A New Method of N-gram Statistics for

Large Number of n

and Automatic Extraction of Words and Phrases

from Large Text Data of Japanese

Malkoto Nagao, Shinsuke Mori
Sy 2, . .
Department ol Flectrical lngineering

Kyoto University

Abstract

In the process of establishing the information the-
ory, C. . Shannon proposed the Markov process as
a good model to characterize a natural language.
The core of this idea is to calenlate the [(requen-
cles of strings composed of n characters (n-grams),
but this statistical analysis of large text data and

for a large n has never been carried oul because of

the memory limitation of computer and the short-
age of text data. Taking advantage ol the recent
powerful computers we developed a new algorithm
of n-grams of large text data for arbitrary large 2
and calculated successlully, within relatively short
time, n-grams of some Japanese text data con-
taining between two and thirty million characters,
From this experiment it became clear that the au-
tomatic extraction or determination ol words, com-
pound words and collocations is possible by mutu-
ally comparing n-gram statistics [or diflerent values
of n.

category: topical paper, quantitative lingnistics,
large text corpora, text processing

1 Introduction

Claude F.. Shannon established the information the-
ory in 1948 [1]. Mis theory included the concept
that a langnage could be approximated by an n-
th order Markov model by n to be extended to
infinity. Since his proposal there were many tri-
als to calculate n-grams (statistics of »n character
strings of a language) lor a big text data of a lan-
guage. However computers up to the present conld
not calculate them for a large n because the caleu-
lation required huge amount of memory space and
time. For example the [requency calculation of 10-
grams of English requires at least 261 = 105 ~ 108
giga word memory space. Therefore the calenlation
was done at most for n == 4 ~ § with modest text

quantity.

We developed a new method of calculating n-
egrams for large n’s. We do not prepare a table
for an n-gram. Our methods consists of two stages.
The first stage performs the sorting of substrings of
a text and finds out the length of the prefix parts
which are the same for the adjacent substrings in
the sorted table. The second stage is the calculation
of an n-gram when it is asked for a specific n. Only
the existing n character combinations require the
table entries for the frequency count, so that we
need not reserve a big space for n-gram table. The
program we have developed requires 70 bytes for an
! character text of two byte code such as Japanese
and Chinese texts and 61 bytes for an [character
text ol Inglish and other Buropean languages. By
the present program n can be extended up to 255,
The program can be changed very casily for larger
n i it s required.

We performed n-gram [requency calculations for
three different text data. We were not so much in-
terested in the entropy value of a language hut were
interested in the extraction of varieties of language
properties, such as words, compound words, col-
locations and so on. The calculation of frequency
of occurrences of character strings is particularly
important to determine what is o word in such
languages as Japancse and Chinese where there is
no spaces between words and the determination of
word boundaries is not so casy. In this paper we
will explain some of our results on these problems.

for an
of n

2 Calculation of n-grams
arbitrary large number

Howas very difficult to calenlate n-grams for a large
number of n because of the memory limitation of
a computer. or example, Japanese language has
mote than 4000 different characters and if we want

611

to have 10-gram frequencies of a Japanese Lext,
we must reserve 400010 entries, which exceed 1095,
Thercfore only 3 or 4-prams were calculated so [ar,

A new method we developed can calculate n-
grams for an arbitrary large number of n with a
reasonable memory size in a reasonable calculation
time. It consists of two stages. The first stage is to
get a table of alphabetically sorted substrings of a
text string and to get the value of coincidence num-
ber of prefix characters of adjacently sorted strings,
The second stage is to calculate the frequency of n-
grams for all the existing n character strings from
the sorted strings for a specific number of 7.

2.1 First stage-

(1) When a text is given it is stored in a computer as
one long character string. It may include sentence
boundaries, paragraph boundaries and so on if they
are regarded as components of text. When a text is
composed of [characters it occupies 20 byte memory
because a Japanese character is encoded by 16 bit
code. We prepare another table of the same size (1),
cach entry of which keeps the pointer to a substring
of the text string. This is illustrated in Figure 1.

text string (Icharacters : 2lbytes)

polntar LT T 1 TTTT]
. lnrene the i«th word --- ‘l
1
i

L1 “—J

4byles

PFigure 1: Text string and the pointer table to sub-
strings.

A substring pointed by -1 is defined as composed
of the characters from the i-th position to the end of
the text string (see Figure 1). We call this substring
a word. ‘The first word is the text string itself, and
the second word is the string which starts from the
second character and ends at the final character of
the text string. Similarly the last word is the final
character of the text string.

