
A Chart-based Method of I D / L P Parsing
with Generalized Discrimination Networks

S u r a p a n t M e k n a v i n M a n a b u O k u m u r a H o z u m i Ta~mka

D e p a r t m e n t o f C o m p u t e r Sc ience ,

T o k y o I n s t i t u t e of T e c h n o l o g y

2-12-1, O - o k n y a m a , M e g u r o - k u , T o k y o 152, J a p a n
e - m a i l s u r a p a n @ c s . t i t e c h . a c . j p

1 I n t r o d u c t i o n

Variations of word order are among the
most well-known phenomena of natural lan-
guages. From st well represented sample of
world languages, Steele[13] shows that about
76% of languages exhibit significant word
order variation. In addition to the well-
known Walpiri(Australian language), several
languages such as Japanese, Thai, German,
Hindi, and Finnish also allow considerable
word order variations. It is widely admit-
ted that such variations are" governed by
generalizations that should be expressed by
the grammars. Generalized Phrase Structure
Grammar (GPSG)[7] provides a method to
account for these generalizations by decom-
posing the grammar rules to Immediate Dom-
inance(ID) rules and Linear Preeedence(LP)
rules. Using ID/LP formalism, the flexible
word order languages can be concisely and
more easily described. However, designing
an efficient algorithm to pnt the seperated
components back in real parsing is a difficult
problem.

Given a set of ID/LP rules, one alter-
native method for parsing is to compile it
into another grammar description language,
e.g. Context-Free Grammar(CFG), for which
there exist some parsing algorithms. How-
ever, the received object grammar tends to
be so huge and can slow down the parsing
time dramatically. Also, the method losts the
modularity of ID/LP formalism.

Another set of approaches[ll, 4, 11 tries

to keep ID and LP rules as they are, with-
out expanding them out to other formalisms.
Shieber[ll] has proposed an interesting al-
gorithm for direct ID/LP parsing by gener-
alizing Earley's algorithm[6] to use tile con-
straints of ID/LP rules directly. Despite of
its possibility of blowing up in the worst
ease, Barton[3] has shown that Shieber's di-
rect parsing algorithm usually does have a
time advantage over the use of Earley's algoo
rithm oll the expanded CFG. Thus the direct
parsing strategy is likely to be an appealing
candidate for parsing with ID/LP rules from
the computational point of view.

In this paper, we present a new approach
to direct ID/LP rules parsing that outper-
forms the prcvious methods. Besides of the
direct parsing property, three features con-
tribute to its efficiency. First, ID rules
are precompiled to generalized discrimina-
tion networks[9] to yield compact represen-
tation of parsing states, hence less compu-
tation time. Second, LP rules are also pre-
compiled into a Hasse diagram to minimize
the time used for order legality cheek at run
time. And, third, its bottom-up depth-first
parsing strategy minimizes the work of edge
check and therefore saves a lot of processing
time.

We will first describe briefly each feature
of our parser. Then, we will show the parsing
algorithm and an example of parsing. The
comparisons of our approach with other re-
lated works are also described. Finally, we
give a conclusion and our future works.

ACIES DE COLING-92, NANTES, 23-28 AO~' 1992 4 0 1 I)ROC. OF COI.,ING-92, NANTES, AUG. 23-28, 1992

s --*ID a,b,c,d (1)

s -~x. a ,b ,e , f (2)
a,b,c < d (3)

b < c (4)
a,e < f (5)

Figure 1: An example ID/LP grammar : Gl

2 T h e P r i n c i p l e s o f t h e

P a r s e r

Identifier Bi t Vector

111111ollo1 Iln2lolxol
dl If

10111~011101 [011211011101

2 . 1 B o t t o m - u p D e p t h - f i r s t

S t r a t e g y

Chart parsing is one of the most well-known
and efficient techniques for parsing general
context-free grammars. The chart serves as
a book-keeping storage for all parses gener-
ated while parsing. In general, to avoid re-
doing the same tasks, the chart has to be
checked every time a new edge is proposed
to see whether the identical edge was already
generated. Also, when an edge is entered into
the chart, it must be checked with other edges
to see if it can be merged together to create
new edges. In practice, these checks can oc-
cupy the majority of parsing time.

