
Typed Unification Grammars

Martin C. Emele, Dhni Zajac
Project Polygloss*

University of Stuttgart
IMS~CL/Ifl~AIS, Keplerstrage 17,

D - 7000 Stuttgart 1, Federal Republic of Germany
{emele,zajac} @is.informatik.uni-st ut tgart.dbp.de

Abs t rac t
We introduce TFS, a computer formal-

ism in the class of logic ibrmaiisms which
integrates a powerful type system. Its basic
data structures are typed feature structures.
The type system encourages an object-
oriented approach to linguistic description
by providing a multiple inheritance mecha-
nism and an inference mechanism which al-
lows the specitication of relations between
levels o[linguistic description defined as
classes of objects. We illustrate this alc-
proach starting from a very simple DCG,
and show how to make use of the typing sys-
tem to enforce general constraints and mod-
ularize linguistic descriptions, and how fur-
ther abstraction leads to a tlPSG-Iike gram-
mar.

1 I n t r o d u c t i o n
Various proposals have been made for the integra-
tion of type intbrmation in unification-based gram-
mar formali,nns to enforce constraints described in
a hierarchical way where types are partially or-
dered with a subtype relation. Authors describe
these extensions as "inheritance grammars", "in-
heritance networks", ':Ii;'ature sorts", "typed t~ature
structures",. . .[1, 3, 5, 13, 17, 15, 9, 11, 7, 8].
These formalisms exhibit, to various degrees, one or
several of the following properties, characteristic of
the so-called object-oriented paradigm: a high level
of abstraction, a capacity of inference, modularity
and distributed control. Abstraction and modular-
ity are needed when the linguist wants to describe
a hierarchy of concepts (like a lexical hierarchy or
the hierarchy of phrasal categories), and to describe
linguistic data at different levels (e.g. morphology,
syntax, semantics). At first glance it seems rather
natural to develop separate modules for different lin-
guistic levels, and to describe separately their inter-
actions; however, great difficulties are encountered
when these modules have to be integrated. Usually,
there are two choices. Either everything is described
in a single place using a deeply intricate data struc-
ture, like packing both syntactic and semantic equa-
tions in CF rules in some LFG extensions (e.g. [10]);
the price is a loss in understmtdability and general~
ity. Or descriptions are kept separate and the pro-
eessing is done accordingly: first, a morphological
phase, then a syntactic analysis, and then a semantic
analysis, without any communication between these
different steps [4]. The price is that interdependent
constraints between these levels are lost, resulting

in inadequate linguistic description or very complex
control strategies at the implementation level.
In this paper, we argue that typed unification gram-
mars give the linguist a formal framework which has
the desirable properties. We will give an introduc-
tion to such a formalism, called 'IF,_ (~Iyped I"ea-
ture Structure), which integrates disjunctions, con-
junctions and conditional expressions of typed fea-
ture structures. This introduction will start from a
very simple DCG, and will show how one can write a
DCG-like grammar in TFS, making use of the typing
system to enforce general constraints valid for classes
of objects and to modularize linguistic descriptions.
We then show that further abstraction leads to a
I-[PSG-like grammar. It is not our goal to give here
a formal account of the formalism (the interested
reader should refer to [2] where a very clear tbrmal
semantics on which TFS is based is given), and we
will use an informal approach wherever possible.

