
Parsing and Case Analysis in TANKA
TERRY COPECK, SYLVAIN DELISLE, STAN SZPAKOWICZ

Department of Computer Science
University of Ottawa

Ottawa, Ontario, Canada, KIN 6N5
{terry, sylvain, szpak}@csi.uottawa.ca

ABSTRACT
The TANKA project seeks to build a model of a
technical domain by semi-automatically process-
ing unedited English text that describes this do-
main. Each sentence is parsed and conceptual
elements are extracted from the parse. Concepts
are derived from the Case structure of a sentence,
and added to a conceptual network that rep-
resents knowledge about the domain. The
DIPETr parser has a particularly broad coverage
of English syntax; its newest version can also
process sentence fragments. The HAIKU subsys-
tem is responsible for user-assisted semantic
interpretation. It contains a Case Analyzer modu-
le that extracts phrases marking concepts from
the parse and uses its past processing experience
to derive the most likely Case realizations of
each with almost no a prior i semantic know-
ledge. The user must validate these selections. A
key issue in our research is minimizing the
number of interactions with the user by intelli-
gently generating the alternatives offered.

BACKGROUND

This project is a long-term undertaking of the
Knowledge Acquisition Lab. Previously we pre-
sented its overall design (Szpakowicz 1990), dis-
cussed elements of the Conceptual Knowledge
Processor (Szpakowicz & Koperczak 1990; Yang
& Szpakowicz 1990, 1991a, 1991b), and de-
scribed the parser and Case Analyzer (Delisle
1990; Delisle & Szpakowicz 1991; Copeck et al.
1990). This paper updates and summarizes the
last three publications. TANKA (Text ANalysis
for Knowledge Acquisition) is implemented in
Quintus Prolog on Sun workstations.

THE DIPETT PARSER

TANKA requires a broad-coverage parser
because it uses a limited semantic model based
on Case relations, and domain-specific know-
ledge is not available to it a priori. Without rich
semantics, syntax is the only basis for inferring
meaning. In TANKA, the broader the parser's
coverage, the more accurate the ultimate

knowledge representation can be. This is in
opposition to approaches in which semantic
knowledge is fed in beforehand, and syntax is
limited to restricted patterns or even just
keywords. Our approach lies at the other end of
the spectrum: we are concerned with realistic
large-scale texts and need realistic syntactic
coverage. This enables HAIKU, the interactive
semantic interpreter, to extract overt meaning
from DIPETr ' s detailed parse trees, and helps
organize interaction with the user.
DIPETT (Domain-Independent Parser for
English Technical Texts) is a linguistic-theory-
neutral parser with a broad surface-syntactic
coverage of English. It handles most sentences in
our unedited sample text, a guide to the fourth
generation database language Quiz. DIPETI"s
coverage encompasses every fundamental syn-
tactic structure in the language, including
coordination, and most syntactic phenomena
encountered in typical expository technical texts.
The core of its grammar is based on general and
NLP-oriented English grammars, in particular,
Quirk et al. (1985) and Winograd (1983).
DIPETr 's major components are a dictionary, a
lexical analyzer, a syntactic analyzer, a memo-
rizing device with a helper mechanism, plus its
own trace mechanism. An input is usually given
to the lexical analyzer and then to the syntactic
analyzer', this makes for conceptually clear and
easily implemented models. More than half of
the parser's 5000 lines of code are DCG rules. A
15-word sentence can typically be processed in
15 to 20 seconds CPU on a Sun SparcStation.
Nove l features of DIPETT are a dynamic
dictionary expansion facility, its memorizing
device (well-formed substring table), a helper
(error explanation mechanism), and an internal
trace mechanism for debugging.
The parser's surface-syntactic dic t ionary con-
tains most English function words. It includes a
table that associates legal adverbial particles with
verbs (this is used to disambignate panicles and
prepositions). Another table contains word
groups such as "as much as" or "even if" that

AcrEs DE COLING-92. NANTES, 23-28 AOb~r 1992 1 0 0 S PROC. OF COLING-92, NANTES. AUG. 23-28, 1992

usually play the same role as single function
words. The dictionary will be expanded with
semantic information when it is integrated with
the Case Analyzer. The lexical analyzer builds a
list of annotated words with the root form and
the syntactic parameters. If the input contains a
word for which the dictionary has no entry, this
module allows the user to augment the dictionary
dynamically. Such temporary additions are saved
on a file for future permanent addition.

