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ABSTRACT 

This paper presents a framework and a system for 
implementing, comparing and analyzing parsers 
for some classes of Constraint-Based Grammars. 
The framework consists in a uniform theoretic 
description of parsing algorithms, and provides 
the structure for decomposing the system into 
logical components, with possibly several inter- 
changeable implementations. Many parsing al- 
gorithms can be obtained by compositi(m of the 
modules of our system. Modularity is also ,~ way 
of  achieving code sharing for the common parts 
of these various algorithms. Furthermore, tile de- 
sign lielpi~ reusing the existing modules when im- 
plementing other  algorithms. The system uses 
the flexible modularity provided by the program- 
mifig languages hleool-90, 1)ased on a type system 
that ensures the safety of module composition. 

1 INTRODUCTION 

We designed a system to study parsing. Our aim 
was not to implement only one parsing algorithm, 
but as many as possible, in such a way that we 
could compare their performances. We wanted to 
study parsers' behavior rather than using them to 
exploit their parses. Furthermore, we wanted a 
system opened to new developments, impossibh~ 
to predict at the time we began our project. 

We achieved these aims by detining a mo(lular 
architecture that gives us in addition code sharing 
between alternative implementations. 

Onr system, called APOC-II, implements more 
than 60 ditferent parsing algorithms for Context- 
Free Grammars, Tree-Adjoining Grammars, and 
Definite-Clause Grammars. The different gener- 
ated parsers are comparable, because they are im- 
plemented in the same way, with common data 
structures. Experimental comparison can involve 
more than 20 parsers for a given grammar and 
give results independent from the implementa- 
tion. 

Fnrthermore, adding new modules multiplies 
the mHnber of parsing Mgorithm. APOC-II is 
open to new parsing techniques to such an ex- 

tent that it can be seen as a library of tools for 
parsing, including constraint solvers, look-ahead, 
parsing strategies and control strategies. These 
tools make prototyping of parshlg algorithms eas- 
ier an(l qui(:ker. 

The system is I)ase(1 on a general framework 
that divides parsing matters in three different 
tasks. First, tl,e compili~tion that translates a 
grammar into a push-down automaton (tescrib- 
ing how a parse-tree is built. The automaton can 
be non-determinlstic if several trees have to be 
eonsidere(l when parsing a string. Second, the 
interl)retation of the push-down ~mtomaton that 
has to deal with non-determinism. Third, the 
constraint solving, used by 1)oth eomi)ilation and 
interpretation to perform operations related to 
constraints. 

Several algorithms can perform each of these 
three tasks: the compiler can generate either top- 
down or bottom-up automata, the interl)reter can 
make use of backtracldng or of tal)ulation and 
the solver has to deal with different kinds of con- 
straints (first-order terms, features, . . .  ). 

Our architecture allows different combinations 
of three components (one for each basic task) re- 
sulting into a specific parsing system. We use the 
Alcoo[-90 progranmfing language to implement 
our mo(hlles. This language's type system allows 
the definition of alternative implementations of 
a con lponen t  and enmlres the safety of module 
cond)ination, i.e. each module provides what is 
neede(1 by other mo(lules and re(:eives what it re- 
quires. 

The same kind of modularity is used to split the 
main components (conll)iler, interpreter, solver) 
into independent snb-modnles. Some of these 
sub-modules can bc shared by several different 
implementations. For instance the coml)utation 
of look-ahead is the same for LL(k) and LR(k) 
techniques. 

The next section defines the class of grammar 
we consider. Then, ~t general framework for pars- 
ing and the sort of modularity it requires are pre- 
sented. Section 4 is devoted to the AIcool-90 lan- 
guage that provides a convenient module system. 
Section 5 is the detailed description of tile APOC- 
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II system that implements the gonoral ff~tmework 
using Alcool-90. 

2 CONSTII.AINT- B ASED C~RAMMARS 

The notion of Constraint-Based Gramm~tr aii- 
ile~tred ill computat ional  linglfistic. It is rt useful 
allstraction of several classes of grammars,  inelud- 
h l g  the most commonly used to describe NatuntI  
Language in view of COmlmter processing. 

