
LOGIC COMPRESSION OF DICTIONARIES FOR
MULTILINGUAL SPELLING CHECKERS

Boubaker MEDI)EII I IAMROUNI

GETA, IMAG-campus (UJF & CNRS)
BP 53, I;-38041 Grenoble Cedcx 09, FRANCE

B o u b a k e r . Meddeb-namroun i@ i mag. t7 r

&
WinSoft SA.

34, Bd. de l'Esplanade
1:-38000 Grenoble, FRANCF

ABSTRACT
To provide practical spelling checkers on micro-com-

puters, good compression algorithms ,'~'c essenlial. CutTeut
techniques used to compress lexicons for indo-Fmropean
languages provide efficient spelling checker. Applying the
.~une methods to languages which have a different morpho-
logical system (Arabic, Turkish,...) gives insufficient re-
suits. To get better results, we apply other "logical" com-
pression mechanisms based on tile structure of the lan-
guage itself. Experiments with muir)lingual dictionaries
show a significant reduction rate attributable to our logic
compression alone and even better resnlls when using our
method in conjunction with existing methods.

KEY WORDS: Spelling checkers, Multilinguism,
Compression, Dictionary, Finite-state machines.

INTRODUCTION
Since the first work in 1957 by Glantz [611, a great

deal of timer)zing and reseltrch has taken place on the sub-
ject of spelling verificatiou and correction. Many commer-
cial products (word processors, desktop presentation,...) in-
elude efficient spelling checkers on mic,'o-computers. The
classical methods, used arc generally based on a morpho-
logical analyzer. This is sufficient to provide a robust
monolingual spelling checker, but using morphological
amdyzers can become unrealistic when wc want to develop
an univers~d solution. In fact, tile analyzers built for each
language use various linguistic models and engines, and it
is impossible to convert a morphoh)gical analyzer from
one formalism to another. Furthermore, using flmse classi-
cal mcthods would lead to combining into the host appli-
cation as many of grammars and parsers as languages,
which would increase the code size and Ihe mainten:mcc
problem of rules and data. The method presented in this
paper is based on building a dictionary of all surface forms
for each language, which is sufficient for spelling checkers
applications. "llle dictionary built with the existing genera-
)ors can bc e~i ly updated manually bt,t may l)e huge, es-
pecially for some agglutinative language (Arabic,
Turkish,...). A compression process on the muir)lingual
dictionaries is neeess,'u'y to obtain a reduced size. The exist-
ins compression methods generally used are physical and
provide good results for indo-European languages.
Applying the sane techniques to other languages (Arabic,
Tnrkish,...) shows their limits. For this reason we intro-
duce a new kind of compression techniques that we called
"logic compression". This new technique requires a p,'imi-
tire morphological knowledge during tile compression
process and requires less storage space than prevkms meth-
ods. It ,also has the advantage of being an universal lnelhod
applicable to all languages,

Seclion 1 contains an overview of existing methods
for building spell checkers and the limits of such system

whcl l we take in to a c c o u n t n e w cons t r a in t s such as lnnl t i -
lingual)sin. Section 2 outlines tile first two steps of our
work: we adapt an existing method to Arabic, then make a
first extension hy introducing a new kind of compression
called "logic compression". Section 3 introduces ill detail
the logic compression with its application to other lan-
gtmges, ll,ld s h o w s the improvcinents obtained when using
logic compression ill conjunction with existing methods.
Section 4 outlines the architecture of our lnullilhlgual
spelling checker system and some future projects.

1. OVERVIEW OF EXISTING
M E T l l O I) S

1.1. (~rammar-hased approach

These methods were used in the beginning on early
computers when storage space was expensive. It consists
in building a small lexicon contaiuing roots and affixes, a
grammar of rules that express tile morphographemic alter-
nations, and all engiue that uses tile grammar and the lexi..
con to see if an input word belongs to the lauguage or not.
If the process of recognition fails, some operations
(substitution, insertion,...) are performed on the misspelled
word to provide a list of candidale words that helps the user
Io select tile correct form.