DIPETr ' s grammar recognizes the following
major syntactic units: sentence (simple, complex
and multiply-coordinated), question, verb phrase
(simple and conjoined), verbal clause, comple-
ment, subordinate clause, adverbial clause, noun
phrase (simple and conjoined) and their substan-
tive forms, that-clause, relative clause, trig-
clause, to-infinitive clause, whether-if clause,
noun phrase post-modifier (e.g. appositive),
prepositional phrase (simple and conjoined),
noun pre- and post-modifier, determinative,
adjectival phrase.
The purpose of the memorizer is to minimize the
reparsing of syntactic substructures that are re-
considered on backtracking. The helper shows
the user information that may help identify the
reasons for an input's rejection. Both features can
be switched on or off for the session. These two
modules use notes--assertions that record essen-
tial syntactic information about major well-
formed substrings that constitute the preposit-
ional, noun and verb phrases. A note stores a
substring, its type and its syntactic structure
produced by the parser. Corresponding DCG
rules contain Prolog assertions invoked if the
user has activated the memorizer or the helper.

Testing and fine-tuning a complex parser can be
difficult. Prolog debugging facilities are often
cumbersome for logic grammars where it is only
interesting to know what rule is being examined
by the parser, for which part of the input string,
and what has been successfully recognized. We
have therefore implemented our own trace trw~h-
anism which employs trace instructions (acti-
vated by a flag) inserted in all rules related to
prepositional, noun and verb phrases. The parser
implementor can activate and control the trace
mechanism through a menu interface.

Conjoined verb phrases and sentences are usually
very expensive to parse. We have devised two
look-ahead mechanisms to treat co-ordination ef-
ficiently. These mechanisms check the lexical
categories of tokens ahead in the input string.
The f'trst looks for coordinated clauses, while the
second checks inputs that are supposed to

contain at least one verb (such as the to-infinitive
clause). This information is used by the parser to
identify potential joining-points for conjoined
sentences and to avoid applying rules that cannot
succeed. The parser also handles elided modals
and auxiliaries in conjoined verb phrases. For
example, "John has printed the letters and read
the report" is analyzed as "[[John] [[has printed
the letters] and [has printed the report]]]".
Scoping of negation and adverbs in conjoined
verbs is handled, too. For example "John did not
accidentally print and read my personal
messages" is analyzed as "[[John] [[did not
accidentally print] and [did not accidentally
read]] [my personal messages]]".

DIPE'I'F does not have access to semantic know-
ledge, so prepositional phrase (PP) attachment
must use syntax-based heuristics. Two examples:
an 'of ' PP is attached to the preceding noun by
default; if a PP which is not an initial modifier
occurs in a pre-verbal position, it is attached to
the noun (whatever the preposition may be).
CURRENT W O R K IN DIPETI '

It is our experience that sooner or later an extra-
grammatical or highly ambiguous input will en-
gage the parser in an excessively lengthy compu-
tation. We must be able to deal with such ex-
txeme situations because our knowledge acquisi-
tion method requires finding, for any input, the
first parse tree that is linguistically reasonable.
The reshuffling of the tree's components is left
to HAIKU. At present, we discontinue a parse
operation that exceeds the time allowed for a
single parse (specified by the user at the begin-
ning of a session). Timing-out in this manner
causes loss of information from a partially
parsed sentence, but it is preferable to the user's
waiting unrealistically long for the system's
feedback. DIPE'I'I" also applies look-ahead and
heuristics to fail unpromising partial parses
quickly (e.g. it will not try verb phrase analysis if
there is no verb). This helps produce the first
reasonable parse tree as fast as possible.
The ultimate goal of the TANKA system is to
process free-form technical texts. Texts often
contain non-textual material such as tables or ex-
mnples (e.g. data, programs, results). We assume
all non-textual elements have been removed
from our source texts, but each removal leaves a
"hole" behind. Most holes are located between
sentences and do not affect the structure of the
text, but some cause fragments to appear in the
text. Fragments are valid sub-structures of
English sentences, such as "For example" in
"For ~xample, > SORT ON DATEJOINED D."

Acids oE COLING-92. Nnr, rrES, 23-28 ̂ OOT 1992 1 0 0 9 l'aoC. OF COLING-92~ N^rcrF.s, AUO. 23-28, 1992

DIPETr can parse such fragments.

Three areas of grammar are currently under
active development in DIPE'IT:
1) References: the parser will be capable of re-
solving simple references, in particular anaphora,
on syntactic grounds alone (we mean references
whose resolution requires little or no semantic
knowledge)---see Hobbs (1978).

2) Topic and focus: the parser will maintain
some knowledge about topic and focus. As a first
indication, a text's title should tell us about its
topic while the current input indicates focus; this
could benefi t the Conceptual Knowledge
Processor in TANKA by tentatively relating the
topic to a cluster in the conceptual network.