Wo give our own definition of constraint-lmsed 
grammars  tha t  may slightly differ from other def- 
initions. 

D e f i n i t i o n  1 ConstTnint-11ased Grammar 
A constraint-based grammar is a 7-tuple 
{ N t ,  T ,  (~, V, Am, C L, R }  where 

• N t  is a set of  symbols called non-terminals  

• 7' is a set of  symbols called terminals 

• a is a f lmet ion  f rom N t  O 7' to the natm'al 
integers called the arity of the symbol,s 

• V is an infinite set of variables 

• Aa: is an element of N t  called the a:dom 

• C L  is a constraint language (see definition be- 
loin) having V as variable set and being closed 
it~'tder renaming a~td conjunction 

• R is a f inite set of  rules of  the form: 

- ,  ( 2 ' , )  . . . .  , <2;,) 
such that so E N t ,  sl ~ N t  U 7' for  0 < i _<. n, 

c e C L ,  X i  are tuples of  ( t(sl)  distinct va,'i- 
ables, and the same wwiabIe cannot appear in 
two different tupIes. 

in this definitio,t, we use the notion (if con- 
s t r a i n t  language to define the syntax and the se- 
mantics of the constraints  usod 1)y the grammars.  
Wo refer to the definition given Iiy H/Sfcld and 
Smollm in [ITS88]. This detinition is especially 
suitable for constraints  used in NLP (unrestricted 
synt*tx, multiplicity (if interpretat ion donmins). 
The closure under renaming property has ~tlso 
1lees detined by IISfeld and Snlolka. It ensures 
tlt~tt constraints  are independent  from the vari- 
able names. This grmtnds the systematic renam- 
ing of g rammar  rules to avoid wtriallle conflicts. 

D e f i n i t i o n  2 Constrnint  Language 
A constraint Language is a 4-tuple (V ,C ,u , I )  such 
that: 

• V is an infinite set of variables 

• C is a decidable set whose elements are called 
cons traints 

• u is fanct ion that associates a finite set of  
variables to eaeh constraint 

• I is a non-empty  set of  interpretations 

Ii'or bt<:k of Slm<:e we <lo not recall in detail what  
itll i n t e r p r e t & t i o l l  Jill(| the "<'losuro l l l ldel"  I'(!IlH.III ~ 

ing" pr<)perty are, and refer to [IIS88]. 

The semantics of Constra.int-Based Gnmmlars  
is defined by the .'-;(?lllalltics of the constra.int lan- 
guage ~tll(l l, ho notion of syntax tree. A synta.x 
trce is a tree which ]ms at grammttr  rule (remtmed 
with fi'esh v~triables) as latml of ea.ch nodo. A 
constraint  is associatted to at parse tree: it is the 
conjunction of all the constr~dnts of the labels and 
the oqualities between the tUllle of wtriables from 
the non-termilml ,if the loft-hand side of a label 
and the tlq)le of the relewmt symbol of tim right> 
hand side of tim l~dml of its p~trent. 

An hnpor tan t  lloint ~dmut p;trse trees is tlt*tt 
the ordor of terminal symbols of tll(~ ini)ut string 
and the order of the symhols in rig}lt-h;md sides 
of rules are signitica.nt. 

A Context-Free Gramma, r is obtained just  
by ,'omoving tutiles and constr~dnts fl'om tho 
grammar  rules. Most i)m'sing techniques for 
Constraint-Bas(~d Grainmars  use the underlyillg 
context-fro(! structure, to guido parsing. This al- 
lows the ,'euse of cont.ext-fl'ee lntrsing tccl,niques. 