In order to build an efficient parser, it is ap-
parent to minimize the checks above. Many
different strategies of chart parsers has been
developed. Most of them try to mininfize the
number of useless edges to reduce the check-
ing time.

Our parsing strategy is based on the Word
Incorporation (VVI) algorithm[12] with some
modifications to accommodate ID/LP for-
realism. We follow WI algorithm by restrict-
ing the parsing strategy to be solely bottom-
up and depth-first. This makes the parsing
proceed along the input in an orderly fashion
(left to right or right to left) and keep pro-
cessing at a vertex until no more new edges
ending at the vertex can be generated. Once
the parsing go beyond a vertex, the process-
ing will never be redone at tha t vertex again.
As a consequence, the duplicated edge check
can be completely omitted. Moreover, once

Figure 2: Generalized discrimination network
representation of ID rules

a complete edge is used (for creating new ac-
tive edges), we can delete it out of tile storage
since it cannot affect other edges anymore.
This reduces the number of edges and hence
the checking time.

2 . 2 G e n e r a l i z e d D i s c r i m i n a -

t i o n N e t w o r k s a s I D r u l e s

c o m p i l a t i o n

In conventional chart parsing for context-free
grammars, a method for reducing the number
of edges is precompiling the grammars into
discrimination trees. Assume two CFG rules,
S ~ ABCD and S ~ ABEF. The RHS of the
two rules have the common left part AB and
therefore can be merged together into a single
combined rule: S ~ AB(CD,EF). In parsing,
the common part can then be represented by
a single active edge.

However, to apply the method to ID/LP
formalism, the case is different. Suppose
we have a ID/LP grammar (-;1 as shown in
Fig. 1. If we view parsing as discrimination
tree traversal, the parsing has to proceed in
the fixed order from the root to leaf nodes.
Because of the order-free characteristic of ID
rules, we can no longer just simply combine
the ID rules (1) and (2) together as for the
two CFG rules above.

To achieve the same merit of discrimination
network in the case of CFG rules, we use gen-

ACTES DE COLING-92. NxrcrEs, 23-28 AO~,'r 1992 4 0 2 Paoc. OF COLING-92. NANTES. Aua. 23-28. 1992

erMized discrimination network (GDN) for
representing ID rules. GDN is a generaliza-
tion of a discrimination tree that can be tra-
versed according to the order in which con-
stralnts are obtained incrementally during the
analytical process, independently of the order
of the network's arcs. The technique has been
first proposed in [9] to be used in incremen-
tal semantic disambiguation nmdel but its
characteristic also matches our purpose. The
technique of GI)N is to assign each node in
the network a unique identifier and a bit vec-
tor. For example, the ID rules of Ga, shown
in Fig. 1 ,can be represented as the discrimi-
nation network in Fig. 2, of which each node
is assigned a unique identifier. The leftmost
digit of an identifier of a node v indicates
whether the node is a leaf or not, '0' for being
a leaf and '1' for being a non-leaf. This digit
is followed by the sequence S(v), which is the
concatenation of the sequence S(u) and the
integer k, where u is the immediate predeces-
sor of v and k is the numerical number of the
arcs issuing from u. 1 Note that the identifier
of the root node r has only the first leftmost
digit(S(r) is null).

As shown in Fig. 2, to each node identifier,
we attached a bit vector that has the same
length as the identifier and consists of l 's ex-
cept the leftmost and rightmost bits. These
identifiers together with their corresponding
bit vectors play an important role in the pars-
ing process with GDN, as will be described
later.

Note that representing ID rules by GDN
can combine the common parts of different
ID rules into the same arcs in the network.
Shieber's representation, in contrast, consid-
ers each single ID rule seperately and thus
cannot achieve this kind of compactness.

