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A b s t r a c t  

We describe and experimentally evalu- 
ate a system, FeasPar, that learns pars- 
ing spontaneous speech. To train and 
run FeasPar (Feature Structure Parser), 
only limited handmodeled knowledge is 
required. 
The FeasPar architecture consists of neu- 
ral networks and a search. The networks 
spilt the incoming sentence into chunks, 
which are labeled with feature values and 
chunk relations. Then, the search finds 
the most probable and consistent feature 
structure. 
FeasPar is trained, tested and evaluated 
with the Spontaneous Schednling Task, 
and compared with a handmodeled LR- 
parser. The handmodeling effort for Fea- 
sPar is 2 weeks. The handmodeling ef- 
fort for the LR-parser was 4 months. 
FeasPar performed better than the LR- 
parser in all six comparisons that are 
made. 

1 I n t r o d u c t i o n  

When building a speech parsing component for 
small domains, an important goal is to get good 
performance. If low hand labor is involved, then 
it's even better. 

Unification based formalisms, e.g.(Gazdar et 
al., 1985; Kaplan and Bresnan, 1982; Pollard and 
Sag, ]987), have been very successful for analyz- 
ing written language, because they have provided 
parses with rich and detailed linguistic informa- 
tion. However, these approaches have two major 
drawbacks: first, they require hand-designed sym- 
bolic knowledge like lexica and grammar rules, 
and second, this knowledge is too rigid, causing 
problems with ungranlmaticality and other devi- 
ations from linguistic rules. These deviations are 

manageable and low in number, when analyzing 
written language, but not for spoken language. 
The latter also contains spontaneous effects and 
speech recognition errors. (On the other hand, the 
good thing is that spoken language tend to contain 
less complex structures than written language.) 
Several methods have been suggested compensate 
for these speech related problems: e.g. score and 
penalties, probabilistic rules, and skipping words 
(Dowding et al., 1993; Seneff, 1992; Lavie and 
Tomita, 1993; Issar and Ward, 1993). 

A small community have experimented with ei- 
ther purely statistical approaches(Brown et al., 
1990; Schiitze, 1993) or connectionist based ap- 
proaches (Berg, 1991; Miikkulainen and Dyer, 
1991; Jain, 1991; Wermter and Weber, 1994). 
The main problem when using statistical ap- 
proaches for spoken language processing, is the 
large amounts of data required to train these mod- 
els. All connectionist approaches to our knowl- 
edge, have suffered from one or more of the fol- 
lowing problems: One, parses contains none or too 
few linguistic attributes to be used in translation 
or understanding, and/or it is not shown how to 
use their parse formalism in a total NLP system. 
Two, no clear and quantitative statement about 
overall performance is made. Three, the approach 
has not been evaluated with real world data, but 
with highly regular sentences. Four, millions of 
training sentences are required. 

In this paper, we present a parser that produces 
complex feature structures, as known from e.g. 
GPSG(Gazdar et al., 1985). This parser requires 
only minor hand labeling, and learns the parsing 
task itself. It generalizes well, and is robust to- 
wards spontaneous effects and speech recognition 
errors. 

The parser is trained and evaluated with the 
Spontaneous Scheduling Task, which is a nego- 
tiation situation, in which two subjects have to 
decide on time and place for a meeting. The sub- 
jects' calendars have conflicts, so that a few sug- 
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gestions have to go back and tbrth before finding 
a t ime slot suitable for both. The data  sets are 
real-world data,  containing spontaneous speech ef- 
fects. 3?he training set consists of 560 sentences, 
the deveJopment test set of 65 sentences, and 
the unseen evaluation set of 120 sentences. For 
clarity, tile examl)le sentences in this paper  are 
among the simpler in the training set. The parser 
is trained with transcribed data  only, but eval- 
uated with transcribed and speech data  (includ- 
ing speech recognition errors). The parser pro- 
duces feature structures, holding semantic infor- 
mation. Feature structures are used as interlingua 
in the JANUS speech-to-speech translation sys- 
tem(Woszczyna el; al., 1994). Within our research 
team, the design of the interlingua ILT was deter- 
mined by the needs of uniticatkm based parser and 
generator writers. Consequently, the ILT design 
was ,lot tuned towards connectkmist systeins. On 
the contrary, our parser must learn the form of tile 
output  provided by a unitication based parser. 