T}Io  g~r;tllllll;H's w o  h l t v e  just definod OIICOIII- 

pass several c l a s s e s  {if i ; r&l l l l l l ; t r s  llSOd ill N ] , ]  ),  

including log;it p;l'amlttlal'S (Definite Clause Cram- 
mars and variants),  UIlifica~tion Cramlmtrs,  Tree 
Adjoining (h 'ammars  I and, at least p~trtially, 
i,exical-I;'unctioval C~l'~tlllllHli's ;ilia I/oral Phras(~ 
~.I'IIC~/.III'(~ (.*fl'~llllllllLl'S. ()1" ('OllI'S(~ 1 t,h(!r(~ ;tl'(~ s y n -  

t a c t i c a l  differ(mces 1)(~twe(m these (:lassos altd 
Constraint-Based (ll'amlmU'S. A simple t:ransla.- 
t . ion ['r()lll on(? syntax t,/) {.he ( ) th ( , r  is  n(~(:essary. 

3 A G ENF.RAI, ]?RAMEWOI{K FOIl. 

PARSING 

This section is devoted to it general fralnework 
for iiarsing ill which most of the i)arsing inethods, 
i n c h l d i n g ~  all the l n o s t  COtlllllOtl OliOS, ar(]  e x p r e s s -  

ible. It is ;in extension of ~ contoxt-freo framo- 
work [Lan74]. i t  is based on an explicit separation 
lletween tho parsing strategy tha t  descrilies how 

I T A G s  have an  u n d e r l y i n g  con tex t - f r ee  s t r u c t u r e ,  al- 
t h o u g h  this is not  ol)vi(ms in the i r  formM defini t ion.  See 
for instance [ I ,angl ] .  
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syntax trees are built  (e.g. top-<lown, bot tom- 
Ill)), and the control strategy tha t  <lcals with the 
non-determinism of the parsing (e.g. backtrack- 
ing, tabulat ion) .  

3 . 1  E P D A s  

This separat ion is based on an intermediate repre- 
sentat ion tha t  describes how a g rammar  is used 
following a given parsing strategy. This inter- 
mediate representat ion is a Push-Down Automa- 
ton. It is known tha t  most context-free parsers 
can be encoded with such a stack machine. Of 
course, the usual formalism has to be extended 
to take constraints  into account, and possibly use 
them to disambiguate  the parsing. We. call Ex- 
tended Push-Down Automaton  (EPDA) the ex- 
tended formalism. 

For lack of space, we do not give here the for- 
mal definition of EPDA. hfformally, it is a ma- 
chine using three da ta  structures:  a stack contain- 
ing at each level a stack symbol and its tuple of 
variables; a representat ion of the terminal  str ing 
tha t  distinguishes those tha t  have already been 
used and those tha t  are still to be read; finally 
a constraint .  A configuration of an au tomaton  
is a triple of these three data.  Transit ions are 
part ial  fimctions from configurations to configu- 
rations. We add some restrictions to these tran- 
sitions: the only clmnge allowed for the str ing 
is tha t  at  most  one more terminal  is read; only 
the top of the stack is accessible and at most one 
symbol can be added or removed from it at once. 
These restrictions are needed to employ directly 
the generic tabular  techniques for au tomata  exe- 
cution described in [BVdlC92]. EPDAs may be 
non-determinist ic,  i.e. several t ransi t ions are ap- 
plicable on a given configuration. 

Parsing for Constraint-Based Grammars  
blen(ls two tasks: 

• The s t ructural  part ,  tha t  consists in buihling 
the skeleton of parse trees. This l)art is similar 
to a context-free parsing with the underlying 
context-free projection of the grammar.  

• Solving the constraints  of this skeleton. 

The two tasks are related in the following way: 
constraints  appear  at  the nodes of the tree; the 
s t ructure  is not a valid syntax tree if the con- 
s traint  set is unsatisfiable. Each task can be per- 
formed in several ways: there are several context- 
free parsing methods (e.g. LL, LR) and con- 
s t raints  sets can be solved globally or incremen- 
tally, using various orders, and several ways of 
mixing the two tasks are valid. Tree construction 

involves a stack mechanism, and constraint  solv- 
ing results in a constraint .  The different parsing 
teelmiques can be described as computat ions  on 
these two da ta  structures.  EPDAs are thus able 
to enco<le various l)arsers for Constraint  C~ram- 
n l a r s .  