2 . 3 R e p r e s e n t i n g L P r u l e s a s a

Hasse diagram

Hasse diagram is a representation of partially
ordered set used in graph theory[8]. Since
a set of LP rules also defines a partially oro
dered set on a grammar's categories, we can

1The encoding used here is a little ditfercnt from
the original ()tie in [9].

d f

Figure 3: Hasse diagram with the precedence
vector assigned to each node

constrnct its corresponding Hasse diagram.
Fig. 3 shows a Hasse diagram for LP rules
of G1. qb each node we assign a unique flag
and construct a bit vector by setting the flag
to '1' and the others to '0'. As for this Hasse
diagram, we assign 1lag(a) the first bit, flag(b)
the second bit, . . . , and flag(f) the sixth bit.
The bit vectors of nodes a, b, c, d, e and f are
then 000001, 000010, 000100, 001000, 010000
and 100000, respectively. The precedence
vector of each node is the bitwise disjunction
between its bit vector and all bit vectors of its
subordinate nodes. For example, the prece-
dence vector of f is the disjunction between
bit vectors of f , a and e; 100000 V 000001 V
010000 = 110001. The resultant precedence
vectors are shown in Fig. 3 with O's in their
left parts omitted.

Using the above technique, the order legal-
ity check with respect to a given set of LP
rules can be efficiently done by the algorithm
below:

A l g o r i t h m : C h e c k O r d e r
Input : Two symbols, A and B with the

t)recedence vector Prea and Pre~ respec-
tively, where A precedes B in the input.

1. 'Fake the bitwise disjunction between
Pre a and Pren.

2. Ctieck equality: if the result is equal to
['rea, fail. Otherwise, return the result
as the precedence vector of the string
AB.

ACTES DE COLING-92, NANTES, 23-28 AOtn' 1992 4 0 3 I)ROC. OV COLING-92, NAN'I'ES, AUG. 23~28, 1992

Note that , by the encoding algorithm de-
scribed in the previous subsection, the prece-
dence vector of a symbol A that must precede
a symbol B always be included in B 's prece-
dence vector. As a result, if A comes behind
B the disjunction of their precedence vectors
will be equal to B's precedence vector. The
above algorithm thus employs this fact to de-
tect the order violation easily. Moreover, note
tha t all LP constraints concerning the sym-
bols concatenated are propagated with the
resultant string's precedence vector by the re-
sult of disjunction. We can then use the al-
gorithm to check the legality of next input
symbol with respect to all preceded symbols
easily by checking with the resultant string's
precedence vector only. In real implementa-
tion, we can represent a precedence vector by
an integer and the order legality can thus be
checked efficiently by using Boolean bitwise
operations between integers provided in most
machines.

r e d u c e (a , (s , l l , l , 0 0)) .
r e d u c e (b , (s , l l l , 1 0 , 0 1 0)) .
r e d u c e (c , (s , l l l l , l l 0 , 0 1 1 0)) .
r e d u c e (d , (s , 0 1 1 1 1 , 1 1 1 1 , 0 1 1 1 0)) .
r e d u c e (e , (s , l l l 2 , 1 0 0 0 0 , 0 1 1 0)) .
r e d u c e (f , (s , O 1 1 2 1 , 1 1 0 0 0 1 , O l l l O)) .

Figure 4: Category-state table generated
from ID/LP rules : G:

Next, the constraint-identifier table is re-
placed by the category-state table, notated
as reduce(category, state), viewing each cat-
egory as a constraint. This table will be used
to reduce a constituent to higher level con-
stituent state when it is complete. A con-
stituent is complete if its current state is at
a leaf node and all bits of B i t V are set to 0.
Fig. 4 shows the table derived from G1.

2.4 Table for ID/LP Parsing
GDN can cope with any order of input con-
straints by referring to the table of constraint-
identifier which is extracted from the network
by collecting pairs of a branch and its im-
mediate subordinate node. However, GDN
has been proposed to handle the completely
order-free constraint system. In order to ap-
ply the model to parse natural language of
which word order is restricted by some lin-
ear precedence constraints, some modifica-
tions have to be done to take those constraints
into account.

