Contribution of a Category Hierarchy to the Robustness of
Syntactic Parsing.

Damien GENTHIAL, Jacques COURTIN, Irene KOWARSKI
Laboratoire de génie informatique - Imag Campus - BP53X
¥-38041 GRENOBLE CEDEX - France
Tél: 76 514878
¥.Mail : courtin@imag.imag.fr

courtin@imag. UUCP

Abstract

We describe how the use of a hierarchy of
lexical categories instead of a simple set of
categories leads to the definition of a tlexible
and precise language for the description of
dependency structures. After specifying the
formalism we use to decorate these siructures,
we present an application aiming to detect and
correct errors in a written ext. We ouiline how
the use of the hierarchy improves the
manipulation of unknown words.

1, Introduciion

The work presented in this paper is part of a
more gencral project which aums towards a
complete system for detection and correction of
errors i a written iext. Our interesi here is the
creation of a syntactic-semantic module which
builds dependency structures decorated with
attribuie-pairs lists integrating a mechanism for
the inheritance of properties. We show the
contribation of hierarchisation of lexical
categorics to the construction of syntactical
structures,

2. Construction of dependency
struciures

Dependency structures are trees which give a
description of the structure of a sentence by
establishing direct links between the words (or
lexical items : the terminal symbols according to
constituent grammars). The idea is that the
structure of a phrase can be thought of as a
particular word (the head or governor) modificd
by the other words (the modifiers or
dependents). Dependents can themselves be
modificd to produce a tree strucure : the
governor as root and dependents as his sons.

Complex information (e.g. syntactic functions
or semantic relationships) can casily be added

on the links of such trees and rules of
agreement are conveniently expressed. For
cxample, in French, the agreement in gender
and number betweeen a noun and its determiner
and adjectives implies the same gender and
number for both the dependents (determiner
and adjectives) and their governor (noun). On
the other hand, it is difficult to express phrase
properties on dependency structures, because
the properties of a phrase governed by a word
are not necessarily limited to the properties of
the word alone.

In order to describe such structures, we write
binary relations in "governor-dependent” form.
The formalism proposed by Tesniéres [20]
(dependency grammars) is very precise, but all
possible arrangements of the dependents of a
governor must be described. In Courtin's work
[8], weighted dependency relations are defined,
which are well suited to computation, but
limited in power of expression.

We have attempted to design a language for the
deseription of dependency structures retaining
the precision of grammars, but more
appropriate for automatic treatment.

To buiid these structures, we must be able to
determine, for any iwo words, caracterized by
their lexical category : det, noun, verb, ...,
which one governs the other. More generally,
given two dependency trees, we must know
how to merge them into a unique tree.

Example : !

cnoun = adi ~—# cnoun

e

& A Y
aet det adj

We have defined a language based on rewriting
rules ; cach rule applies to a dependency forest
and produces a dependency tree. A set of such

IExamples given are simple English adaptations of the
French originals

139

rules constitutes a dependency grammar, which
can be applied to a sentence by means of an
interpreter. This interpreter can be viewed as a
tree-transducer.

Example of a simple rule : (the "--" begins
comments)

NV [

S{N}, (0, SF:{P})2:(V})

-~ Name
(1 -—- Forest
=>

(

(1, s) 2) -- Resulting tree

’]F his rule applies to any forest which includes a
sequence of an N and a V, whose left
dependents are only preverbal particles P. It
builds a new tree where the N is added as a
dependent of the V.