This paper  is organized as follows: First, a short 
tutorial on feature structures, and how to build 
them. Second, we describe the parser architec~ 
ture and how it works. Third, we describe the 
lexicon. Fourth, we describe the tmrser's neural 
aspects. Fifth, a search algorithm is motivated. 
Then results and conclusion follow. 

2 F e a t u r e  S t r u c t u r e s  

Feature s t ructures(Gazdar  et al., 1985; Pollard 
and Sag, 1987) are used as output  fbrmalism for 
l,basPar. Their core. syntactic properties and ter- 
minology are: 

1. A feature structure is a set of none, one or 
several feature pairs. 

2. A featurepair, e.g. (frame * c l a r i f y ) ,  con- 
sists of a feature, e.g. f r ame  or t o p i c ,  and a 
feature value. 

3. A feature value is either: 

(a) an atomic value, e.g. * c l a r i f y  

(b) a complex value 

4. A complex value is a feature structure. 

3 T h e  C h u n k ' n ' L a b e l  P r i n c i p l e  

In contrast  to tim standard feature structure deti- 
nition of Section 2, an alternative view-point is to 
look at a feature structure as a tree 1, where sets 

tThis assumes that structure sharing is not possi- 
ble, see Section 3.1.2. 

((speech-a-6-t *confirm) 
(sentence-type *state) 
(frame *clarify) 
(topic ((frame *simple-time) 

(day-of-week monday))) 
(adverb perhaps) 
(clarified ((frame *simple-time) 

(day-of-week monday) 
__ (day 27)))) 

Figure 1: Feature structure with the meaning "by 
monday i assume you mean monday the twenty sev- 
enth" 

of feature pairs with atomic wdues make up tile 
braimhes, and the ln'anches are connected with 
relations. Atomic feature pairs belonging to the 
same branches, have the same relation to all other 
branches. Further, when comparing the sentence 
with its feature structure, it appears  tha t  there 
is a correspondence between fl 'agments of the fea- 
ture structure, and specific ctmnks of the sentence. 
In the example feature structure of Figure 1, the 
following observations about  feature pairs and re- 
lations apply: 

• feature pairs: 

[ f e a t u r e  pa i r s :  c o r r e s p o n d s  to:  

~-( ( f  rame * s i m p l e - t i m e )  
[ ( d a y - o f - w e e k  monday) "monday the 
L_ (day 27)) twenty seventh" 

"the twenty seventh" 

• r e l a t i o n s :  tile coinplex value of the tbature 
topic corresponds to the chunk "by mon- 
day", and tile complex value of the feature 
c l a r i f i e d  corresponds to "you mean monday 
the twenty seventh". 

Manually aligniug the sentence with fragments 
of the feature structure, gives a s tructure as shown 
in Figure 2. A few coinments apply to this figure: 

• The sentence is hierarchically split into 
chunks. 

• Feature pairs are listed with their correspond- 
ing chunk. 

• Relations are shown in square brackets, and 
express how a chunk relates to its parent  
chunk. Relations may contain more than one 
element. This allows several nesting levels. 

Once having obtained the information in Fig- 
ure 2, producing a feature structure is straight 
forward, using the algorithm of Figure 3. Sum- 
ruing up, we can define this procedure as the 
chunk'n'label principle of parsing: 

189 



( [ ] ( ( s p e e c h - a c t  *confirm) 
(sentence-type *s ta te )  
(frame *clarify)) 

([] 
([topic]((frame *simple-time)) 

([] by) 
([]((day-of-week monday)) monday)) 

(C] ([] i)) 
( [ ] ( ( adve rb  perhaps))  

([] assume))) 
( [ c l a r i f i e d ]  

([] ([] you)) 
([] ([] mean)) 
([]((frame *simple-time)) 

([]((day-of-week monday)) monday) 
([] the) 
(,[]((day 27)) ([rego] twenty seventh))))) 

Figure 2: Chunk parse: Sentence aligned with its feature structure (see text for explanation). 

