it appears tha t there
is a correspondence between fl 'agments of the fea-
ture structure, and specific ctmnks of the sentence.
In the example feature structure of Figure 1, the
following observations about feature pairs and re-
lations apply:

• feature pairs:

[f e a t u r e pa i r s : c o r r e s p o n d s to:

~-((f rame * s i m p l e - t i m e)
[(d a y - o f - w e e k monday) "monday the
L_ (day 27)) twenty seventh"

"the twenty seventh"

• r e l a t i o n s : tile coinplex value of the tbature
topic corresponds to the chunk "by mon-
day", and tile complex value of the feature
c l a r i f i e d corresponds to "you mean monday
the twenty seventh".

Manually aligniug the sentence with fragments
of the feature structure, gives a s tructure as shown
in Figure 2. A few coinments apply to this figure:

• The sentence is hierarchically split into
chunks.

• Feature pairs are listed with their correspond-
ing chunk.

• Relations are shown in square brackets, and
express how a chunk relates to its parent
chunk. Relations may contain more than one
element. This allows several nesting levels.

Once having obtained the information in Fig-
ure 2, producing a feature structure is straight
forward, using the algorithm of Figure 3. Sum-
ruing up, we can define this procedure as the
chunk'n'label principle of parsing:

189

([] ((s p e e c h - a c t *confirm)
(sentence-type *s ta te)
(frame *clarify))

([]
([topic]((frame *simple-time))

([] by)
([]((day-of-week monday)) monday))

(C] ([] i))
([] ((adve rb perhaps))

([] assume)))
([c l a r i f i e d]

([] ([] you))
([] ([] mean))
([]((frame *simple-time))

([]((day-of-week monday)) monday)
([] the)
(,[]((day 27)) ([rego] twenty seventh)))))

Figure 2: Chunk parse: Sentence aligned with its feature structure (see text for explanation).

1. Split the incoming sentence into hierarchical
chunks.

2. Label each chuck with feature pairs and fea-
ture relations.

3. Convert this into a feature structure, using
the algorithm of Figure 3.

FUNCTION conver t ()
VAR

S: s e t ;
C: chunk;

BEGIN
S := empty s e t ;
assign(S,top_level_chunk);
return(S);

END;
PROCEDURE assign(VAR S: set;

C: chunk);
BEGIN

P := chunk_relation(C);
F0R each relation element PE in P

BEGIN
S' := empty set;
include (PE,S') in S;
S := S';

END;
FOR each feature pair FP in C

include FP in S;
F0R each chunk C' in C

assign(S,C);
END;

Figure 3: Algorithm for converting a parse to a
feature structure

3.1 Theoret ical Limitat ions

The chunk'n'label principle has a few theoretical
limitations compared with the feature structure

formalisms commonly used in unification-based
parsing, e.g. (Gazdar et al., 1985).

3.1.1 Dep th

With the chunk'n'label principle, the feature
structure has a maximum nesting depth. One
could expect the maximal nesting depth to cause
limitations. However, these limitations are only
theoretical, because very deep nesting is hardly
needed in practice for spoken language. Due to
the ability to model relations of more than length
1, no nesting depth problems occurred while mod-
eling over 600 sentences from the English Sponta-
neous Scheduling Task (ESST).

3.1.2 S t ruc tu re Shar ing

Many unification formalisms allow feature val-
ues to be shared. The chunk'n'label principle does
not incorporate any mechanism for this. However,
all work with ESST and ILT empirically showed
that there is no need for structure sharing. This
observation suggests that for semantic analysls,
structure sharing is statistically insignificant, even
if its existence is theoretically present.

4 B a s e l i n e P a r s e r

The chunk'n'label principle is the basis for the
design and implementation of the FeasPar parser.
FeasPar uses neural networks to learn to produce
chunk parses. It has two modes: learn mode
and run mode. In learn mode, manually mod-
eled chunk parses are split into several separate
training sets; one per neural network. Then, the
networks are trained independently of each other,
allowing for parallel training on several CPU's. In
run mode, the input sentence is processed through
all networks, giving a chunk parse, which is passed

190

(((speech-act *s ta te -cons t ra in t)
(sen tence - type *state))
(((frame *booked))

(((frame : * i))
(i))

((h~ve))
(((frame =*meet ing))