Even though, it is a great accomplishment to design a
powcrful cnginc [3] [8] and to cxprcss rules in a pseudo
natural way [9] even for different languages [1] [2] [11],
these systems present some limits:

- Multilinguism: This methods does not support all lan-
guages. To offer a rot, It)lingual solution for n languages
you have to store n grammars and n lexicons, and gener-
ally n different engines inlo tile host application.

- Cosl of retrievak For some languages, the retriewd of
words may be long. For instance, a vocalized Arabic spell
checker nlust accept non-vocalized or partially vocalized
words which require more lime to be accepted than fully
vocalized words.

- Cost of guessing alternalives for a misspelled word: To
guess a correct word when a misspelled word is found, we
have to modify the misspelled word by all possible ope,'a-
tions (substitution, insertion, suppression,...) for 1 or 2
characters and then try to check them. This matter can take
a lot of time before displaying the correct forms lot end-
users.

- Maintaining file grammars and data: The grammars and
lexicon require conti,nlous updating. You need to f iud a
muir)lingual computational linguist who knows the lin-
guistic theory and tile ft)rmalism to easily update data and
rules [811.

- Ergonomic fcalures: In some languages, end users want
to have some options that let Ihem choose how tile spell
checker will accept words. In Arabic, for example, different
regions have slightly different orthographical conventions.

292

1.2. Lexicai-f iased appro. ' tch:

Lexical-based approach appear after the first methods
described above, when storage space become less
expensive. The first step is to build complete list of
surface forms be long ing to the language using
morphological generators, SI,LP (Specialized l+anguagcs
for Linguistic Progr,'uns), etc. and then compresses the
large word-dictionary. They are generally used for office
apl)lications such as word processors, desktop presentation,
etc. Their main advantage is that they cover a complete
language since all the forms can be fouud in the initial
lisl. Also, they allow efficient rctricval and guessing of
misspelled words [4]. Ilowever, some limits exist in such
systems:

- Multilinguism: The compression process give a good
ratio for languages with a w c a k inflexion factor
(English,...) where the compression nteehanism give up to
150 KB of storage fi'om around 3 MB of a fifll list [4]. The
compression technologies arc still powcrfifl for languages
with a medium iuflexion factor (Russian,...). For example,
a list of all surface Russian words of between 10 and 15
MB of size can be reduced to 700 KB [41. For hmguagcs
with a h igh inf lexion factor (Arabic, I ' innish,
llungarian,..+), it won't be easy to find compression tech-
nologies that give practical results [4]. For instance, a full
list of completed vocalized woMs in Arabic h:m 300 MB in
size anti the current compression mefll(xls are itnpraclical.

- No morphological knowledge : These methods arc neu-
tral with respect to the text language, the efficiency of
compression techniques +nay be improved by using spe-
cific properties of the language [41.

I1. A F I R S T A P P R O A C I I : A D A P T I N G
A N E X I S T I N G M E T I t O D F O R A R A B I C

I L l . Using an exis t ing me thod

As a first step, we take an eflicieut method used to
compress dictionaries for F+uropean (l:nglish, l:rench,...)
spelling checkers 11411 and try tit apply it to Arabic. The
first step of our work cousists in building a full list of sur-
face fin+ms usiug a morphological generator 151 anti com-
pleted by all irregular fonns and existing corpus. The final
large word dictionary which covers uou-vocalizcd Arabic
has a size of 75 MB. The comprcssiou process yickls 18
MB iu a or)repressed fi)rmat. I:or .'m idea of the compres-
sion process readers can refer to [10]. Table 1 gives some
results of the compression process for a few Europeau lan-
guagcs to see the efficiency of thc method aud its itm/le-
quacy for the Arabic language.

word
forms

l)anish 448.000
German 403.000
A r a b i c 7 mil l lous,

"E~'tglish 88.000

size sizc
uncomprcssed compressed

5689 KB 725 KB
5297 KB 866 KB
75 i'~lB '18 MB

84l KB" 224 KB
Table 1

The result fl)r Arabic is impractical for small computers.
We must titan find other techniques that produce a smaller
dictionary or extend this method; to get an exploit'dale so-
lution.