Automat ic  t ranslat ion of g rammars  into EP- 
DAs is possible using extensions of usual context- 
free teelmiques [Bar93]. 

3 . 2  ARCIII ' rECTUP=E 

Thanks  to the intermediate representat ion 
(EPDA),  parsing can be divi<led into two inde- 
pendent  passes: tile compilation that  translates 
a g r a n l n l a r  into an extended autonlaton;  tim exe- 
cution that  takes an EPDA and a string and pro- 
duees a forest of syntax trees. To achieve the in- 
dependence, the compihw is not allowed to make 
any assumptions about  the way the au toma ta  it 
produces will lie executed, and the interpreter  in 
charge of the execution is not allowed to make 
assumptions about  the au toma ta  it executes. 

We add to this scheme reused from context- 
free parsing a thir<l component:  the solver (in an 
extensive meaning) in charge of all the oi>erations 
related to constraints  and wu'iables. We will try 
to make it as in<lel)en<teilt from the other two 
modules (compiler and interpreter)  as possible. 

There is not a fidl in<lependenee, since both the 
compiler and the interpreter  involve constraints  
and related operations,  tha t  are: l)erfornmd by 
the solver. We just  want to define a (:lear inter- 
face between the solver and the other  modules, 
an interface independent  from the kind of the 
constraints  and from the solving algorithms be- 
ing used. rl'be same coml)iler (resp. interl)reter ) 
used with different solvers will work on ditl'erent 
classes of grammars.  For instance, the same com- 
piler can compih~ Unilh:ation Grammars  an<l Def- 
inite Clause Grammars ,  using two solvers, one 
implenmnting feature unilieation, the second one 
iml)lementing tirst-order unilieation. 

We can see a complete parsing system as the 
eoml)ination of three modules, compiler, inter- 
prefer, solver. When ea(:h module has several 
implementations,  we wouhl like to take any com- 
bination of three modules. This schematic ab- 
straction captures l)arsing algorithms we are in- 
terested in. However, actually defining interfaces 
for a practical system without  restricting open- 
endedness or the abstract ion (interehangeabili ty 
of components)  was the most difficult technical 
task of this work. 
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3 . 3  SOLVERS 

The main problem lies in the dclinition of the 
solver's interface. Some of the required ol)era- 
lions are ol)vious: renaming of constraints  and 
tul)les, constra int  lmilding, extract ion of the vari- 
al)les from a constraint ,  etc. 

By the way, remark that  constraint  solving can 
be hidden within the solver, and thus not ap- 
pear in the interface. There  is an equivalence 
relation between constraints  given by their inter- 
pretations.  This  relation can lie used to replace 
a constraint  by another  eqniwdent one, l)ossibly 
siml)ler. The solving call also be explicitly used to 
enR)ree the simplification of constraints  at some 
points of tile parsing. 

Unfor tunate ly  some special techniques require 
more specific operations on constraints.  For in- 
stance, a family of parsing strategies related to 
Earley's algori thm m~tke use of the restrictio~ op- 
erator defined by Shieber in [Shi85]. Another  ex- 
aml)le: some tabular  techni(lues take Benetit from 
a projectioil operator  tha t  restricts constraints  
with respect to a subset of their variat)les. 

We. could define the solver's inte.rface as the 
cartesian product  of all the operations used by 
;tt least one technique. There are two reasons to 
re}cot such an apI)roaeh. The first one is tha t  
some seldom used operations are ditli(:ult to de- 
line on some constraints  domains, i t  is the case, 
among others, of tile projection. The second rea- 
son is tha t  it woul([ restrict to the techniques aI: 
ready existing and known by us at the moment 
when we design tile interface. This contradicts 
the open-endedness requirement.  A new ollera- 
tion can appear,  useful for a new parsing method 
o r  for optimizing the old ones. 