2 T y p e d t~a tu re s t r u c t u r e s and uni f ica t ion

Tlle basic data structure of tile language is a typed
featm'e structure: a feature structure (FS in the fol-
lowing) with which a type can be associated. Corn-
pared to untyped FSs (as presented in [16] for exam-
ple), the TFS system offers the possibility to name
complex FSs, and to associate constraints with these
names, thus defining a type.
We write feature names in small caps letters (v, ~,
u), type symbols in upper case letters (A, B), and we
use symbols inside a box [~, called tags, for denoting
shared values. For cxarnple, the typed FS, written in
a linear form A[F: [[]B[H: C], a: ~]], is an FS of type
A with two features f." and e, v having as a value tile
typed FS B[H: A] and G having the same shared value
aS F.
In the system, one can specify type definitions which
can, as a first approximation, be seen as a kind
of template definition like in e.g. PATR-II. There
is, however, a major difference. The system uses a
type inference mechanism to derive new types dy-
namically during computation whereas templates in
PATR-II are expanded statically at compile time.
A type that encodes agreement features can be writ-
ten: AGR = [num: NUM,gender: GEN] and types NtJM
and GEN being themselves defined as NUM = SING
V PLUR (where the symbol "y" denotes the logical
O R) and GEN : MASC V FEM V NEU. T h e t y p e s NUM,
SG,... do not have definitions: they are called atomic
t y p e s . AGR, NUM and GEN are called complex types.
From a set of type definitions, one can extract, a par-
tial order on type symbols. For example, from the

*Researdl reported in this paper is partly supported by the German Ministry of Research and Technology (BMFT, Bun-
desminister ffir Forschung und Technologie), under grant No. 08 B3116 3. The views and conclusions contained herein are those
of the authors and should not be interpreted as representing official policies.

293

set of definitions above, we can derive the following
partial order on type symbols (Fig. l) where T rep-
resents the greatest element (no information) and 3_
the smallest element (inconsistent information, lead-
ing to failure in unification). This partial order is in
turn used to derive a lattice of type syml)ols, which is
then exl.ended to typed FSs or(lere(1 by (typed) sub-
stunption, forming a lattice on which the interpreter
works (see a formal account in [2]).

/ 1 " ~ GEN
NUM

: \ / 1 ~
SIN(; PLUR MASC FEM NEU

For exainple, the FS f l AGR[nnm: NUM] subsumes the
FS f9 AGR[num: PLUR, gen(ler: FEM] because f2 has
more specifc information than f l : no gender is spec-
ified in f l , and the number value of f2 PLUR is more
specific than the number value of f l , NUM.
Typed unification proceeds as ordinary unification
for FSs, recnrsively corot)thing substructures at the
same paths. When two (typed) FSs are unified, f r s t
the type symbols are unified, and if this unifica-
tion succeeds, the FSs are unified. Unification of two
types X and Y is defined . . (. . . . as the set of) most general
type(s) which is smaller than both x and Y: ~t is the
greatest lower bound (GLB) of these two symbols
in the lattice of type syml)ols. If taso types are di-
rectly comparable, the smallest iv the result of the
unification: HUM M PLUR = PLUR. This extension is
consistent with the definition of the unifier of two
FSs ~s the GLB of these structures (see, for exam-
pie, [16]).

3 F e a t u r e t y p e s as d a t a t y p e s a n d f e a t u r e
t y p e s as r e l a t i o n s

3.1 The L I S T type as a d a t a t y p e
A list of words will be defined in a LISP-like fash-
ion as either the END of a list or a CONS with two
at tr ibutes first and rest:
LIST = END V CONS[vms'r:WORD, nEsT:LIST].
WORD denotes the set of word forms, and the list. of
words "John likes Mary" will be encoded as

JOHN
CONS [Fm.s'r: CONS [FroST: LIKES

L,-,:ST: LR .<T: ONS V"ST: AR*l]t,, sr: j j
which is a well-formed list. with respect to the LIST
definition. (We shall use in the following a more
concise syntax for lists: END will be written as 0 ;
CONS[FIRsT:WORD, nEs'r:klST] will be written as (WORD
. LIST); lists will be written using the usual abbre-
viation for lists: the list of words "John likes Mary"
will then be written as (JOHN LIKES MARY}).

3.2 The A P P E N D type as a relation
One can also unders tand feature types as relations
much like those in P R O L O G . Let us recall the clas-
sical P R O L O G definition of append:

append([] ,L ,L) .
append([XlL1] ,L2, [XlL3]) : - append(L1,L2,L3).

in I>ROLOG, the arguments of a term are identi-
fied by their positions in the term, and the presence

2

of all arguments is mandatory. In an FS, arguments
(feature vahles) are not identified by their position
but by a label, the feature, and the absence of an
attri lmte-value pair will denote any kind of value for
this at tr ibute (type T). Using the TFS syntax, where
the symbol ' :- ' after an FS introduces a condition, a
definition for append can be as follows:
APPEND = iF: 0, iS: [i~LIST, W: [~]] V

iF: ([XJ • g i]) , .: []~L,ST, w : (~ . 1i~1)]
: -- APPEND[F: ~.t-~, 13: [~], W: [~] .