11.2. Ex tens ion of the me thod :

The initial idea is applied to the morphological sys-
tem of Aral)ic. While most of the fully inflectc/l forms

words in Arabic mc built by adding to a stem prefixes and
suffixes wc l)roposc replacing some words with only one
form beginning by a special code that represents it family
of prefixes and finishing by another special code which
represents a family of suffixes. For this purpesc, wc wrote
a program in MPW-C that processes a full list of inflected
/brms and (+sing an existing decomposition of affixes into
sub-sets already established, give the reduced lcxicou where
many for,ns are replaced by only otto representation
(PSi stem SSj) where PSi (with rcspect to SSj) is the set i
(with respect to j) of prefixes (with respect to suffixes).
Note that the reduced lexicon reprcscnts faithfully the iui-
tial list without any silence (missing words) or noise
(incorrect words). Only compressed words are replaced, and
the rest remain in the reduced list. The figure 1 gives an
example of words, an example it1" a decompositions luld the
obtained result.

Decmn +osilion
Full sttrfa¢c forlm ~ 7 - Reduced list

J weAXl~l~]S~II!! s

[qeAX!)dw
I w~Xl~,us
] xyAXl)~us

Fig. I: Ikaml@, of the compression process

The next crucial problem to resolve is lit find the best dc-
composilion that provide the best retluced lcxicon. The
me+hill must t~ automatic, It must process the large word-
dictionary, and rcgar(ling an initial list of prcl]xes and sill L
fixes, must give as oulput the best dccompositiou and the
optimal reduced dictionary. But, hclk)rc studying the im-
plementation of such an algorithm, we began, tit see how
much space we coukl gain by this teChlfique starting from a
l t)anual decomposition.

~ ~tldRclh~d;_ Starting front a different fifll lists for
each category of words (transitive verbs, nouns,...), we
choose different decompositions and processed the full list
with the coml)rcssion tool. The best decomposition kept
[or each category was lhc decomposition which eliminated
the maxiluum forms. This method gave mauy candidate
decompositious depending ou Ihc grammalio'tl calcgory of
ihc word. To choose Ihe best global one we took into ac-
count the fi'equency of dictionary etlIries. This method was
tested tit+ differeut Arabic word lists and some r e su l t s :Ire
described here, Re:tders cat+ refer to 1101 or f i l l for luore
itfformation. To see some dccolnpositiou, consider the fol-
lowing sets:
l i l : [wa , fa], I ~ l l;+2={la, sa }, /,3~/
l;, 3 = {ha, at}, 1 , 3 i /
F 1 ~ {tom, ttnuna, ta, Uma}, / ~3~.../
F 2 : {ya, ;din, yimt, +ulna}, /,31,31 ,3~. /
I; 6 = {ha, haft, ya, ka, kern, kt)uma, kent, l).om, houma, bona,
haft}, F 7 -~ F 6 \ {ya, i+laS} 4. {hi},
1:9 ~=(wa}

l:. i (with respect to Fj) is a set of prefixes (with respect to
suffixes). We uotc the quantity I(i.E j (wilh respect to FI.Fi)
all strings built by a collcalcnation of each clcmcut of l~+i
(with rcsl~ecl to Fit with each clement of l(j (with rcspect
Io l:j).
l'~xaml)le of 3 class (from 6) of Ihe prefix class:

29+3

ell v i i / ' - " ' - ' " - ' - " % l k S l
CI '"

o - - ,v-v ' ' o - o - - - (}
Fig, 2: Initial automaton

Pl = El- P2 = E4.
P3 = E3 + ~ -E3 + El.E2 .E3
Ex,'unple of 4 class (from 13) of Ihe suffix class:
S t = F 1. S2 = F 2. $7 =177 . S 8 = F 9 . F 7.