We prefer a flexible detlnition of the interface. 
Instead of defining one single interface, we will al- 
low each al ternat ive iniF, lenlentation of the solver 
to define exactly what  it ol['ers and each iml)h~- 
nmntat ion of the compiler or of the interpreter  
to detine what  it demands. The conll)ination of 
modules will involve the checking that  the @r<'.r 
encompasses the demand, tha t  all tile needed op- 
erations are implemented. This imposes restric- 
tions on the combinat ion of niodules: it is the 
overhead to obtain an open-ended system, opened 
to new developments. 

We found it language providing the. kind of llex- 
il)le modulari ty we needed: Alcool--90. We now 
present this language. 

4 ' ] ' I IE LANGUAGE ALCOOL 9 0  

Alcool-90 is an experimental  extension of the 

functional language ML with run-t ime overload- 
ing [I{ou90]. Overloading is used as a tool for 
seamless integration of abs t rac t  da ta  types ill 
the ML type system, retaining strong typing, 
and type inference prollerties. Abst rac t  da ta  
types (encapsulating a da ta  s t ructure  represen- 
tat ion and its constructors  ~uld interpretive flmc- 
tiol,s) i)rovide wdues for overloaded symbols, as 
classes provide methods for messages ill object- 
o,'ientcd terminology, i{owever, strong typing 
means that  the compiler guarantees tha t  errors 
()f kind "method not found" never hal)pen. 

Abstract  programs axe programs referring to 
overloaded syml)ols, which vahles will be deter- 
nfined at run-time, consistently with the calling 
environment.  By grouping Mlstract l)rograms, 
we obtain parameterized abstra.ct da ta  types (or 
fllnctors), the calling environment  being here a~ 
particular instant ia t ion of the I)arameterized adt. 
Thus, we obtain Jut environment  equivalent to a 
module system, each module being an adt,  even- 
tually llarameterized. 

D)r instance, ill APOC-II, (:ompilers h~tve an 
abst ract  da ta  type parameterized by a solver. 

Alcool-90 also proposes an innow~tive environ- 
ment where we exploit anlbiguities due to over- 
loading for semi-automated 1)rogram configura- 
tion : the type iufin'elice eoullnltes interfaces of 
%llissing" COIllpollents to colnplete a progralll, ae- 
cording to the use of overloaded synlbols in the 
program. A search algo,'ithm finds components  
satisfying those interfaces, eventually by tind- 
ing suitable parameters  for parameterized compo- 
nents. Naturally, instantiatiot ,  of parameterized 
coml)onents is also type-safe : actual parameters  
must have interfaces matching formal parameters  
(schematically : the actual parameter  must pro- 
vide at least the functions required by the inter- 
face of the formal parameter) .  

For instance, only the solvers provi(lil,g 
Shieber 's restriction can })e used as the. aetlial pa.- 
ramcter  of Earley with restriction compiler. But  
these solvers can also be '.lse(l l)y a.ll the eoml)ilers 
that  do not use the restriction. 

Simple module systems have severe limita- 
tions when several implementat ions of compo- 
nents with simil~tr interfaces (:()exist in a system, 
or when some component  Inay be employed in dif- 
ferent contexts. Ada generics provided a first step 
to lnodule parameterizat ion,  th(mgh at the cost 
of heavy declar~tions a.nd difficulties with type 
equiwdence. SML pral)oses a very powerful mod- 
ule system with paranleterization,  but  lacks sepa- 
rate comllilation and still requires a large amount  
of user decl~u'ations to detine and use functors. 
Object-oriented languages lack the type security 
tha t  Alcoo[-90 guarantees. 
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The Alcool-90 approach benefits from the sim- 
plification ot modules as abs t rac t  da ta  types by 
adding inference facilities: the compiler is able to 
infer the interfaces of parameters  required by a 
module. Moreover, the instant ia t ion of a functor 
is simply seen as a type application, thus no ef- 
forts are required from the programmer,  while its 
consistency is checked by the compiler. 