1. Split the incoming sentence into hierarchical 
chunks. 

2. Label each chuck with feature pairs and fea- 
ture relations. 

3. Convert this into a feature structure, using 
the algorithm of Figure 3. 

FUNCTION conver t ( )  
VAR 

S: s e t ;  
C: chunk; 

BEGIN 
S := empty s e t ;  
assign(S,top_level_chunk); 
return(S); 

END; 
PROCEDURE assign(VAR S: set; 

C: chunk); 
BEGIN 

P := chunk_relation(C); 
F0R each relation element PE in P 

BEGIN 
S' := empty set; 
include (PE,S') in S; 
S := S'; 

END; 
FOR each feature pair FP in C 

include FP in S; 
F0R each chunk C' in C 

assign(S,C); 
END; 

Figure 3: Algorithm for converting a parse to a 
feature structure 

3.1 Theoret ical  Limitat ions 

The chunk'n'label principle has a few theoretical 
limitations compared with the feature structure 

formalisms commonly used in unification-based 
parsing, e.g. (Gazdar et al., 1985). 

3.1.1 Dep th  

With the chunk'n'label principle, the feature 
structure has a maximum nesting depth. One 
could expect the maximal nesting depth to cause 
limitations. However, these limitations are only 
theoretical, because very deep nesting is hardly 
needed in practice for spoken language. Due to 
the ability to model relations of more than length 
1, no nesting depth problems occurred while mod- 
eling over 600 sentences from the English Sponta- 
neous Scheduling Task (ESST). 

3.1.2 S t ruc tu re  Shar ing 

Many unification formalisms allow feature val- 
ues to be shared. The chunk'n'label principle does 
not incorporate any mechanism for this. However, 
all work with ESST and ILT empirically showed 
that there is no need for structure sharing. This 
observation suggests that for semantic analysls, 
structure sharing is statistically insignificant, even 
if its existence is theoretically present. 

4 B a s e l i n e  P a r s e r  

The chunk'n'label principle is the basis for the 
design and implementation of the FeasPar parser. 
FeasPar uses neural networks to learn to produce 
chunk parses. It has two modes: learn mode 
and run mode. In learn mode, manually mod- 
eled chunk parses are split into several separate 
training sets; one per neural network. Then, the 
networks are trained independently of each other, 
allowing for parallel training on several CPU's. In 
run mode, the input sentence is processed through 
all networks, giving a chunk parse, which is passed 
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(((speech-act  *s ta te -cons t ra in t )  
( sen tence - type  *state)) 
(((frame *booked)) 

(((frame : * i ) )  
( i)) 

(( h~ve)) 
(((frame =*meet ing) )  

(((specifier indefinite)) a) 
( meeting)) 

(((frame *simple-t ime) 
( . . / f r ame  *interval) 
( . . / incl-excl inclusive)) 
( till) 
(((hour =12))  ([regc] twelve))))) 

((speech-act *state-constraint) 
(sentence-type *state) 
(frame *booked) 
(who ((frame *i))) 
(what ((frame *meeting) 

(specifier indefinite))) 
(when ((incl-excl inclusive) 

(frame *interval) 
(end ((frame *simple-time) 

(hour 12)))))) 

Figure 6: Feature structure parse 

Figure 4: Chunked and labeled sentence (labels 
shown in bo ld face )  

([/((speech-act *state-constraint) 
(sentence-type *state)) 
(~((frame *booked)) 

([who] ((frame ----*i)) 
(8 i)) 

([I(8 ha~e)) 
([what](( frame ----*meeting)) 

([]((specifier indefinite)) a) 
([] meeting)) 

([when/end]((frame *simple-time) 
(../frame *interwd) 
(../incl-excl inclusive)) 
(fl till) 
(fl((hour =12)) ([regc] twelve))))) 

Figure 5: Chunk parse (chunk relations shown in 
bo ld face )  

on to the converting algorithm shown in Figure 3. 
In the following, tile three main modules re- 

quired to produce a chunk parse are described: 
The Chunker splits an input sentence into 

chunks. It consists of three neural networks. The 
first network finds numbers. They are classified as 
being ordinal or cardinal numbers, and are pre- 
sented as words to the following networks. The 
next network groups words together to phrases. 
The third network groups phrases together into 
clauses. In total, there are four levels of chunks: 
word/numbers,  phrases, clauses and sentence. 