• pirs~ r¢,~,!1~8: case of Arabic: With all the classes al-
ready found for Arabic (6 classes of prefixes, 13 cl,'tsscs of
suffixes; each class containing an average of 8 affixes), we
processed a collection of non-vocalized Arabic dictionaries
(17 MB), the restllt gave a reduction lexicon of 254 KB.
Used this in combina t ion with the compress ion process
described in § 1.2, tile final result is 121 KB. Note also
that part of this work was implemented in a commercial
mult i l ingual word processor (WinText ©) to offer Arabic
spell checking.

I I 1 L O G I C C O M P R E S S I O N :

I I I .1 . T h e o r e t i c a l a s p e c t s :

Let V be a finite set and V* the set of words built on
V including null strings noted ~ .

W E V*. W = WiW>. .Wn. W i e V.

i c [1..n]. Let V + = V* - {~l}.
Let Y be a sub-set of V that contain vowels.

1. Prefix(W). V W c V +.
We call order i prefix the quantity:
Pi = W l W 2 . . . W i . (1 _< i _< n-I) .

2. Suffix(W). V W e V +.
We c,'fll order j suffix Ibe quantity:
Sj = WjWj+t. . .W.. (1 _< j _< n).

3. VoePat(W) g W e V +.
We call vocalic pattern of W the set:
Vy = {Wi ,Wj,...Wk}, W i < Y.
card(Vy) __. leugfll(W)

4. Root(W). V W e V +.
We call root the quantity:
R = Wp.. .Wq. (1 _< p < q _< n),
card(R) _< q-p+l .

5. Pi: Prefixes class. Pi = {~, F'il,Pi>...l:Ji',:} •
Pij is a prefix. 1 _< j _< k
Card(Pi) = k + 1. if k>__ 1.

= 1. i f l ' i = { 0 } ,

6. Sj: Suffixes class. Sj = {~, Sjl, Sj2,...Si~:}.
Sji is a suffix. 1 _< i _< k
Card(Sj) = k + l . if k_> 1.

= 1. ifSj = {tZi}.

7. Vl: Vowel class.

Vk = {¢J, VYkI,VYk2,...VYtk}

Vyii is a vocalic pattern. 1 <_ i <_ k
Card(Vv.) = k + 1. if k _>. 1.

= 1. i f V k = {~}.

I l l . 2 . Imgic C o n l p r e s s i o n : W l l a t is it ?

Let's take the following automala that represent some
surface w)calized words (fig 2)

Pij is a prefix. 1 _<_ j <_ n.
Sji is a suffix. 1 _< i _< n.
C i are tile consonalltS of the vocabtilary.

1 _<i_<k.
Vij iS the vowel attached to the consonaut Cj.
l ~<i_<qand l_<j_<_k.
?J is the null string.

This automata recognizes all words beginning from an ini-
tial state (marked by *) and f inishing in a final state
(marked by a double circle)
The utunher of arcs of such an aulofuala is:

11 II

~_.~ length (l'ik) + + Z Iength(Sjk) 2q(k-1)
k=l k=l
If we consider, for example, that affixes have a single chm'-
acter, the nmnber of a,cs is equal to 2(n+1) + 2q(k-1).

The logic compression consist in supplying the class of
prefixes, suffixes and vowels and replaces each set by only
one arc that represent a fami ly of prefixes, suffixes or
vowels.

Starting from the following sets already eslablished:
Pi = {~, Pil,Pi2,-..l~i,~] a class of prefixes slored as x.
Sj = {~'J, Sjl , Sj2,...Sjn } a chiss of suff ixes stored ;is y.
Vk = {{Vll,...Vlk},{V21,...V2~: } {Vql,...Vql¢}) a class Of
v(K'alic pallern slorcd as z.

The logic compress ion reduces the initial automalOU to
this new one:

Fig,. 3: P.cduced automata
The number of arcs kept in the automata is equal to 3 + k.
The SOl Vt: contains a sub-scl of k vowels which must be
applied to the last k characlers.