As the text size is [characters a pointer must
have at least p bits where 27 > L. In our program

612

we sel p = 32 bits so that we can accept the text
size up to 22 ~ 4 giga characters. The pointer
table represents a set of [words,

We apply the dictionary sorting operation to this

set of { words. It is performed by utilizing the point-
ers in the pointer table. We used comb sort[2] which
is an improved version of bubble sort. The sorting
time is the order of O(llog!). When the sorting is
completed the result is the change of pointer posi-
tions in the pointer table, and there is no replace-
ment of actual words. As we are interested in n-
grams of n less than 255, actual sorting of words is
performed for the leltmost 255 or less characters of
words.
(2) Next we compare two adjacent words in the
pointer table, and count the length of the prefix
parts which are the same in the two words. For ex-
ample when “extension to the left side ...” and “ex-
tension to the right side ... are two words placed
adjacent; the number is 17. This is stored in the
table of coincidence number of prefix characters.
This is shown in Pigure 2. As we are interested in
1 < n < 255, one hyte is given to an entry of this
table. The total memory space required to this first
stage operation is 204-4/4-1 = 71 bytes. For example
when a text size is 10 mega Japanese characters, 70
mega byte memory must be reserved. This is not
difficult by the present-day computers.

table of coincidence
number of characlers

text string ([characters : 2/bytes)
pointar

tabls COOTT [1 [1T1[]

: : -+ tha I-th :

ord -

—
B

—]
|

—]

4bytes

L

ibyte

Figure 2: Sorted pointer table and table of coinci-
dence nunmber of characters

We developed (wo software versions, one by using
main memory alone, and the other by using a disc
memory where the software has the additional op-
erations of disc merge sort. By the disc version we
can handle a text of more than 100 mega charactor
Japanese text. The software was implemented on a

SUN SPARC Station.

2.2 Second stage

The second stage is the calculation of n-gram fre-
quency table. This is done by using the pointer
table and the table of coincidence number of prefix
characters. Let us fix n to a certain number. We
first read out the first n characters of the first word
in the pointer table, and sce the number in the table
of coincidence number of prefix characters. Il this
is equal to or larger than n it means that the second
word has at least the same n prefix characters with
the first word. Then we see the next entry of the
coincidence number of prefix characters and check
whether it is equal to or larger than » or not. We
continue this operation until we meet the condition
that the number is smaller than n. The number of
words checked up to this is the frequency of the n
prefix characters of the first word. At this stage the
first n prefix characters of the next word is diflerent,
and so the same operation as the first n characters
is performed from here, that is, to check the num-
ber in the coincidence number of prefix characters
to see whether it is equal to or larger than n or
not, and so on. In this way we get the frequency
of the second 7 prefix characters. We perform ihis
process until the last entry of the table. These op-
crations give the n-gram table of the given text. We
do not nced any extra memory space in this opera-
tion when we print out every n-gram string and its
frequency when they are obtained.

We caleulated n-grams for some different
Japanese texts which were available in clectronic
form in our laboratory. These were the followings.

1. Encyclopedic Dictionary of Computer Science

(3.7 M bytes)

2. Journalistic essays from Asahi Newspaper (8
M bytes)

3. Miscellancous texts available in onr laboratory
(59 M bytes)

The first two texts were not large and could be
managed in the main memory. The third one was
processed by using a disc memory by applying a
merge sort program three times. The first two
texts were processed within one and two hours by
a standard SUN SPARC Station for the first stage
mentioned above. The third text required about
twenty four hours. Calculation of n-gram frequency
(the second stage) took less than an hour including
print-out,

3 Extraction of useful linguistic
information from n-gram fre-
quency data

3.1 Entropy

Fverybody is interested in the entropy value of a
language. Shannon’s theory says that the entropy
is calculated by the formula [3]

(L) =Y P(w)log P(w)

where ’(w) is the probability of occurrence of w,
and the summation is for all the different strings
w of n characters appearing in a language. The
entropy of a language L is

(L) = lim IT,(1)

=0

We caleulated 1, (L) for the texts mentioned in
Section 2 for n = 1,2,3,... The results is shown
in IYigure 3. Unlike our initial expectation that the
entropy will converge to a certain constant value be-
tween 0.6 and 1.3 which C. E. Shannon estimated
for English, it continned to decrease to zero. We
checked in detail whether our method had some-
thing wrong, but there was nothing doubtful. Qur
conclusion for this strange phenomenon was that
the text quantity of a few mega characters were
too small to get a meaningful statistics for a large
7 because we have more than 4000 different chas-
acters in the Japanese language. For English and
many other Iuropean languages which have alpha-
betic sets of less than fifty characters the situation
may be better. But still the text quantity of a fow
giga byles or more will be necessary to get a mean-
ingful entropy value for n = 10 or morae.

i,

|]

n

Iigure 3: Iintropy curve by n-gram

613

3.2 Obtaining the longest compound
word

From the n-gram frequency table we can get many
interesting information. When we have a string w
(length n) of high frequency as shown in Figure 4,
we can try to find out the longest string w’ which
includes w by the following process by using the
n-gram frequency table.

_. W’ frequenc
1 | k
1
{

i —
X w P

y | i

I 1 H

} ;

| =

Figure 4: Obtaining the longest word w' from a

high frequency word fragment w

(1) extension to the left: We cut off the last char-
acter of w and add a character @ to the lelt
of w. We call this a cut-and-pasted word.
We look for the character 2 which will give
the maximum frequency to the cut-and-pasted
word. Repeat the same operation step by step
to the left and draw a frequency curve for these
words. This operation will be stopped when
the frequency curve drops to a certain value,
This process is performed by seeing the n-graunm
frequency table alone.