(((specifier indefinite)) a)
(meeting))

(((frame *simple-t ime)
(. . / f r ame *interval)
(. . / incl-excl inclusive))
(till)
(((hour =12)) ([regc] twelve)))))

((speech-act *state-constraint)
(sentence-type *state)
(frame *booked)
(who ((frame *i)))
(what ((frame *meeting)

(specifier indefinite)))
(when ((incl-excl inclusive)

(frame *interval)
(end ((frame *simple-time)

(hour 12))))))

Figure 6: Feature structure parse

Figure 4: Chunked and labeled sentence (labels
shown in bo ld face)

([/((speech-act *state-constraint)
(sentence-type *state))
(~((frame *booked))

([who] ((frame ----*i))
(8 i))

([I(8 ha~e))
([what]((frame ----*meeting))

([]((specifier indefinite)) a)
([] meeting))

([when/end]((frame *simple-time)
(../frame *interwd)
(../incl-excl inclusive))
(fl till)
(fl((hour =12)) ([regc] twelve)))))

Figure 5: Chunk parse (chunk relations shown in
bo ld face)

on to the converting algorithm shown in Figure 3.
In the following, tile three main modules re-

quired to produce a chunk parse are described:
The Chunker splits an input sentence into

chunks. It consists of three neural networks. The
first network finds numbers. They are classified as
being ordinal or cardinal numbers, and are pre-
sented as words to the following networks. The
next network groups words together to phrases.
The third network groups phrases together into
clauses. In total, there are four levels of chunks:
word/numbers, phrases, clauses and sentence.

The Linguistic Feature Labeler attaches features
and atomic feature values (if applicable) to these
chunks. For each feature, there is a network,
which finds one or zero atomic values. Since there
are many features, each chunk may get no, one or
several pairs of features and atomic values. Since
a feature normally only occurs at a certain ctmnk
level, the network is tailored to decide on a par-
ticular feature at a particular chunk level. This
specialization is there to prevent the learning task

from becoming too complex. A special atomic fea-
ture value is called lexical feature value. It is in-
dicated by '= ' and means that the neural network
only detects the occurrence of a value, whereas the
value itself is found by a lexicon lookup. The lex-
ical feature values are a true hybrid mechanism,
where symbolic knowledge is included when the
neural network signals so. Furthermore, features
may be marked as up-features (e . g . . . / i n c l - e x c l
in Figure 4 and 5). An up-feature is propagated
up to its parent branch when building the feature
structure (see Figure 6).

The Chunk Relation Finder determines how a
chunk relates to its parent chunk. It has one net-
work per chunk level and chunk relation element.

The following example illustrates in detail how
the three parts work.]~br clarity, this example
assumes that all networks perform perfectly. The
parser gets the English sentence:

"i have a meeting till twelve"
The Chunker segments the sentence before pass-

ing it to the Linguistic Feature Labeler, which
adds semantic labels (see Figure 4). The Chunk
Relation Finder then adds relations, where appro-
priate, and we get the chunk parse as shown in
Figure 5. Finally, processing it by the algorithm
in Figure 3, gives the final parse, the feature struc-
ture, as shown in Figure 6.

4.1 L e x i c o n

FeasPar uses a full word form lexicon. The lexicon
consists of three parts: one, a syntactic and se-
mantic microfeature vector per word, second, lex-
ical feature values, and three, statistical microfea-
tures.

Syntactic and semantic microfeatures are repre-
sented for each word as a vector of binary vahles.
These vectors are used as input to the neural net-
works. As the neural networks learn their tasks
based on the microfeatures, and not based on dis-
tinct words, adding new words using the same mi-
crofeatures is easy and does not degrade general-

1 9 1

ization performance. The number and selection of
microfeatures are domain dependent and must be
made manually. For ESST, the lexicon contains
domain independent syntactic and domain depen-
dent semantic microfcatures. To manually model
a 600 word ESST vocabulary requires 3 lull days.

Lexical feature values are stored in look-up
tables, which are accessed when the Linguistic
Feature Labeler indicates a lexical feature value.
These tables are generated automatically from the
training data, and can easily be extended by hand
for more generality and new words. An auto-
matie ambiguity checker warns if similar words or
phrases map to ambiguous lexical feature values.