Note that the tagging syntax allows to specification
of identity between structures and a partial instance
of the structure. This possibility (together with the
fact. that typing iv enforced by the system) allows
the writing of a typed version of append, in contrast
to the untyped P R O L O G version.

3.3 T y p e checking as d e d u c t i o n
Contrary to P R O L O G , there is no distinction in TFS
between top-level types (which could be interpreted
as predicates) and inner types (which could be inter-
preted as arguments): they are all typed FSs, and the
same deduction mechanism applies for the top-level
structure ~s well as for all substructures. A (typed)
FS is consistent with respect to a set of type def-
initions if it unifies with the definition of its type,
and if each of its substructures is also consistent.
Conditions like in the definition of append above in-
troduce additional constraints which are erased after
having been successfidly evaluated. When a type iv
defined as a disjunction, a s tructure has to be consis-
tent with at, least, one element of the disjunction (but
all possibilities are explored, creating as many pos-
sible solutions as there are disjuncts). When a type
is defined as a conjunction (using the AND operator
noted "A"), a s tructure has to be consistent with
every single element of the conjunction. The order
used for type checking (roughly top-down) guaran-
tees tha t the solution the system finds is the GLB of
the set of definitions augmented by the initial struc-
ture [2].
For example, the (typed) FS AGR[num:PLUR] is
consistent with regard to the set of defini-
tions above (Sect. l) . The interpreter will ap-
ply the definition of AGR at the root of the
FS : AGR[num:PLUR] M num:NUM,gender:GEN] =
AGR[nu nl:PLUR,geuder:GEN
AGR[num:MASC] is an inconsistent (typed) FS :
AGR[num:MASCJ I-1 [uum:NUM,gender:GEN] = I be-
cause the types MASC ail(] NUM have only J_, the
bot tom of the lattice, ~s a common snl)type repre-
senting inconsistent information. Note that this type
checking process may introduce new type symbols
also used for checking, thus defining a type inheri-
tance mechanism.
A full evaluation of APPEND[w:(A B}] produces a set
of three FSs:

i
F: 0 , ": ID(A B), w: ~] v
F: < ~ A . (>), .: ~ (B) , w: <t~. r~>] v
e: (~ A . (m @ , . : r ~ 0 , ~ : (@ • (m .~>)]

4 T y p e d u n i f i c a t i o n g r a m m a r s

4.1 D C G s

In this section, we describe how one can (but should
not) write grammars using this formalism. To make
comparisons easier, we will s tart from the small ex-
ample of DCG presented in [Pereira and Warren 80]
and show how this g rammar (Fig.2) can be written
in TFS.

294

sentenee(s(NP, VP)) --+ noun_phrase(Num,NP), verb_phrmse(Num,VV).
noun_phrasetNum , np(Det ,Noun)) -+ determiner(Nnm,Det) , noun(Nnm,Nonn).
noun_phrase(singular,np(Name)) --~ name(Name).
verb..phrase(Num,vp(TV,NP)) ~ trans_verb(Num,TV),noun_phrasc(N1,NP).
determiner(Num,det(W)) --~ [W], is_determiner(W,Num).
noun(Num,n(l~oot)) --+ [W], is_noun(W,Num,Root).
name(name(W)) --* [W], is_name(W).
trans_verb(Num,tv(Root)) ~ [W], is_trans(W,Num,Root).

(Figure 2)

is_determiner(all, plural).
is_noun(man, singular, ma
isJ~oun(men, phlral, man).
is_name(mary).
is_trans(likes,singular, like)
is_trans(like, plural, like).