This approacl, is mostly useful when multiple 
implementat ions with similar interfaces are avail- 
able, whether  they will coexist in the program or 
they will be used to generate several configura- 
tions. Components  may have similar interfaces 
but  different semantics, a l though they are inter- 
changeable. Choosing a configuration is simply 
choosing fl'om a set of solutions to missing emn- 
ponents,  computed by the compiler. 

Several other  features of Alcool-90 have not 
linen used in this experiment,  namely the inheri- 
tance operator  on abst ract  da ta  types, and an ex- 
tension of tile type system with dynamics (where 
some type checking occurs at run-time).  

5 A P O C - I I  

APOC-II is a system writ ten in Alcool-90, imple- 
menting numerous parsing techniques within the 
framework described in section 3. The user can 
choose between these techniques to buihl a parser. 
By adding new modules wri t ten in Alcool-90 to 
the library, new techniques can freely be added 
to the system. 

APOC-II has two levels of modularity:  the first 
one is tha t  of the three main components  distin- 
guished above, compiler, interpreter  and solver. 
Each of these components  is implemented by sev- 
eral a l ternat ive modules, tha t  are combinable us- 
ing Alcool-90 discipline. 

Tile second level of modulari ty consist in split- 
ring each of the three main components  i,lto sev- 
era.1 modules. This makes the sharing of common 
parts  of different hnplementat ions  possible. 

We give now examples of split t ing APOC-ql 
uses at the moment ,  in order to give an idea of 
this second level of modularity. This splitt ing has 
proved convenient so far, but it is not fixed and 
imposed to fllrther developments: ~t new imple- 
mentat ion can be added even if it uses a com- 
pletely different internal structure.  

A solver is made of: 

• a module for wtriables, variabh: generation 
and renaming, 

• a parser for constraints,  

• a pret ty-pr inter  for constraints,  

• a constraint  builder (creation of abs t ract  syn- 
tax trees for constraints,  e . g .  building con- 
straints expressing equality of variables), 

• a solver ill the restrictive meaning, in charge 
of constraint  reduction, 

• an interface tha t  encapsulate all the other 
modules. 

A compiler includes: 

• a g rammar  parser ( tha t  uses tile constrMnt 
parser given by the solver), 

• a module for look-ahead (for computat ion of 
look-ahead sets by static anMysis of the gram- 
I[lar ), 

• a module for EPDA representat ion and han- 
dling, 

• ~t transit ion generator which translates gram- 
mar rules into EPDA tra.nsitions therefore de- 
ternfining the p~trsing strategy (cf. figure 1), 

• Control code, using previous modules, defin- 
ing the "compih?' function, tile only one ex- 
ported. 

The two interpreters implemented so far have 
very different structures.  The tlrst one uses 
backtracking and the second one uses tabulation.  
They share some modules however, such as a 
module handling transit ions and a lexer of inlmt 
strings. 

Tile interest of the modular  architecture is in 
tile eomtfin~ttorhtl effect of module composition. 
It leads to many diiferent parsing algorithms. 
The tigure 1 summarizes the different ~spects of 
the parsing algorithms tha t  can vary more or less 
independently. 

For example, the built-in parsing method of 
Prolog for DCGs is ol~t.ained by combining tim 
solver for ])CGs, the top-down strategy, 0 sym- 
bol of look-ahead a.nd a backtracking interpreter  
(and other modules not mentioned in Iigure 1 be- 
cause they do not change the algorithm, but a.t 
most its implenmntation).  

Some remarks about  :figure 1: 

• we call Earle?] parsing strategy the way Earley 
deduction [PW8a] builds a tree, *tot the con- 
trol method it uses. It difl'e.rs from top-down 
by the way constrMnts are taken into account. 