First, the definition of a state is changed
from a 2-tuple < Id, B i t V > to a 4-tuple
< Cat, Id, Pre, B i t V > where each element
is defined as the following:

Cat : the mother category of the state;
Id : the identifier of the state;
Pre : the precedence vector of the state;
B i t V : the bit vector of the state.

Because we have several networks for all
nonterminal categories in grammar, Cat is
added to indicate which networks the state
belongs to. Moreover, in addition to the ele-
ments used to check ID rules, the precedence
vector Pre is added for the check of LP rules.

3 The Parsing Algor i thm

Using the table generated from the ID/LP
grammar, we can parse by the following al-
gorithm.

A l g o r i t h m : P a r s e
Given a category~state table T generated

from ID/LP grammar G, a dictionary D ,
a goal category S and an input string w =
wlw2. . • w, , where wi is a terminal in G, we
construct the chart as follows:

k +-- 0;
wh i l e k < n do b e g i n

1. Look up D for the entry of Wk+ 1, Span
the inactive(complete) edges correspond-
ing to every possible category of w~+: be-
tween vertices k and k + 1.

Now perform steps (2) and (3) until no
new edges can be added.

2. For each inactive edge of category fl
spanned between vertices j and k+l (j <
k + 1), if reduce(~3, ¢) is an entry in T,
span the edge of state ¢ between vertices
j and k + 1.

AC'T~ DE COLING-92, N^h'TES, 23-28 Aotrr 1992 4 0 4 PROC. OF COLING-92, NANTES, AUG. 23-28, 1992

3. For each active(incomplete) edge of cat-
egory/3 spanned between vertices j and
k + 1, search for active edge spanned be-
tween vertices i and j (i < j). For each
one found, perform the check operation
between the two edges. If this succeeds,
add the resultant new edge between ver-
tices i and k + 1.

4+ k ~ k + l .

end;
The input string w is accepted if and only

if there exists some complete edge of category
S from vertex 0 to vertex n in the chart.

Here, the cheek operation between two
edges(states) includes all of the following op-
erations:

o p e r a t i o n b e t w e e n Cats : If Catl = Cabe
then return Cab. Otherwise, fail;

o p e r a t i o n b e t w e e n Ids : Ignoring the left-
most bit, if Id~ is a prefix-numerical
string of/+/2, return Id2. Otherwise, fail;

o p e r a t i o n b e t w e e n Pres : As described in
CheckOrder algorithm;

o p e r a t i o n b e t w e e n BitVs : After adjust-
ing the length of BitVs by attaching l ' s
to the end of the shorter vector, return
the bit vector of which each bit is a coat-
junction of the bits of two bit vectors.

The operation between Cats first checks
whether the two states are in the same net-
work. The operation between Ids then checks
whether one node can be reached front the
other in the network. The operation between
Pres tests whether the catenation of the edges
violates LP constraints and return the prece-
dence vector of the successful combined edge
as described in section 4. The operation be-
tween BitVs allows us to cope with the free
order of constraints. The bit vector repre:
sents all the constraints that must be saris-
fled between the root node and the reached
node. A bit of 0 and 1 means that the corre-
sponding constraint is satisfied and unsatis=
fled, respectively. For example, the bit vector
'0110' in reduce(e, <s,ll12,10000,0110>) of
the table in Fig. 4 means that by receiving

/ : (s,o1121,11oo11,0oooo)

i b ~ e ~ a ~ f

Figure 5: Chart of parsing beaf.

e as the input, the constraint e is satisfied
and its corresponding rightnrost bit in the bit
vector will become '0'. In addition, the two
l ' s mean that we can traverse to the node
with the identitier 1112 but another two con-
straints, a and b, has to be satisfied before.
The leftmost bit just makes the vector length
the same as that of the identifier and has no
corresponding constraint. By taking the con-
jltnction of bits of these vectors, bits of tile
resultant vector are incrementally changed to
0. Because the bit conjunction operation is
executable in any order, it is possible to cope
with an arbitrary order of constraints.