The advantage of these rules, compared to
simple binary relations, is that it is possible to
express the context of each category which
appears. It is thus possible to restrict a
governor to one or two dependents only, or to
forbid more than one occurrence of a given

category,... One can also define linked pairs of
binary relations, as for coordination
conjunctions :

N coco |

:{N}, 2:{coco}, Z2:{N})

e
v r~|
.
to
W

On the other hand, they present the drawback
of the primitive dependency grammars : there
must be a rule for almost every pair of lexical
categories (LC). To avoid this problem, we
have chosen to use a hierarchy of LCs instead
of the usual linear set of L.Cs. This hierarchy is
a set, partially ordered by the is-a relation

N
AN

crnoun #%be xhave verb pastp adj

[9p]

CL

Figure 1 : Example of hierarchy

We can, in this manner, express very general
rules like the two given above (N_V and
N_coco) or more specific ones like :

aux _ppas |
(l:{xbe ; xhave},

=>

2:{pastp})

140

((1) 2)

)

Thanks to is-a ({cnoun, pnoun}, N) and
is-a({xbe, xhave, wverb, pastp}, V)

relations, the N_V rule for instance may be
applied to all the following pairs of categories :
{(cnoun, xbe) (pnoun, xbe)

(cnoun, xhave) (pnour, xhave)
(cnoun, verb) (pnoun, verb)

(cnoun, pastp) (pnoun, pastp)

We can thus define a set of basic categories
which describe words in a very specific way,
and use these categories for lexical indexing.
The categories can then be grouped in "meta-
categories” according to the structures we want
to build. Finally, we can write the rules which
effectively build these structures.

By using this method, we can avoid the usual
compromise between a very fine set of LCs
(which multiplies morphological ambiguities
and syntactic rules) and a very general set
(which multiplies syntactic ambiguities). We
also obtain a fairly robust syntactic parsing : all
unknown words are given the most general
category (CLS), to which any rule can apply
(see §4).

Similar type hierarchies have already been used
in work on language semantics to represent the
taxonomy of semantic types. We shall therefore
use the same formalism for the representation
of syntactic and semantic knowledge.

3. Type hierarchies and
Y-terms

We have chosen to represent knowledge about
words and trees with a unique formalism : V-
terms [2].

Y-terms are case frame structures which permit
the description of types (in the sense of
classical programming languages such as
Pascal), i.e. sets of values. ¥-terms are
directed graphs (Figure 2) in which nodes are
symbols associated to fundamental types
(simple types) and arcs are labelled with
attribute symbols. Each node of the graph
includes a reference tag which can be used to
designate it, thus allowing information to be
shared.

Simple types are defined in the signature which
is a set partially ordered by the is-a relation.
This order is extended to W-terms by the unique
operation used to manipulate them : unification
[1, 2]. The unification of two simple types is

defined as the set of lower bounds of these two
types (in the is-a relation).

UL

"eat"

FATAGLE l

ANIMATE J

Linear form :

UL (Lex =>
cat =>

"eats";
vern;
supj => Ul (sem => S:ANIMATE) ;
och => Ul {sem => O:FATARLE) ;
sem => [NGEST (agent => 5;
patient => G))

Figure ? : Example of ¥-icrm

Unification allows implicit inheriiance of
properties, and can be efficiently implemenicd
[31.

Example of unification :
The two W-terms :

Ul {lex => "dog";
cal =>» ¢noun;
nbr => sin,
gnr > mas;
soem =

CANINE)

ANTMATE)

UL (cat =
serm

RV

unify as :

L R N 2L Y
dog";

UL {(lex =>

cat =X>» cnoun;
gny = mas;
nbr => sin;
sem > CANINE)

under the condition that the associated signature
unifiecs CANINE and ANIMATE as
CANINIL.

We can define a set-semantics on simple types
[1, 19] ; this semantics can be extended to -

terms giving the following interpretation of

unification : if py and pp arc two W-terms

describing respectively two sets e and e of
values, then unification of two ¥-terms Li(pq,
p2) describes the set e1Mes.

To transduction rules we have added
expressions which enable us to test and modify
¥ -terms attached to the trees we are
manipulating. We can thus simultaneously
build a syntactic structure (dependency tree)
and a semantic structure (\W-term, which also
contains morphological and syntactical
information).