In a specification like this, there are three different
kinds of information mixed together. Take for exam-
ple the rule "noun_phrase(Num, np(Det, Noun))
determiner(Num, Det), noun(Num, Noun)". In "this
rule we find:

1. a specification of a set of wcll-formed sub-
strings using the CF skeleton: noun_phrase --~
determiner, noun;

2. a specification of well-formed (partial) syntac-
tic structures: the structure np(Det, Noun) is
well-formed if Det and Noun are a well-formed
structure and if its agreement value (variable
Num) is the same for the Det, the Noun, and
the noun_phrase;

3. a specification of a relation between well-
formed (partial) syntactic structures and well-
formed substrings by augmenting the CF skele-
ton with annotations representing those struc-
tures.

4 .2 A T F S s p e c i f i c a t i o n
All this information mixed together can be separated
out and specified in a more modular way.

1. The set of well-formed strings of words is de-
fined as in Sect.2.1, where WORD = allVmen...

2. The set of well-formed partial syntactic struc-
tures, i.e. every syntactic constraint like agree-
[Rent or subcategorisation, should be expressed
in this part of the specification.
PI4RASAL_CATEGORY = S V NP V VP.
S = [NP: NP[AaR: [~NUM], vP: VP[*oR: [g3]].

[DET: DET[AGR: Z]NUM]I [NAME: PN]
NP = V o , . : N[,oR: ~] / V L *aR: SG '

LAOR: []~] J
VP = [V: TV[AoR: [~INUM], NP: NP: AGR: [1~]].

.

LEXICAL_CATEGORY : DET V N V PN V V.
DET : ALL V EVERY V A V THE.
ALL : [WORD: all, AOR: PL].
N : M A N V WOMAN.
MAN = [WORD:man, AGR:SG] V [WORD:men, *GR:Pq.
PN = JOHN V MARY.
MARY = [WORD: Mary].
V : : IV V TV.
TV ---- LIKE V LOVE.
L,KE = [WORD:,ike,, ,on:SG] V [WORD:,ike, hoR:PL].

The relation between strings and struc-
tures should be stated independently of well-
formedness conditions on syntactic structures.
It is expressed here in CF manner by using
the APPEND relation on strings. (However, we
do not advocate the exclusive use of CF-like
relations; more complex ones can be specified
to gain expressive power, e.g. by incorporating
linear precedence rules).

SENTENCE ==

NOUN_PHRASE[sTm[Na: ~ LIST, C-STR:[n~]
VERB_PHRASE[sTRINO: ~ , C-STm [~J
APPEND[P:~, . : ~ , w : ~]

NOUN_PHRASE =-
[STmNO: ~ . _ _ _ ~ , C-STR: NP[DI~T: [~], ,OUN: IK]] : --
DETERMINER[STmNQ: ~ , C-STm ~]]
NOUN[sTmNO: ~ , c-s~.rm [Ell
APPEND[F:~B:~, w : ~]
V
[S T R I N O : ~ , C-STR: PN[NAME: ~]] : --
NAMErs'rmNG: ~ , C-STm ~]

VERB-PHRASE :
[STRING: ~ , C-STR: VP[v: [~TV, NP: ~] : --
TRANS_VERB[sTRINO: ~ , C-ST,R: [~1]
NOUN_PHRASE[sTmNO: ~ , C-STR: ~],
APPEND[~:~ B: ~ , w : ~]

LEXICAL-RULE = [STRING: ([~]), C-STR: [WORD: [~]] .
DETERMINER --= LEXICAL_RULE[c-sTm DET].
NOUN = LEXlCAL.RULE[c-STR: N].
NAME = LEXICAL-RULE[C-STm PN].
TRANS_VERB = LEXICAL-RULE[C-STR: TV].

4.3 Parsing and generation
Both parsing and generation in the system amount
to type inference. Either (1) for parsing or (2) gen-
eration yield the same result (3).

(1) SENTENCE[sTRING: (Mary likes all men)]

(2) SENTENCE

NP: NP[NAME: MARY]
Iv: LIKE

ALL, o : MANIJ

(3) SENTENCE
"sTR,NG: (lEMony []like, []a, Rime.)
C-STR: S

~ : NP[...E: MARY[woRD: I~], .oR: aSG]
vP: VP

I
v: UKE[woRD: [], AGR: ~]
NP: NP

[DET: ALL[WORD: [~, AOR: [~PL]]
|NOUN: MAN[woRD: [~, AGR: [b]] /
L^o~: [] J

AGR: []

This shows that the formalism has the same power as
PI~OLOG to synthesize unspecified arguments, and
the same evaluation mechanism can be used for both
generation and parsing, depending on the input.