Note that one may adopt other mechanisms
used in conventional chart parsing to improve
the efficiency of the above algorithm.
E x a m p l e . Suppose we are given the string
of categories b,e,a,f to parse, using grammar
in Fig. 1. First, the edge <s, l l l ,10,010>
is spanned between vertices 0 and 1, since
the first element of the string is a b. No
more iterations of step 2 and 3 are possi-
ble, so we move on to the next word. Af-
ter category e is obtained, its corresponding
state <s,1112,10000,0110> is then operated
with the state <s,111,10,010>. Operation be-
tween categories succeeds because both states
have the same category .~. Operation between
identifiers I l l and 1112 succeeds because 111
is a prefix of l l l 2 , thus 1.112 is returned.
Operation between precedence values 10 and
10000 also succeeds because the bitwise dis-
junction of them yields 10010 which is not
equal to 10. Last, the operation between bit

AcrEs DE COLING-92. NAbrFES. 23-28 AOUT 1992 4 0 5 l)l~oe, o1: COLING-92. N^N'rES. AUG. 23-28. 1992

vectors 010 and 0110 returns the result of con-
junction between 0100 and 0110 which is thus
0100. So the above operations yield the resul-
tant state <s,ll12,10010,0100> as the edge
spanned between vertices 0 and 2.

Continuing in this manner, we will get
<s,ll12,10011,0000> between vertices 0 and
3, and <s, ll121,110011,00000> between ver-
tices 0 and 4. Because the latter is a complete
edge of goal category ~s', the input string is
thus accepted. The chart is shown in Fig. 5.

4 Compar i son w i t h Re-
la ted Works

Other than Shieber's work, there are many
works in the past concerning ID/LP pars-
ing. Popowich's FIGG[10] treats ID/LP rules
by compiling them into Discontinuos Gram-
mar rules. The different approach of top-
down ID/LP parsing using logic grammars is
presented by Abramson[1]. This approach is
based on using metarules and is attractive in
tha t it can be simply added on top of logic
grammars tha t are directly available in Pro-
log. However, the main drawback in using top
down recursive descent parsing methods is
tha t it might result in an infinite loop for left
recursive grammars. The recent version us-
ing Static Discontinuity Grammars(SDG)[5]
augmented with Abramson's metarules can
solve this problem by adding loop control
as a constraint on parsing. According to
the comparison tests reported in [2], the ap-
proach appears to be considerably faster than
Popowich's FIGG.

Another approach of Bottom-up filter-
ing strategy[4] at tempts to reduce the non-
determinism in parsing. Different ID rules
are constrained to have at most one category
in common and the knowledge of the leftmost
constituent is used for phrase level initializa-
tion.

As an investigation of our approach, we
have implemented a small parser, called
GHW, using SlCStus prolog on a Sun 3-60
workstation. To reduce spurious parses, the
parser adopts the technique of the left-corner
parsing method to detect the edges that can-

ACTES DE COLlNG-92. NAN'I~. 23-28 hofrr 1992 4 0 6

not start a constituent in the bottom-up rules
invoking stage. The technique is similar to
the one used in [4]. GHW is compared with
the SDG+metarules and Shieber's parsers
running on the same environments. In exper-
imentation, we use a toy grammar taken from
[2] that was used to compare SDG+metarules
approach with FIGG. The grammar contains
11 ID rules and 4 LP rules. A set of artificial
sentences whose lengths are ranged from 2 to
6 is tested on. The timings are averaged over
100 runs using compiled fastcode and reflect
the average amount of CPU time in millisec-
onds required to parse the sentences of sev-
erai lengths. The result is shown in Fig. 6.
Because Shieber's and our parser develop all
parses in parallel and thus the time used to
find the 1st and M1 parses are about the same,
only the all parses time is shown.

Comparing GHW with Shieber's parser, as
expected, GHW outperforms the other for all
lengths of the input. When comparing with
SDG+metarules parser, for short sentences
SDG+metarules wins over our approach in
finding the 1st parse, but for longer sentences
our approach surpasses it in all cases. This
can be explained that because our method
needs to do more works of initialization at
the beginning of parsing and thus for short
sentences this cost will affect parse time sig-
nificantly. However, in the case of longer sen-
tences the cost will be small compared to
over all costs and can be neglected. Thus
our method may be more suited for using in
reM applications that concern rather long and
complicated sentences. However, this exper-
iment is just a first step of investigating the
behaviour of our approach. It remains to be
seen how the performance will be for a real-
istic grammar.