• the difference between garley-like tabulat ion 
and graph-structure  stacks is the data  struc- 
ture used for item storage. Several variants 
are possible, tha t  actually change the parser 's  
behavior. 
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Solver C o n t e x t - t Y e e  G r a m m a r s  - 1)e t in i t e  C l a u s e  G r a m m a r s  
(grammar  class) T r e e  A d j o i n i n g  G r a m m a r s  - Uni] icat ion  G r a m m a r s . . .  

parsing s t ra tegy t o p - d o w n  - p u r e  b o t t o m - u p  - E a r l e y  - E a r l e y  w i t h  r e s t r i c t i o n  
( transi t ion g e n e r a t o r )  l e f t - c o r n e r  - L R  - p r e c e d e n c e  - P L R  . . .  

look-ahead eon tex t - lYee  l o o k - a h e a d  of  0 or  1 s y m b o l  
con tex t - f ree  look-ahead o f  k s ymbo l s  - con tca ' t - scns i t i vc  look-ahead 

interpreter  b a c k t r a c k i n g  - E a r l e y - l i k e  t a b u l a t i o n  - Graph-s t r 'ac turcd  S t a c k s . . .  

Agenda management  S y n c h r o n i z a t i o n  - lifo - f i fo - wLrio'as we igh t s  . . .  
(for tabula t ion only) 

Figure 1: modules of APOC-II 
Modules wri t ten iii. bold font are ah'eady iml)lemented, where.as modules writ ten in italic m'e possible 
extensions to the system. 

• we call synchronization sL kind of breadth-first  
se~trch where sc~tnnlng a terminal is performed 
only whe.n it is needed by all the paths of the 
search-tree. The  search is synchronized with 
the. input string. It is the order used by l,;str- 
h.'y's algorithin. 

• at the moment,  only gener i c  look-ahead, tha t  
is look-ahestd based on the f i r s t  and f o l l ow  
sets, has been considered. Some more aCCll- 
rate look-ahead techniques such as the ones 
involved in SLR(k) pa,'sing are probal>ly not 
indepen<lent fi'om the parsing s trategy and 
<:armor be an independent  mo<lule. 

Building a parsing system with APOC-II con- 
sists roughly in choosing one module of each row 
of figure 1 and combining them. Some of the 
combinations are not possible. Thanks  to type- 
checking, Alcool-90 will detect the incompatibil- 
ity and provide a tyl)e-based explanation of the 
probh;m. 

At the moment ,  APOC-II otDrs more than 60 
ditDrent parsing algorithms. Given a g, ralrHn.%r, 
there is a choice of more than 20 different parsers. 
Adding one module does not add only one more 
algorithm, but  sewn'M new vstri;tltts. 

The techniques i inplemented by APOC-II are 
not original. For instance, the LR conq)ilation 
strategy comes from a paper  I)y Nilsson, [Nil86], 
left-corner parsing has been used 1)y Matsumoto 
and Tanaka in [MT83]. As far as we know, how- 
ever, LR and left-era'her p~trsers have not been 
prolmsed for Tree-Adjoining C, rammars  before. 

Notice tha t  the modulari ty is also useful to vary 
implementat ion of algorithms. D)r instance, a 
first prototype can be quickly writ ten by imple- 
menting constraints  reduction in a naive way. A 
refined version can be wri t ten later, if needed. 

6 C O N C L U S I O N  

APOC-II has several advantages. First  of all, it 

provides comparable implementat ions of the most 
comnmn parsing Mgorithms. Their  efficiency can 
be abstract ly  measured, for instance by counting 
the number  of eomlmtat ion step (EPDA transi- 
tion applicatiol 0 performed to eomlmte a tree or 
a complete forest of parse trees. We call this 
kind of measm'ements abs t rac t  ])ecallse it does 
not rely neither on the implementlttion nor on 

the machine that  runs the parser. Other  compar- 
isons could be done statically, on the au tomaton  
or on the pstrse forest (e..g. number  of transit ions,  
alllOllllt ,)f determi~lisnl, size of the forest, alllOllllt 
of s t ructure  slurring). 