295

4.4 From DCG to H P S G
In the following, we explain how one can general-
ize the principles used for describing a DCG gram-
mar in TFS to write an HPSG-like grammar. HPSG
linguistic objects of all kinds, be they syntactic,
phrase-structural, or semantic, are modeled by fea-
ture structures [14]. In addition, HPSG relies heavily
on the notion of type. Hence, TFS is perfectly suited
for an implementation of HPSG. The grammar itself
is purely declarative in the sense that it characterizes
what constraints should hold on linguistic objects in-
dependently of the order in which these constraints
are actually applied.
We first generalize the description of linguistic struc-
tures: instead of defining explicit types for sen-
tences, noun phrases, etc., we define a generic con-
stituent structure for any kind of phrase. According
to the specification of ItPSG linguistic objects, we
define SIGNs as being either of type PHRASAL_SIGN
or of type LEXICAL-SIGN [15]. A SIGN has a phono-
logical value, represented as a list of words, and
syntactic and semantic information (omitted for
this comparison). The subtypes PHttASAL.SIGN and
LEXICAL-SIGN inherit all the attributes and type re-
strictions of SIGN.

(4) SIGN -= (PHRASAL_SIGN V LEXICAL-SIGN) A
|PHON: LIST_OF-STRINGS
ISYN: CATEGORY
LSEM: SEMANTIC_OBJECT

PHRASAL_SIGNs (5) differ from LEXICAL_SIGNs (6)
by having an additional dtrs ('daughters") attribute
that gives information about the (lexical or phrasal)
signs which are their immediate constituents. This
attribute encodes the kind of information about
constituency conventionally described as constituent
structures. In addition, the various daughters are
distinguished according to what kinds of informa-
tion they contribute to the sign as a whole. Thus,
daughters are classified as heads and complements
as in the standard X-bar theory. In order to be a
well formed object of type PHRASAL-SIGN, a lin-
guistic object has to obey some general principles
such as the "Head Feature Principle" and the "Sub-
categorization Feature Principle".

(5) phrasal-sign----(HEAD_FP A SUBCAT-FP A .. . A
(CH_CO_FP V HC*.CO-FP ...)) A

LCOMP- DTI~S: LIST_OF_SIGNSJ

(6) lexical_sign ----VERB V PNOUN V NOUN V DET V .

G e n e r a l p r inc ip les The "Head Feature Princi-
ple" ensures that the head features of the head-
daughter always be shared with their phrasal pro-
jections. It generalizes the passing of agreement in-
formation from e.g. a verb to the VP for all kind of
constituent and for all information related to agree-
ment and subcatcgorisation.

[s.,.N: [..E.,,o: I-~-al]]
(7') HEAD_FP .--- L D~rp's: [.EA~o"rp.: [sv.: [HEAD: I i i~]]]

In the DCG example, subcategorization was ex-
pressed by introducing different kinds of lexical cat-
egories like transitive verb (TV) vs. intransitive verbs

IV). In HPSG, subcategorization is expressed by us-
ng a list of signs. This l is t specifies the number and

kind of signs that the head subcategorizes for the
formation of a complete sign. Subcategorization in-
formation is described in lexical entries. The "Subcat
Feature Principle" ensures that in any phrasal sign,
the subcat list of the head-daughter is the concate-
nation of the list of complement daughters and the
subcat list of the mother. (The order of the elements
in the complements list does not reflect the surface
order but rather the more abstract "obliqueness hi-
erarchy" ([14] Chap.7)).