Statistical microfeatures are represented for
each word as a vector of continuous values Vstat.
These microfeatures, each of them representing a
feature pair, are extracted automatically. For ev-
ery feature value at a certain chunk level, if there
exists a word such that, given this word in the
training data, the feature value occurs in more
than 50 % of tim cases. One continuous microfea-
ture value v~t,t for a word w is set automatically
to the percentage of feature value occurrence given
that word w.

4 . 2 N e u r a l A r c h i t e c t u r e a n d T r a i n i n g

All neural networks have one hidden layer, and are
conventional feed-forward networks. The learn-
ing is done with standard back-propagation, com~
bined with the constructive learning algorithm
PCL(Jain, 1991), where learning starts using a
small context, which is increased later in the learn-
ing process. This causes local dependencies to be
learned first.

Generalization performance is increased by
sparse connectivity. This connection principle is
based on the microfeatures in the lexicon that are
relevant to a particular network. The Chunker
networks are only connected to the syntactic mi-
crofeatures, because chunking is a syntactic task.
With ESST, the Linguistic Feature Labeler and
Chunk Relation Finder networks are connected
only to the semantic microfeatures, and to rel-
evant statistical microfeatures. All connectivity
setup is automatic. Further techniques for im-
proving performance are described in (Buo, 1996).
For the neural networks, the average test set per-
formance is 95.4 %

5 S e a r c h

The complete parse depends on many neural net-
works. Most networks have a certain error rate;
only a few networks are perfect. When building
complete feature structures, these network errors

multiply up, resulting in not only that many fea-
ture structures are erroneous, but also inconsis-
tent and making no sense.

To compensate for this, we wrote a search al-
gorithm. It's based on two information sources:
First, scores that originates from the network out-
put activations; second, a formal feature struc-
ture specification, stating what mixture of feature
pairs are consistent. This specification was al-
ready available as an interlingua specification doc-
ument.

Using these two information sources, the search
finds the feature structure with the highest score,
under the constraint of being consistent. The
search is described in more detail in (Bu0 and
Waibel, 1996; Bu0, 1996).

6 R e s u l t s

FeasPar GLR* Parser
PM1 - T 71.8 % 51.6 %
PM1 - S 52.3 % 30.3 %
P M 2 E - T 74 % 63 %
P M 2 E - S 49 % 28 %
PM3G - T 49 % 42 %
PM2G - S 36 % 17 %

Figure 7: Results

FeasPar is compared with a handmodeled LR-
parser. The handmodeling effort for FeasPar is 2
weeks. The handmodeling effort tbr the LR-parser
was 4 months.

The evaluation environment is the JANUS
speech translation system for the Spontaneous
Scheduling Task. The system have one parser and
one generator per language. All parsers and gen-
erators are written using CMU's G LR/G LR* sys-
tem(Lavie and Tomita, 1993). They all share the
same interlingua, ILT, which is a special case of
LFG or feature structures.

All Performance measures are run with tran-
scribed (T) sentences and with speech (S) sen-
tences containing speech recognition errors. Per-
formance measure 1 is the feature accuracy, where
all features of a parser-nmde feature structure are
compared with feature of the correct handmodeled
feature structure. Performance measure 2 is the
end-to-end translation ratio for acceptable non-
trivial sentences achieved when LR-generators are
used as back-ends of the parsers. Performance
measure 2 uses an English LR-generator (hand-
modeled for 2 years), providing results for English-
to-English translation, whereas performance mea-
sure 3 uses a German LR-generator (handmodeled

1 9 2

for 6 months), hence providing results for English-
to-German translations. Results for an unseen,
independent evaluation set are shown in Figure 7.

As we see, FeasPar is better than the LR-parser
in all six comparison perforInance measures made.

7 C o n c l u s i o n

We described and experimentally evaluated a sys-
tem, FeasPar, that learns parsing spontaneous
speech. To train and run FeasPar (Feature Struc-
ture Parser), only limited handmodeled knowl-
edge is required (chunk parses and a lexicon).

l~5;asPar is based on a principle of chunks, their
features and relations. The FeasPar architecture
consists of two n'tajor parts: A neural network col-
lection and a search. The neural networks first
spilt the incoming sentence into chunks. Then
each chunk is labeled with feature values and
chunk relations. Finally, the search uses a formal
feature structure specification as constraint, and
outputs the most probable and consistent feature
structure.