J:xample of rules and application :
We have two words :

Ul (lex
cat

N ”(iog”;
=

cnoun

=> (CANINE)

> Ve ;
=R
subi =>»
UL (sem > S1ANIMATE)
op] o=
UL (sem => O:LATARLY) ;
sem => INGEST (agent Si
patient => 0))
and the rule :
supject [(1 (N}, 2:4{V})
JUni®l, 2Z2.sub)/ - Conditions
(
AGT , L)y Actions

‘The root of the resulting tree is decorated by :

Sh(lex => "eauvs";

-1
=2 VerD;

phoo> Ul (lex =>

"dog";

cat —» cnoun;

sem => S5 CANTNE
ok => UL {sem => G:BATABLY) ;
cem => INGEST (ac to=> 5,

patient => (0}))

4. Applications : a rebusi
parser of French and
synfactical verification

We have implemented on a microcomputer a
prototype of the dependency-tree transducer.
This prototype is integrated in a system for
detection and correction of errors in a written
text as a syntactic filter (Figure 3) .

The prototype uscs an algorithm for the
application of rules adapted to syntactic-
scmantic parsing : the text is parsed from left to
right ; each time a word is recognized by the
morphological parser, it is transmitted to the
syntactic module which includes it i the

141

current state of the analysis. This state is
represented by a list of dependency forests to
which the transducer tries to attach the new
word, according to the rules.

Sentence (Text)

'

Morphol.
Parsing

L
Unknown words

v

Hypothesis
Correct words Generator

l
l Hypotheses

Syntactic

Filterx

'

Syntactico-semantic structures

Figure 3 : Architecture

If part of the entry string is not recognized, it is
passed on to the hypothesis-generator which
attempts to correct it by means of three
techniques (skeleton key [16], phonetics [9],
and morphological generation [7]). The
hypotheses are then passed on to the syntactic
module which handles them exactly in the same
way as morphological ambiguities. It must be
noted that the three modules can function
almost simultaneously (pipe-line) and that the
hypothesis-generator always transmits
something to the syntactic module.

If a word is so ill-formed as to render its
correction impossible, the hierarchical structure
of categories can be used to transmit the most
general possible word, i.€. : UL (cat => CLS).
Any rule can apply to CLS (which is the most
general category), so the choice of the rule to be
applied is determined only by the context of the
unknown word, and this rule will in turn
determine which category the word should have
had.

Example :

With a forest such as :

(l:{cnoun}, 2:{coco}, 3:{CLS3})

we shall obtain :

((l:{cnoun}) 2:{coco} (3:{N}))

after applying the rule N_coco.

The syntactic filter works like a parser but does
not take into account agreement in number and
gender between words. A specialized module in
charge of verification of these agreements is

142

now being designed. A prototype of such a
module has been implemented in Prolog ; it
detects agreement mistakes and can propose
corrections by means of a morphological
generator. We are now working on rewriting it
in the transducer language.

The main use of the syntactic filter is therefore
to validate the lexical category of the
hypotheses generated by the lexical corrector by
building dependency trees which take into
account the semantic information attached to the
words.

Example :
With the phrase "sun and moun" we obtain
the following hypotheses for moun :
UL(lex => "morn";

cat => cnoun;

sem =>» TIME)
UL(lex => "moon";

cat => cnoun;

sem => CELESTIAL-OBJECT)
UL (lex =>» "mount";

cat => verb;

subj => UL(sem => S:ANIMATED) ;

obij => UL({(sem => O:PLACE)} ;

sem => MOVE (agent => § ;

" where => 0)

)
Each of these hypotheses is considered an
interpretation of the unknown word moun.
The rule of coordination is

N coco [(l:{N}, 2:{coco}, 3:{N})
/Unif{l.sem, 3.sem)/

=>

iy 2 23y)

ASSIGN(2.sem, Unif(l.sem, 3.sem)):
ASSIGN (2 .nbr, plu)

1
with for sun
JL{lex => "sun";

cat => cnoun;

sem => CELESTIAL~OBJECT) . .
The rule cannot be applied to mount because a
verb is not a N. It can only be applied to the
noun moon by unification of the semantic
features of moon and sun.
With a phrase such as "sun and mizrn",
the hypothesis generator gives for mizrn:
UL (cat => CLS)
The application of the rule N_coco will give
the tree of the figure 4.