3) Paragraph parsing: the parser's default mode
of operation is one sentence at a time. Parsing
longer inputs, a number of consecutive sentences

CLASS CASE ABBR.

PARTICIPANT
1
2
3
4
5
6

SPACE
7
8
9

10
11
12

TIME
13
14
15
16
17

CAUSALITY
18
19
20
21

QUALITY
22
23
24
25
26
27
28

Agent AGT
Beneficiary BENF
Experiencer EXPR
Instrument INST
Object OBJ
Recipient RECP

Direction DIR
Location_at LAT
Location_from LFRM
Location_to LTO
Location_through LTRU
Orientation ORNT

Frequency FREQ
Time_at TAT
Time_from TFRM
Time_to 'ITO
Time_through qTRU

Cause CAUS
Contradiction CNTR
Effect EFF
Purpose PURP

Accompaniment ACMP
Content CONT
Manner MANR
Material MATR
Measure MEAS
Order ORD
Value VAL

Figure 1. Cases Used in TANKA

or even paragraphs, means much more elaborate
processing than parsing single sentences.
Nothing is gained by simply finding a sequence
of parse trees--one for each sentence, in order;,
see Jensen (1989) for a similar statement. We
have plans for a more intelligent type of parsing
that would be able to summarize the contents of
these longer inputs by highlighting the main
conceptual elements more closely related to the
current topic (see Zadrozny & Jensen (1991) for
a theory of the paragraph). Topic and focus
information will probably help here.

CASE ANALYSIS WITH LEARNING
In TANKA, knowledge is expressed in terms of
entities engaged in acts that serve to link them
into a graph; see Sowa (1984) for a general dis-
cussion of this type of representation. This graph
is the conceptual network that TANKA will grad-
ually build for a technical text. It is constructed
from Case frames of verbs recognized in the sen-
tence. We have put together a set of Cases suit-
able for our class of domains; it is inspired by
lists found in Fillmore (1968), Bruce (1975),
Grimes (1975), Cook (1979), Larson (1984) and
Sparck Jones & Boguraev (1987). This set
(Figure 1) is not entirely settled; we continue to
review the work of other authors and we are cur-
renfly testing our selections against those Somers
(1987) presents in his Case grid.

Case Analysis (CA) extracts the acts and Case
constellations around them from the structure
produced by the parser on a sentence-by-sent-
ence basis. Only one parse is used, but the
system will allow the user to override all its
suggestions. Subsequent processing can adjust
the understanding of a sentence enough to
encompass most alternative parses and only fails
to cover situations when a word can be legiti-
mately parsed twice as different parts of speech.
Items extracted from the parse are mapped quite
directly into Case structures. A verb denotes an
act. A Case is marked most often by a prepos-
ition or an adverb, and a noun or nominalization
(marked by a preposition) serves as a Case
object. Initial processing of a parse tree identifies
elements of interest; others such as noun
modifiers are not used by CA but are kept in the
representation for the Conceptual Knowledge
Processor. Two questions must then be answered
for each Case-Marker in TANKA: to which verb
does it attach, and which Case does it realize?
The HAIKU module does not attempt to answer
these questions itself, at least not in a definitive
way. It asks the user to answer by selecting
among alternatives in a list, which may include

ACRES DE COLING-92. NANTES. 23-28 aOt]T 1992 I 0 I 0 PROC. OF COLING-92. NANTES, AUG. 23-28. 1992

syntactic elements from the original sentence
copied exactly, i l lustrat ive phrases and
sentences, and possibly short descriptions of the
meaning of Cases. Our goal is to minimize the
number of interactions the user must engage in to
give the right answer. This can be done by letting
all answers be specified in one interaction, and
that in turn is possible if HAIKU proposes
correct Case-Marker attachments and semantics
at the outset. In practice a minimum of two in-
teractions per complex sentence appear to be
necessary, one to correctly link Case Markers to
verbs and a second to validate Case Marker
semantics for each verb. Our work on HAIKU
thus concentrates on ensuring it produces the
correct configuration, preferably on the first
interaction.