FeasPar was trained, tested and evaluated with
the Spontaneous Scheduling Task, and compared
with a handmodeled LR-parser. FeasPar per-
tbrmed better than the LR-parser in all six com-
parison performance measures that were made.

References

George Berg. 1991. Learifing Recursive Phrase
Structure: Combining the St, rengths of PDP
and X-Bar Syntax. Technical report TR 91-5,
Dept. of Computer Science, University at Al-
bany, State University of New York.

Peter F. Brown, John Cocke, Stephen A. Della
Pietra, Vincent J. Della Pietra, Fredrick Jelinek
John D. Lafferty, Robert L. Mercer, and Paul S.
Roossin. 1990. A Statistical Approach To Ma-
chine ~lYanslation. Computational Linguistics,
16(2):79-85, June.

Finn Dag Bu0 and Alex Waibel. 1996. Search in a
Learnable Spoken Language Parser. In Proceed-
ings of the 12th European Conference on Arti-
ficial Intelligence, August.

Finn Dag Bu0. 1996. FeasPar - A 1%ature
Structure Parser Learning to Parse Sponta-
neous Speech. Ph.D. thesis, University of Karl-
sruhe, upcoming.

J. Dowding, J. M. Gawron, D. Appelt, J. Bear,
L. Cherny, R. Moore, and D. Moran. 1993.
Gemini: A Natural Language System for
Spoken-Language Understanding. In Proceed-
ings ARPA Workshop on Human Language

Technology, pages 43-48, Princeton, New Jer-
sey, March. Morgan Kaufmann Publisher.

G. Gazdar, E. Klein, G. K. Pullum, and I. A.
Sag. 1985. A theory of syntactic features. In
Generalized Phrase Structure Grammar, chap-
ter 2. Blackwell Publishing, Oxford, England
and Itarvard University Press, Cambridge, MA,
USA.

Sunil Issar and Wayne Ward. 1993. CMU's ro-
bust spoken language understanding system. In
Proceedings of Eurospeech.

Ajay N. Jain. 1991. A Connectionist Learning Ar-
chitecture for Parsing Spoken Language. Ph.D.
thesis, School of Computer Science, Carnegie
Mellon University, Dec.

R. Kaplan and J. Bresnan. 1982 . Lexical-
Functional Grammar: A Formal System for
Grammatical Representation. In J. Bresnan,
editor, The Mental Representation of Gram-
matical Relations, pages 173-281. The MIT
Press, Cambridge, MA.

A. Lavie and M. Tomita. 1993. GLR* - An
Efficient Noise-skipping Parsing Algorithm for
Context-free Grammars. In Proceedings of
Third Intcrnational Workshop on Parsing Tech-
nologies, pages 123 134.

R. Miikkulainen and M. Dyer. 1991. Natural
Language Processing With Modular PDP Net-
works and Distributed Lexicon. Cognitive Sci-
enec, 15:343 399.

C. Pollard and I. Sag. 1987. Formal Foundations.
In An In/ormation-Based Syntax and Seman-
tics, chapter 2. CSLI Lecture Notes No.13.

tIinrich Schiitze. 1993. rDanslation by Confusion.
In Spring Symposium on Machinc Translation.
AAAI.

Stephanie Seneff. 1992. TINA: A Natural Lan-
guage System for Spoken Language Applica-
tions. Computational linguistics, 18(1).

Stefan Wermter and Volker Weber. 1994.
Learning Fault-tolerant Spreech Parsing witt~
SCREEN. In Proceedings of Twelfth National
Conference on Artificial InteUigence, Seattle.

M. Woszczyna, N. Aoki-Waibel, F. D. Bu0,
N. Coccaro, K. Horiguchi, T. Kemp, A. Lavie,
A. McNair, T. Polzin, I. Rogina, C.P.
Rose, T. Schultz, B. Suhm, M. Tomita, and
A. Waibel. 1994. JANUS 93: Towards Spon-
taneous Speech Translation. In International
Conference on Acoustics, Speech '~ Signal Pro-
cessing, pages 345--348, vol. 1, Adelaide, Aus-
tralia, April. IEEE.

193