(8) SUBCAT-FP .----

•

G r a m m a r ru les Just as we have generalized the
notion of constituency, we are also able to generalize
the relations between phonological representations
and their desired constituent structure representa-
tions. The specialized CF-like relations for a sen-
tence, a noun phrase, and so on in the DCG exam-
ple can be replaced by two more general rules which
specify constituent structure configurations accord-
ing to the X-bar theory.
The "Complement Head Constituent Order Fea-
ture Principle" (9) simply states that a "saturated
phrasal sign" (i.e. with [syn: [s u b c a t : 0]]) is the
combination of an unsaturated phrasal head with
one phrasal complement (e.g. S --+ NP VP).

(9) CH-CO-FP ----

SYI',I: SU~BCAT: 01PH RASAL.SIGN [PHON" hJh_~.a~
DTRS: [HEAD-DTR: : .]

[ooMP-DT.~: (S,GN [P.oN: l¢omp-pho-]])

: - A P P E N D

The "Head Complements Constituent Order Feature
Principle" (13) states that an "unsaturated phrasal
sign" is the combination of a lexical head and any
number of complements (e.g. VP --* V XP*). The
relation ORDER_COMPL is used for specifyinl,,¢-the or-
dering of the phonological values of all complements.
The phonological value of the whole phrase can then
be specified as the concatenation of the head phonol-
ogy value with the complement phonology value.

(13) HC*-CO-FP -~

[F: igeaa-pnonl "
APPEND |B: Icomp-phonl

[w. ~
ORDER-COMPL I ~:oM:S: ~ hon,] Lw : [comp-pnonl j

296

(10) S'GNI}',,o,:{"M,~F "likes" "all" "men")].

(11) SIGN L,K DrRS MAN,I]]J 1 COMP-DTF~S: { [COMP-D'r.s: (ALL)) '

(12)

PItRASAL-SI(;N

"PHON: (l-~"Mary" . [2](.[~]"likes". [~]("all" "men")))

IIEAD-DTn: PHRASAL-SIGN |ItNAD-DTR: LEXlCAL-SIGN / /ftNAD:
[DTRS: SYN: SUBCAT: ! L [

:)TRS: LCOMP-D'!"itS: {[~ PHRASAL.:SIGN[PltON:[~] ...])

COMP-O'rRs: (I~PHRASAL_SIGN ton 1] y.: F .Ex:
Lsu cA : UM]

Lexical e n t r i e s
AI,L = DET[sYN IIINAD: [LEX:"aII", NUM:pl]]] ,
MAN =: NOUN[~YN:IIn~A): [bEX:"man", NUM:sg]V]].

[Lr~X:" me.", NUM:pl]
MARY = PNOUN [SYN:I),BAD: (Lt~X:" mary", NUM:sg]]].
LIKE = TRANS A (3RD-S GISYN: ha,~Ao:[u~x:" likes"]]] V).

3RD-SG :~ [sYN:rHI';AD:[PFmSON:3, Nug:sg]]].
~RANS = [SYN: SVr~CAT:(ISYN:[m':AD:ICASI'-':acc]]])]].

,5 P a r s i n g a n d g e n e r a t i o n
Either (10) for parsing or (11) generation, tile eval-
uation yields I, he same fully specified sign (12).

6 C one lu s ion
'I'he main characteristics of the formalism we pre--
s(.nted are (1, type inheritance which provides a
clean way of itetining classes and subclasses of ob-.
jects, and (2) an evaluation mechanism based on
typed unitication which provides a very powerful and
semantically (:lear means of specifying and cornput-
irlg relations between classes of objects.
'lThe possibility of defining types as (conditional) ex=
pressions of typed FSs encourages a very different
approach to grammar specification than integrated
CF based approaches like DCG or LFG: the gram-
mar writer has to deline the set of linguistic objects
relevant for the problem, define the possible rela-
tions between these objects, and specify explicitly
the constraints between objects and relations.
The TFS system has been implemented in Common-
Lisp and has been tested on Symbolics, TI Explorer,
VAX and Allegro Common-Lisp. Sample grammars
have been developed([6], [18]) in order to demon-
strate the feasibility of the approach.