Attachment of Case-Markers to verbs is inferred
solely from the parse structure. Semantics could
help were they known in advance (a verb has
only one Case of a given type) but semantic in-
ference is also aided by knowledge of syntax and
something must come first. Once the user has
endorsed an assignment of Case-Markers to
verbs, each clause in the nested structure of coor-
dinated and subordinated clauses received from
the parser is considered in isolation. Because the
pattern of Case-Markers (CMP) associated with a
given verb is known when the second user
interaction is undertaken, HAIKU can check a
dictionary of these patterns to see if this par-
titular one has been encountered earlier with any
verb. If it has, the matching CMPs will be order-
ed according to a closeness metric discussed
below. Otherwise HAIKU will use this closeness
metric to search its CMP dictionary for the pat-
tern that most nearly resembles the input CMP.
This pattern may lack certain Case-Markers,
have extra ones, or not match on both grounds.
However a candidate pattern will a l w a y s be
found, it will be the best possible, and HAIKU
can provide additional, next-best patterns should
the fast be deemed unsatisfactory.
For example, the sentence ~Tho p a r c e l w a s
moved from the house to the ear" h a s the
CI%'[P SUBJ-OBJ-FROM-TO (where SUBJ is nil
here), associated with the verb m o v e . A
dictionary of CMPs is searched to see i f this
pattern has previously been associated with
move. If not, the analyzer will look at the entry
for move. Suppose it finds { SUBJ-OBJ, SUBJ-OBJ-
WITH, SUBJ-FROM-AT}. It could try to add Case
alternatives realized by FROM and TO to the
SUBJ-OBJ pattern, or it might return to the CMP
dictionary and seek an instance of SUBJ-OBJ-

FROM-TO associated with a different verb.
Eventually the algorithm selects the CMP closest
to the input pattern. Closeness is a metric based
on factors such as the number, types and
agreement of CMs in each pattern and the verb
associated with each (Copeck et al. 1992). It may
be extended to use a very simple noun semantics
for Case Objects or counts of the frequency of
previous selection.
The HAIKU dic t ionar ies - -an incrementally
growing store of verb-CMP associations, Case
Patterns and e x a m p l e s - - a r e searched for
sentences that exemplify the Case Patterns as-
sociated with the CMPs. For example, if SUBJ-
OBJ-FROM-TO is associated with take, the sent-
ence might be "our guests took the train

from Montreal to Ottawa". The sentence is
shown to the user, who can accept the underlying
Case Pattern as correct, edit it by invoking a
mode whereby a new Case is associated with a
selected Case-Marker, or ask to see the next
sentence in the list. The decision to view another
sentence will probably be dictated by the number
of changes required in the pattern illustrated by
the current example. The user 's selections are
used to update the HAIKU dictionaries and to
freeze the sense and structure of the conceptual
fragment expressed by the clause which the
pattern represents: the system has learned a new
pattern of Case Markers, associated them with a
particular verb, and recorded the meaning they
convey in this instance. The resulting conceptual
fragment is then passed on to the Conceptual
Knowledge lh'ocessor to be integrated into the
main Conceptual Network.
The representation produced by HAIKU is
essentially a reorganized parse tree, augmented
with elements of meaning. Discourse relations
communicated by conjunctions (e.g. causality)
are not analyzed by CA. The representation also
includes constituents irrelevant to the overall
Case structure of the sentence, e.g. adjectives,
relative clauses, PPs attached to nouns, clauses
with stative verbs express ing noun-noun
relations, and so on. These are passed to the next
module of TANKA, the Mini-Network Builder.
FUTURE RESEARCH

The new version of DIPE'IT is operational. It is
now being integrated into the INTELLA system
(Delisle et al. 1991)which combines text analysis
with explanation-based learning. A Case Analy-
sis prototype is running and work in this area is
actively under way. It includes investigating the
character of technical texts, validating the set of
Cases used in TANKA, refining the process of

ACIT~ DE COLING-92, NANTES, 23-28 AO6T 1992 1 0 1 1 PREC. OF COLING-92, NANTES, AUG. 23-28, 1992

confirming the design principles behind exam-
pie-driven interaction with the user by experi-
ment . A re - implementa t ion o f the H A I K U
module will be completed in the coming months.

C O N C L U S I O N

We have presented the DIPETI ' parser and the
Case Ana lyze r - - the main elements o f the lin-
guistic part o f the TANKA system. TANKA will
process unedi ted technical text and acquire
knowledge about its domain. We want to analyze
complete documents with as little user assistance
as possible. This means that we must consider
incomplete and problematic inputs, al though
their rate of occurrence should be low in a well-
edited text. We have ensured robust low-level
processing of text in order to facilitate almost
automatic recognit ion of its structure. At the
other end of the spectrum, we plan to handle free
segments of text. In contrast with other ap-
proaches to language understanding, we do not
assume a complete semantic model apriori . This
imposes certain limitations on what can be pro-
cessed automatically; we will minimize user in-
teraction. We hope that we have made clear our
interest in practical NLP, which we regard as im-
portant given the increasing interest in using
NLP techniques to assist in acquiring knowledge
from text. We believe such techniques will be
used more and more commonly for knowledge
acquisition tasks and may establish a new trend
in the design of tools for knowledge engineers.