The Linguistic Feature Labeler attaches features 
and atomic feature values (if applicable) to these 
chunks. For each feature, there is a network, 
which finds one or zero atomic values. Since there 
are many features, each chunk may get no, one or 
several pairs of features and atomic values. Since 
a feature normally only occurs at a certain ctmnk 
level, the network is tailored to decide on a par- 
ticular feature at a particular chunk level. This 
specialization is there to prevent the learning task 

from becoming too complex. A special atomic fea- 
ture value is called lexical feature value. It is in- 
dicated by '= '  and means that  the neural network 
only detects the occurrence of a value, whereas the 
value itself is found by a lexicon lookup. The lex- 
ical feature values are a true hybrid mechanism, 
where symbolic knowledge is included when the 
neural network signals so. Furthermore, features 
may be marked as up-features ( e . g . . . / i n c l - e x c l  
in Figure 4 and 5). An up-feature is propagated 
up to its parent branch when building the feature 
structure (see Figure 6). 

The Chunk Relation Finder determines how a 
chunk relates to its parent chunk. It has one net- 
work per chunk level and chunk relation element. 

The following example illustrates in detail how 
the three parts work. ]~br clarity, this example 
assumes that  all networks perform perfectly. The 
parser gets the English sentence: 

"i have a meeting till twelve" 
The Chunker segments the sentence before pass- 

ing it to the Linguistic Feature Labeler, which 
adds semantic labels (see Figure 4). The Chunk 
Relation Finder then adds relations, where appro- 
priate, and we get the chunk parse as shown in 
Figure 5. Finally, processing it by the algorithm 
in Figure 3, gives the final parse, the feature struc- 
ture, as shown in Figure 6. 

4.1 L e x i c o n  

FeasPar uses a full word form lexicon. The lexicon 
consists of three parts: one, a syntactic and se- 
mantic microfeature vector per word, second, lex- 
ical feature values, and three, statistical microfea- 
tures. 

Syntactic and semantic microfeatures are repre- 
sented for each word as a vector of binary vahles. 
These vectors are used as input to the neural net- 
works. As the neural networks learn their tasks 
based on the microfeatures, and not based on dis- 
tinct words, adding new words using the same mi- 
crofeatures is easy and does not degrade general- 
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ization performance. The number and selection of 
microfeatures are domain dependent and must be 
made manually. For ESST, the lexicon contains 
domain independent syntactic and domain depen- 
dent semantic microfcatures. To manually model 
a 600 word ESST vocabulary requires 3 lull days. 

Lexical feature values are stored in look-up 
tables, which are accessed when the Linguistic 
Feature Labeler indicates a lexical feature value. 
These tables are generated automatically from the 
training data, and can easily be extended by hand 
for more generality and new words. An auto- 
matie ambiguity checker warns if similar words or 
phrases map to ambiguous lexical feature values. 

Statistical microfeatures are represented for 
each word as a vector of continuous values Vstat. 
These microfeatures, each of them representing a 
feature pair, are extracted automatically. For ev- 
ery feature value at a certain chunk level, if there 
exists a word such that,  given this word in the 
training data, the feature value occurs in more 
than 50 % of tim cases. One continuous microfea- 
ture value v~t,t for a word w is set automatically 
to the percentage of feature value occurrence given 
that  word w. 

4 . 2  N e u r a l  A r c h i t e c t u r e  a n d  T r a i n i n g  

All neural networks have one hidden layer, and are 
conventional feed-forward networks. The learn- 
ing is done with standard back-propagation, com~ 
bined with the constructive learning algorithm 
PCL(Jain,  1991), where learning starts using a 
small context, which is increased later in the learn- 
ing process. This causes local dependencies to be 
learned first. 