A c k n o w l e d g m e n t s The current system is based
ol~ a previous implementation carried out by the au-
thors at ATR, Kyoto, as a part of' a visiting research
program. We would like to thank Dr. Akira Kure-
matsu, president of ATIL Interpreting Telephony
Research Laboratories for making our stay possi-
ble, and Mr. Teruaki Aizawa, head of the Natural

Language Understanding Department for his con-
stant support. We owe many clarifications to Son-
dra Ahlen with whom we had many lively discus-
sions. This paper has benefited from rnany comments
fi'om our collegues at the IMS of the University of
Stuttgart.

Y{eferences
[1] Ilassan Ait-Kaci: A Lattice Theoretic Approach

1o Computation Based on a Calculus of Par-
tially Ordered Type Structures, Ph.D. Thesis,
University of Pennsylvania. 1983

[2] Itassan Ai't-Kaci: "An Algebraic Semantics Ap-
proach to the effective I{esolution of Type Equa-
tions." in: Theoretical Compuler Science, Vol.
45, p. 293-351. 1986

[3] tlassan Ai't-Kaci, Patrick Lincoln: LIFE: a nat-
ural language for natural language, MCC Tech-
nical Report ACA-ST-074~88.

[d] D.J. Arnold, S. Krauwer, M. Rosner, L. des
Tornbes, G.B. Varile: "The <C,A>,T frame-
work in Eurotra: a theoretically committed no-
tation for MT", llth International Conference
on Computational Linguistics (COLING-86),
Bonn. 1986.

[5] lfdl~ne Bestougeff, G~rard Ligozat: "Parame-
terized abstract objects for linguistic informa-
tion processing", 2nd European A CL Confer-
ence, Geneva. 1985.

[6] Martin C. Emele: "A Typed Feature Structure
Unification-based Approach to Generation" in:
Proceedings of the WGNLC of the [ECE 1988,
(Japan: Oiso University) 1989.

[7] Martin Emele, R~mi Zajae: "RETIF: A Rewrit-
ing System for Typed Feature Structures", (Ky-
oto) 1989, [ATR Technical Report TR-I-0071]

[8] Martin Emele, ~ m i Zajac: "Multiple Inheri-
tance in RETIF", (Kyoto) 1989, [ATR Techni-
cal Report TR-I-0114]

297

[9]

[lO]

[11]

[12]

[13]

Roger Evans , Gerald Gazdar: "Inference in
DATR", in: 4th European ACL Conference,
Manchester. 1989.

Jens E. Fenstad, Per-Kristian Halvorsen, Tore
Langholm, Johan van Benthem: Situation, lan-
guage, and logic, 1987,(Dordrecht: Reidel)

Marc Moens, Jo Calder, Ewan Klein, Mike
Reape, ttenk Zeevat: "Expressing generaliza-
tions in unification-based formalisms", in: 4th
European A CL Conference, 1989, (Manchester)

Fernando C.N. Pereira, David H.D. War-
ren: "Definite Clause Grammars for Language
Analysis-A Survey of the Formalism and a Com-
parison with Augmented Transition Networks",
in: Artificial Intelligence 13: 231-278. 1988.

Harry H. Porter: "Incorporating Inheritance
and Feature Structures into a Logic Grammar
Formalism", in: 25th Annual Meeting of the
ACL, 1987, (Stanford)

[14] Carl PolLard, Ivan A. Sag: Information-based
Syntax and Semantics. CSLI, Lectures Notes
Number 13, Chicago University Press, 1987

[15] Carl Pollard: "Sorts in unification-based gram-
mar and what they mean", To appear in M.
Pinkal and B. Gregor (eds.), Unification in nat-
ural language analysis, 1988.

[16] Stuart M. Shieber: An Introduction
to Unification-based Approaches to Grammar,
CSLI, Lecture Notes Number 4, Chicago Uni-
versity Press, 1986.

[17] Gert Smolka: A feature logic with subsorts,
LILOG report 33, IBM Deutschland, Stuttgart,
1987.

[18] R4mi Zajac: "A Transfer Model Using a Typed
Feature Structure Rewriting System with In-
heritance.", in: Proceedings of the 27th Annual
Meeting of the A CL-89 (Vancouver, Canada)
1989.

298