(2) extension to the right: ‘The same operation as

(1) is performed by cutting the leflt character

and adding a character to the right.

(3) extraction of high frequency part: TFrom the

frequency curve as shown in Figure 4 we can

easily extract a high frequency part as the
longest string. An example is shown in [Pig-

ure 5

The strings extracted in this way are very of-
ten compound words of postpositions in Japanese.
Postpositional phrases are usually composed of one
to three words, and are used as if they are com-
pound postpositions. Some extracted examples are,

614

partial strings frequencies

WwibHL 101
THTE 1689
LU e 1310
CrEHpT 784
LRTE 784

WCED 770

TEL X 147

Figure 6: Frequencies ol partial strings and obtain-
ing the longest word ” 5 C &M C& 57

LA hE R LA
L CERFIB TR
LIRS TR TERD
RO L T EMBTED

(must do ...)

(it is known that ...)
(can do ...)

{can ask ...)

3.3 Word extraction

After getting high [requency character strings by
the above method we can make consultations with
dictionaries for these strings. Then we find out
many strings which are not included in the dictio-
naries.

Some are phrases(collocations, idiomatic exproes-
sions), some others are terminology words, and un-
known (new) words. From the text data of Encyclo-
pedic Dictionary of Computer Science we extracted
many terminological words. In general the frequen-
cies of n-grams become smaller as n hecomes larger.
But we had sometimes relatively high {requency
values in n-grams of large n’s. These were very ol-
ten terminological words or terminological phrases,
We extracted such Lterminological phrases as,

o ()TN TS T A
(programs written by (...) language)
o AZURRIC 2V BINTR IR
(problem solving in artificial intelligence)
o N UHAT L) KU
{(page replacement algorithm)

B i NS ST ST REMT
(partial correctness of programs)

3.4 Compound word

We can get more interesting information when
we compare data of different n’s. When we have a
character string (length) of high frequency, which
we may be able to define as a word (w), we arc
recommended to check whether two substrings (w,
and wy) of the length ny and ng (ny 4 1y = 0) as

Table 1
Compound word

Determination of compound word
proper segmentation l

improper segmentation

AT (280) = ACfH (1545) « AT (1540) | FORELE (280), FERiERT (280), Kide (280)
fismaLl (166) = M: (2058) « LF (2698) THMUL(I_()G),}MLLL'IE(I(JO), AL (166)
TR (188) = MR (242) « [l (1350) | ULRE (188), fillnli (188), Kol (188)
():frequency in Encyclopedic Dictionary of Computer Science
bt s e £
- Y W
-4——-"1——»4—-"2———;—> “——‘ ‘___-—}

Figure 6: Possible segmentation of a word into two
components

shown in Figure 6 have high frequency appearance
in ny-gram and ng-gram tables. If we can find out
such a situation by changing nq (and ny) we can
conclude that the original character string w is a
compound word of wy and wy. Some examples are
shown in Table 1.

3.5 Collocation

We can sec whether a particular word w has strong
collocational relations with some other words from
the n-gram frequency results. We can get an n-
gram table where n is sufliciently large, w is the
prefix of these n-grams, and some words (w', w”,

.) may appear in relatively high frequency. T’ lns
is shown in Iigure 7. We can find out easily that
w — w' and w — w" are two allocational expres-
sions from this figure. For example we lmvo I'3e
| (effect) and find out that [JEMEESVT5 | (re-
ceive effect) and [HB4E 452 5) (give c(lect) have
relatively high {requencies and there are no other
significant combinations in the n-gram table with
(33| as the prefix. FAEBZ) (in and out hos-
pital) have almost all the time #8083 (re-
peat) as the following phrase, and so we will he able
to judge that [A% &b K] ig an idiomatic
expression, i

4 Conclusions

We developed a new method and soltware {or n-

gram [requency calenlation for n up to 255, and

calculated n-grams for some large text data of

Japanese. Irom these data we could derive words,
compound words and collocations automatically.

Figure 7:
and w - w

Iinding collocational word pairs w — w'
1

We think that this method is equally useful for lan-
guages like Chinese where there is no word spaces
in a sentence, and for Puropean languages as well,
and also for speech phoneme sequences Lo get more
detailed TMM models,

Another possibility is that when we get a large
text data wilh part-speech tags, we can extract high
frequency part-ol-speech sequences by this n-gram
calculation over the part-of-speech data. These
may be regarded as grammar rules of the primary
level. By replacing these part-of-speech sequences
hy single non-terminal symbols we can calenlate
new n-grams, and will be able to get higher level
grammar rules. These examples indicate that larpe
text data with varietios of annotations are very im-
portant and valuable for the extraction of lNuguistic
information by calenlating n-grams for larger value
ol n.

References

[1] C. E. Shannon: A mathematical theory of
communication, Bell System Tech.., Vol.27,
pp.379-423, pp.623-656, (1918).

[2] Stephen Lacey, Richard Box:
November, pp.305-312, (1991).

Nikkei BY1'T,

[3] N. Abramson: Information theory and cod-
ing, McGraw ill, (1963).