Generalization performance is increased by 
sparse connectivity. This connection principle is 
based on the microfeatures in the lexicon that  are 
relevant to a particular network. The Chunker 
networks are only connected to the syntactic mi- 
crofeatures, because chunking is a syntactic task. 
With ESST, the Linguistic Feature Labeler and 
Chunk Relation Finder networks are connected 
only to the semantic microfeatures, and to rel- 
evant statistical microfeatures. All connectivity 
setup is automatic. Further techniques for im- 
proving performance are described in (Buo, 1996). 
For the neural networks, the average test set per- 
formance is 95.4 % 

5 S e a r c h  

The complete parse depends on many neural net- 
works. Most networks have a certain error rate; 
only a few networks are perfect. When building 
complete feature structures, these network errors 

multiply up, resulting in not only that  many fea- 
ture structures are erroneous, but also inconsis- 
tent and making no sense. 

To compensate for this, we wrote a search al- 
gorithm. It's based on two information sources: 
First, scores that originates from the network out- 
put activations; second, a formal feature struc- 
ture specification, stating what mixture of feature 
pairs are consistent. This specification was al- 
ready available as an interlingua specification doc- 
ument. 

Using these two information sources, the search 
finds the feature structure with the highest score, 
under the constraint of being consistent. The 
search is described in more detail in (Bu0 and 
Waibel, 1996; Bu0, 1996). 

6 R e s u l t s  

FeasPar GLR* Parser 
PM1 - T 71.8 % 51.6 % 
PM1 - S 52.3 % 30.3 % 
P M 2 E -  T 74 % 63 % 
P M 2 E -  S 49 % 28 % 
PM3G - T 49 % 42 % 
PM2G - S 36 % 17 % 

Figure 7: Results 

FeasPar is compared with a handmodeled LR- 
parser. The handmodeling effort for FeasPar is 2 
weeks. The handmodeling effort tbr the LR-parser 
was 4 months. 

The evaluation environment is the JANUS 
speech translation system for the Spontaneous 
Scheduling Task. The system have one parser and 
one generator per language. All parsers and gen- 
erators are written using CMU's G LR/G LR*  sys- 
tem(Lavie and Tomita, 1993). They all share the 
same interlingua, ILT, which is a special case of 
LFG or feature structures. 

All Performance measures are run with tran- 
scribed (T) sentences and with speech (S) sen- 
tences containing speech recognition errors. Per- 
formance measure 1 is the feature accuracy, where 
all features of a parser-nmde feature structure are 
compared with feature of the correct handmodeled 
feature structure. Performance measure 2 is the 
end-to-end translation ratio for acceptable non- 
trivial sentences achieved when LR-generators are 
used as back-ends of the parsers. Performance 
measure 2 uses an English LR-generator (hand- 
modeled for 2 years), providing results for English- 
to-English translation, whereas performance mea- 
sure 3 uses a German LR-generator (handmodeled 
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for 6 months), hence providing results for English- 
to-German translations. Results for an unseen, 
independent evaluation set are shown in Figure 7. 

As we see, FeasPar is better than the LR-parser 
in all six comparison perforInance measures made. 

7 C o n c l u s i o n  

We described and experimentally evaluated a sys- 
tem, FeasPar, that learns parsing spontaneous 
speech. To train and run FeasPar (Feature Struc- 
ture Parser), only limited handmodeled knowl- 
edge is required (chunk parses and a lexicon). 

l~5;asPar is based on a principle of chunks, their 
features and relations. The FeasPar architecture 
consists of two n'tajor parts: A neural network col- 
lection and a search. The neural networks first 
spilt the incoming sentence into chunks. Then 
each chunk is labeled with feature values and 
chunk relations. Finally, the search uses a formal 
feature structure specification as constraint, and 
outputs the most probable and consistent feature 
structure. 

FeasPar was trained, tested and evaluated with 
the Spontaneous Scheduling Task, and compared 
with a handmodeled LR-parser. FeasPar per- 
tbrmed better than the LR-parser in all six com- 
parison performance measures that were made. 
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