ACKNOWLEDGMENTS
This work has been supported by the Natural Sciences and
Engineering Research Council of Canada and Cogoos Inc.

REFERENCES
BRUCE, B. (1975). "Case Systems f~¢ Natm-al Language",

Artificial Intelligence, 6(4), 293-326.
COOK, W.A. (1979). Case Grammar: Development of the

Matrix Model (1970-1978), Georgetown Univ. Press,
Washington DC.

COPECK, T., Delisle, S. & Szpakowicz, S. (1990).
"Intelligent Case Analysis in the TANKA System",
Univ. of Ottawa, Dept. of Computer Science, TR-90-24.

COPECK, T., Delisle, S. & Szpakowicz, S. (1992).
"Semantic Analysis in TANKA" (in prel~'ation).

DELISLE, S. & Szpakowicz, S. (1991). "A Broad-
Coverage Parser for Knowledge Acquisition from
Technical Texts", Proc of the F~fth lnt Conf on Symbolic
and Logical Computing, Madison, SD, 169-183.

DELISLE, S. (1990). "A Parser for Processing Technical
Texts with a Large Coverage of English", Univ. of
Ottawa, Dept. of Computer Science, TR-90-25.

DELISLE, S., Matwin, S., Wang, J. & Zulmn, L. (1991).
"Explanation-based Learning Helps Acquire Knowledge
from Natural Language Texts", Proc Sixth lnt
Symposium on Methodologies for Intelligent Systems,
Charlotte, NC, Oct. 1991, 326-337.

FILLMORE, C. (1968). "The Case for Case", in E. Bach
and R.T. Harms (eds.), Universals in Linguistic Theory,
Holt, Reinhnrt and Winston, Chicago, IL.

GRIMES, J. (1975). The Thread of Discourse, Mouton,
The Hague.

HOBBS, J. (1978). "Resolving Pronoun References",
Lingua 44, 311-338.

JENSEN, K. (1989). "A Broil-coverage Nalural Language
Analysis System", Proc Int Workshop on Par$in 8
Technologies (Pittsburgh, PA), 425-441.

LARSON, M. (1984). Meaning-Based Translation: A
Guide to Cross-language Equivalence, Unive~rsity Press
of America, Lanham, NY.

QUIRK, R., Greenbaum, S., I.e.ech, (3. & Svartvik, J.
(1985). A Comprehensive Grammar of the English
Language, Lon gman .

SOMERS, H.L. (1987) Valency and Case in
Computational Linguistics. Edinburgh University Press.

SOWA, J. (1984). Conceptual Structures: Information
Processing in Mind and Machine, Addison-Wesley,
Reading, IdA.

SPARCK-JONES, K. & Bogoraev, B. (1987). "A Note on
the Study of Cases", ComputationalLinguistics, 13(1-2),
65-68.

SZPAKOWICZ, S. & Koperczak, Z. (1990). "Mixed-
Strategy Matching in Conceptual Networks". Z. W. Ras,
M. Zemankova and M. L. Emrich (eds.) Methodologies
for Intelligent Systems 5. North-Holland, 321-328.

SZPAKOWlCZ, S. (1990). "Semi-antomatic acquisition of
conceptual structure from technical textS", Int J of Man-
Machine Studies, 33,385-397.

WINOGRAD, T. (1983). Language as a Cognitive Process
(Syntax), Addison-Wesley.

YANG, L. & Szpakowicz, S. (1990). "Path-finding in
Networks". Proc SEAR CC '90 South East Asia Regional
Computer Confederation Conf,, Manila, Dee. 1990.

YANG, L. & Szpakowicz, S. (1991a). "Inheritance in
Conceptual Networks". Proc Sixth lnt Symposium on
Methodologies for Intelligent Systems, Charlotte, NC,
191-202.

YANG, L. & Szpakowicz, S. (1991b). "Planning in
Conceptual Networks". F. Dehne, F. Finia and W.W.
Koczkodaj (eds.) Advances in Computing and
Information - ICCI "91.Lecture Notes in Computer
Science, vol. 497, Springer-Vctlag, 669-671.

ZADROZNY, W. & Jensen, K. (1991). "Semantics of
Paragraphs", Computational I-J'nguistics, 17(2), 171-209.

ACT~ DE COLING-92. NANTES, 23-28 AO~f 1992 1 0 1 2 Pgoc. OF COLING-92. NANTES. AUG. 2.3-28, 1992