I l l . 3 . E x p e r i m e n t s :

The logic compression with only an affix decomposi-
tion, buil t by the manual meflmd cxplaiued above, has
been tested on various list of words that represent collec-
lions of mul t i l ingual d ic l ionar ies (a list of inf lected
forms). Three languages are tesmd: non-vocal ized Arabic
which has a great inl lexion lactor, French which has a

2.94

Arabic French Russian

Size of uncompressed list (MB)

Ratio from it complete dictionary

Number of inflected forms

Class decomlx3sition (Ih'efixes)

• . (suffixes)

17

33

1.980.280

6

13

..~1- l'hysical compression -- , 5 660

2 - Morphg-physica.1 comp. += ,l 22 l

3 - FSM compression 88

4 + l~8ic compression 253.686

4 + 1 1 4 5 . 0 8 6

2.636 1

80 16

247.406

0

84

892.646

311.593

201.216

480.770

207.376

4 + 2 121.500 1114.665
~ , ,

44-3 5 7 . 2 1 4 150.321

75.234

3

23

348.636

109,418

48.78

163.202

56.784

37.74

3 6 . 7 1

7}lble 2

weak inflexion factor, Russian which has a medium inflex-
toll factor, l;.xtmrimenls arc dolie in two ways. First by us-
ing our logic compression alone anti, thel|, in conji||tction
with other methods by supplying the reduced lexicon (lisl
of compressed words in text format) obtained with our
method as input to existing methods. The three other
methods tested a,e Ihe following:

o Physical compression: Using a commercial physical
process (Stuffit).

- Morpho-physical coinprcssion: This method was used
to compress dictionaries used to buiM a spell checker 1411.
It combines morphological proprieties by taking inlo ac-
count the suffixes of the language, but wilhout any link
between Ihem. It also contains sonie physical features 171.

• FSM (Finite-State Machine) Compression: Using file
Lexc (Finite State Lexicon Compiler) which allows the
conversion of a list of surface forms inlo a transducer
which is then minimized [81.
Resttlls are described in table 2.

111.4. I n t e r p r e t a t i o n s :

The nlost interesting thing observed on this table is
the improvement obtained when we combine our method
with a previotls one. These resulls show that the existing
methods are not optimal and can be improved by our logi-
cal compression in its first step. These important results
in storage space shouhl not hide others aspects of Slmll
checker systems (retrieval and guessing). It would be inter-
esting if the results given in the table were followed by
oilier results showing impmvenmnts in the |etrieval and
guessing of words.

IV. A P R O P O S E I) A R C I I I T E C T U R I , ; O F
A U N I V E R S A L S I ' E L L I N G C H E C K I , ' R :

Figure 3 shows the architecture of our proposed uni-
versal spelling checker. Our method is inspired from pre-
vious methods (§ 1.2), but presents some new original as-
pects that allow it to be considered a truly multilingual so-
lution. In summary, our system has the following l'ea+
ttlles:

• Multilinguism: lhis mclhod will insure the multi-
lingual constraint By using different tools, specific to
each langt|age, to create a list of all surface lk),'ms.

• Storage space: by introducing the logic compression
into the compression process, we will be able to get a re-
duced lexicon for whalever langu'lgc we have to use. One
task that still remains is to improve the logic comp,'ession
by making the lask of finding the best decomposilion
more automatic. This problem is coii|bi|latorial; we lllllSl
discover how to apply the optimization algorithms
(genetic algorithll|, stochastic algorithm,...) in each case Io
find an optimal reduced lexicon starling from Ihe large
word-dictiolmry and primilive morphological km)wledge
(list of affixes and w}wets).

• Retrieval/guessing: even lllollgh we havell'l any
conc|'ele ,-esults now, the firsl experinlenls show Ihat the
process of checking words in an I;SM formalisln is faster
[halt other exisling methods, l'urlhermore, we are explor-
ing paths Io introduce functions (similarily key,...) into
the final obtained lexicon to make a rapkl guessing of re-
placements for misslxflled words.