()therwise, APOC-II cstn be. used as a to(~lkit 
tha t  provides :t l ibrary of modules usefld to imple- 
lllent quickly ll(!W parse.r generators.  For instance, 
one has only to write a solver to obtain up to 22 
parsing a.lgorithms (perhaps less if tit(', solw!r pro- 
vides only basic operations).  The library contains 
tools to deal with some constraints,  look-ahead, 
lexing, tabulat ion,  etc. Reusing these tools when- 
ever it is possible saves a lot of work. 

The limitations of APOC-II are tha t  it is mainly 
convenient for parsing strategies tha t  stre some- 
how s tat ic ,  i.e. statically determined at com- 
pih! time. Also, al)stractloll (full independence 
between coral>tiers and i,~terpreters) cannot  Im 
achieved for some optimized algorithms. For in- 
Sl,&llCe, Nederhof presents in [Ned93] a parsing 
strategy called ELI{ for which tsdmlar execution 
can be optimized. To implement this a.lgorithm 
tit ollr system, one would have to write a Ilow 
interpreter  dedicated to ELR-EPDAs .  

\¥e think that  our experiment shows the in- 
t(~rest of a tlexible modul;trity for studies abollt  
parsing. We believe that  the same technique can 
fiuitfully apply on other domains of Ns~tural Lan- 
guage Processing. 

4 , 5 9  



7 ACKNOWLEDGEMENTS 

The authors are grateflfl to Gabriel Pereira Lopes 
for his hell). 

REFERENCES 

[Bar93] Franqois Barthdlemy. Outils pour l'3- 
nalyse syntaxique contextuelle. Thb~- 
se de doetorat, Universitd d'Orldans, 
1993. 

[BVdlC921 F. Barthdlemy and E. Villemonte 
de 13 Clergerie. Subsnmption-- 
oriented push-down autom3t3, hi 
Proe. of PLILP'92, pages 100 114, 
june 1992. 

[II8881 M. ItShfeld and G. Smolk3. Definite 
Relations over Constraint Languages. 
Technical Report 53, LILOG, IWBS, 
IBM Deutschland, october 1988. 

[Lan74] Bernard Lang. Deterministic tech- 
niques for efficient non-dc'terministic 
parsers, hi Proe. of the 2 '~'l Collo- 
quium on automata, languages and 
Prvgramrning, pages 255-269, Saar- 
brlieken (Germany), 1974. Springer- 
Verlag (LNCS 14). 

[Lan91] Bernard Lang. The systematic con- 
struction of earley parsers: Applica- 
tion to the production of o(n a) earley 
parsers for tree adjoining grammars. 
In First International Workshop on 
Tree Adjoining Grammars, 1991. 

[MTSal Y. Matsumoto and H. Tanaka. Bup: 
A bottom-up p3rser embedded in In'O- 
log. New Generation Computing, 
1:145-158, 1983. 

[Ned93] Mark-Jan Nederhof. A multidisei- 
plin3ry approach to 3 parsing algo- 
rithm. In Proceedings of the Tvmntc 
Workshop on Language Technology - 
TWLT6, december 1993. 

[Ni1861 Ulf Nilsson. Aid: An Mternative im- 
plementation of DCGs. New Genera- 
tion Computing, 4:383-399, 1986. 

[pwsa] F. C. N. Pereir3 and D. II. D. War- 
ren. Parsing as deduction. In Proc. of 
the 21st Annual Meeting of the Asso- 
ciation for Computationnal Linguis- 
tic, pages 137-144, Cambridge (Mas- 
saehussetts), 1983. 

[Rou90] 

[Shi85] 

Franqois Rouaix. ALCOOL-90: Ty- 
page de 13 surcharge dons un langave 
fonetionnel. ThSse de doctorat, Uni- 
versitd Paris 7, 1990. 

Stu3rt M. Shieber. Using re- 
striction to extend parsing algori- 
thms for complex--feature--based for- 
malisms. In Proceedings of the 23 r'~ 
Annual Meetin 9 of the Association 
for Computational Linguistics, pages 
145-152, Chic3go (Illinois), 1985. 

460 