5 Conc lus ion

A new method for ID/LP rules parsing is
described. The method improves the per-
formance of parsing by keeping the parsing
states set as small as possible, reducing the
time used by the LP rules checking operation
and cutting away the overhead of duplicated
edge checking. These are accomplished by in-

PRoc. OF COLING-92, NAN'rE.s, AUG. 23-28, 1992

total ~8_.~63._1 104:_ ~ 97. [al0./

Figure 6: The result of contp*trison test

tegrat ing the. merits of GDN, l lasse diagram
and WI algorithm in parsing.The method is
shown to be superior to the previous methods
on the tested grammar. However, more ex-
plorat ions have to be done with diverse gram-
mars and sentences to confirm the effective-
ness of our method. This is left as one of our
further works. Also, extending the parser to
handle ill-formed input is under investigation.

A c k n o w l e d g e m e n t s

The authors would like to thank Prof. Har:
vey Abramson for providing his system and
Suresh Katare Gopalrao for checking English
in this paper. This work w~Ls partly sup-
por ted by the Telecommunications Advance-
ment Foundat ion(TAF).

R e f e r e n c e s

]ll

[2]

Is[

[4]

Abramson, H. Metarules for Eflficient Top-
down ID-LP Parsing in Logic Grammars,
Technical Report TR-89-11, University of
Bristol, I)epartment of Computer Science,
1989.

Abr,~mson, H. and l)alll, V. On Top-down
ID-LP Parsing With Logic Grammars, sub-
mitted for publication.

Barton, E. On the Complexity of II)/LP
Parsing. In Computational Liuguzstics,
(October-December 1985), 205-218.

Blache, P. and Morin J. Bottom-Up Filter-
ing: a Parsing Strategy for GPSG. In pro.
ceedings of the 131h Internat*onal Confer-
ence on Computational Linguistics, vol. 2,
pp. 19-23, 1990

[5] 1)Md, V. and Popowich, F. Parsing
and Generation with Static Discontinu-
ity Gr~nnlars. New Generation Computing,
vol. 8, no. 3, pp. 245-274, 1990.

[6] l"mrley, J. An Efficient Context-l~ree Parsing
Algorithm, Comm. ACM 13.2:94-102. 1970.

[7] Gazdar, G., E. Klein, G.K. Pullum and 1.A.
Sag. Generalized Phrase Structure Gram-
mar. 1985.

[8] I,iu, C.L. Elements of Discrete Mathemat-
ics. MeGrawqlill International Editions.
1986.

[9] Okumura M. and Tanaka H. ~lbwm'ds In-
cremental Disambiguation with a General-
ized Discrimination Network. In PTvceed-
lugs Eighth National Confe~ence on Artifi-
cial Intelligence, pp. 990-995, 1990.

[10] popowieh, F.P. Unrestricted gypping gram-
mars. Computational intelligence, vol. 2,
pp. 28-53, 1986.

[11] Shieber, Stuart M. Direct Parsing of
II)/LP Grammars. Linguistics and Philos-
ophy 7(1984), pp. 135-154. 1984.

[l 2] Simpkins, N.K. and ttancox, P. Chart Pars-
ing in Prolog. New Gene~Yttion Computing,
vol. 8, no. 2, pp. 113-138. 1990.

[13] Steel, S. Word ()rder Variation: A typolog-
ical Study. In J. G*eenbeTy(ed.) Universals
of Language, vo[. 4. Stanford, CA: Stanford
University Press. 1981.

[14] Winograd T. Language as a Cognitive P,v-
sees, vol. l, Syntax, Addison-Wesley. 1983.

Acn'Es DE COLING-92, NANTES, 23-28 AO(n" 1992 4 0 7 PV.OC. OF COI.ING 92, NANTES, AUG. 23-28, 1992