C O N C I , U S I O N

()ill" approach 1o spell checking differs from previous
inethods by faking into llccolm[a liew para|neler which is

• i n - - # . . < , - -

{] x e ~ : ~ ~ s t , re~e [_ ~ Machine (Psm) [-~(' - l !} .y~!ca! 1 ComiSressit; n ' ' , ~ . _ 4 ~ Reduced lexicon

. " l or,n,l,S,. " J "

Fig. 3: Universal spelling checker

29.5

file multilinguism. The system proposed tries to give so-
lutions for the three main problems: Multilinguism, de-
teclion/guessiug and storage size.

The first results, although using a manual method to
find the decomposition in this first step, show that the
previous methods to store dictionaries ,are not opthnal and
can be improved by exploring other techniques from the
language itself. Another interesting experiment is to find
m~ original opfimiz~ation algorithm to find the optimal re-
duced lexicon that represents faithfully the initi'd list
without any silence (missing words) or noise (incorrect
words). Yet another project is to build a more robust
method for the two other problems (detection and guess-
iug) from the reduced lexicon.

A C K N O W L E D G M E N T S

qlie author would like to thank Prof. Christian BOI'I'I-~'I"
for his constant support ,'uld encouragement. I am also very
grateful to Mr. Kenneth BEESLEY (Rank Xerox,
Grenoble) for his fruitful discussions and Mr. Lauri
KARTTUNEN (Rank Xerox, Grenoble) for his help to
realize some experiments.

R E F E R E N C E S

[1] Beesley K. R., Bukwalter T., (:1989)
Two-level, Finite-State Analysis of Arabic Morphology.
Proceedings of the Seminar on Bilingual Computing in
Arabic and English, 6-7 Sept. 1989. Camhridge, England:
The Literary and Linguistic Computing Center & The
Center for Middle Eastern Studies.

[2] Beesley K. R., (1990)Finite-state descrip-
tion of Arabic Morphology, iu the Pr(vceediug of the
Second Cambridge Conference on Bilingual Computing in
Arabic and English, Cambridge, England, 6-7 September
1989. No pagination.

[3] Ben l lamadou A., (1986)A Compression
technique for Arabic Dictionaries: The affix Analysis, in
the Proceeding of COLING-86, Boml 1986, pp. 286-289.

[41 Circle Noetic Services (1989) Passwd,
Reference Manual, MIT Branch Office, Boston, pp. 1-6.

[5] Circle Noetic Services (1989)Conjugate
tool, Reference Manual, MIT Branch Office, Boston, pp.
1-5.

[6] Glantz 11., (1957)On the recognition of in-
fornultion with a digital computer, J. ACM, Vol. 4, No.
2, 178-188.

[7] l luf fman D. A., (1951)A method for the
construction of minimum redundancy codes, Proc. IRE 40
(1951), 1098-1101.

[8] Kart tunen L. (1993), Finite-State Lexicon
Compiler, Xerox P,'do Alto Research Center, April 1993,
1-35.

[9] Koskeniemmi K., (1983) Two level
Morphology, Publication no. 11, Department of Geucral
Linguistics, University of llelsinki, pp. 18.

[101 Meddeb ll.B., (1993)lntdgration d'une com-
posante morphologique pour la compression d'un diction-

naire arabe, in Proc. Langue Arabe c.t Technologies
Infonnatiques Avancfes, C,-t~ablanca, pp. 14.

[11] Meddeh II.R., (1994)Logic Compression of
Multilingual dictionaries, in Proe. of ICEMCO-94,
International Confcreuce and Fxhibition on Multi-lingual
Computing, University of C~unbridge, Center of Middle
Eastern Studies, London, April-1994, pp. 14.

[12] Oflazer K, Solak A, (1992)Parsing agglu-
tinative word structures and its application to spelling
checking for Turkish, Proc. of COI~ING-92, Nantes, Aug.
23-28, Vol. 1, pp. 39-45.

296