5. Conclusion

The use of a category hierarchy simplifies the
writing of the rules and introduces a way of
manipulating unknown words which is not part
of the mechanisms of the system but which is

integrated in the objects it manipulates. We can
then write rules without thinking about ill-
formedness (i.e. it is not necessary to make the
rules tolerant because the tolerance is implicit in
the system).

UL (lex => "and":
cat => coco;
nbr => plu;
sem =>
CELESTIAL-OBRJECT)

UL (lex => "and";
cat => cocc;
sem =>

CELESTIAL-OBJECT)

UL (cat => N)

Figure 4 : Decorated tree

The three modules have each been implemented
on a microcomputer, we are now working on
integrating the three modules and adding the
module for agreement verification. We are also
improving the performance of the transducer :

- by Integrating a factorization technique for the
intermediate forests in the form of a graph-
structured stack [21],

- by adding a finer control (graph of rule
application) precomputcd at compilation time.

References

{1]: H. At Kaci
An Algebraic Approach to the effective
resolution of type equations.
Theoretical Computer Science 45, 1986, pp
293.351

[2] : H. ATt Kaci, P. Lincoln
LIFE : A natural language for natural
language.
MCC Technical Report, Number ACA-ST-
074-88, February 88

[3]: H. Ait Kact et al.
Efficient implementation
Operations.
ACM Transactions on Programming
- Languages and Systems 11:1, 1989, pp
116-146

of Lattice

[4] : C. Boitet
Representation and computation of units of
translation for Machine Interpretation of
spoken texts.
GETA & ATR Technical Report TR-1-0035,
August 88

[5] : J.G. Carbonell & P.J. Hayes
Recovery Strategies for
Extragrammatical Language.
AJCL 9:3-4, 1983

Parsing

[6] : E. Charniak
On the use of framed knowledge for

language compréhension.
Al 11, 1978.

[7] : B. Cohard
Logiciel de détection et de correction des
erreurs lexicales.
Mémoire CNAM, Mars 1988

[8] : J. Courtin
Algorithmes pour le traitement interactif des
langues naturelles.
Thése d'état , USMG, Octobre 1977

{9] : 1. Courtin, D. Dujardin, I. Kowarski, D.
Genthial, V. L. Strube de Lima
Corregdo de erros de ortografia através da
Sfonética em textos escritos em francés.
XIV Conferencia Latinoamericana de
Informatica, 17avas Jornadas Argentinas de
Informdtica e Investigacién Operativa,
Buenos Aires, Sep. 1988. pp 873-891.

[10] : J. Courtin, D. Dujardin, I. Kowarski, D.
Genthial, V. L. Strube de Lima
Interactive Multi-Level Systems for
Correction of llI-Formed French Texts.
Proceedings of the 2Md Scandinavian
Conference on Artificial Intelligence,
Tampere, Finland, June 1989

[11] : L. Emirkanian, L. Bouchard
Knowledge integration in a robust and
efficient morpho-syntactic analyser for
French.
12th CoLing, Budapest, August 1988, pp
166-171.

[12] : J. P. Fournier, J. Véronis
Traitement des erreurs dans la
communication homme-machine en langage
naturel.
Actes des premieres journées nationales du
GRECO-PRC Communication Homme-
Machine, Paris, Novembre 88

143

[13] : R.H. Granger
The NOMAD System . Expectation-Based
Detection and Correction of Errors during
Understanding of Syntactically and
Semantically 1ll-Formed Text.
AJCL 9:3-4, 1983, pp 188-196,

[14] : Peter Hellwig
Dependency Unification Grammar

11th CoLing, Bonn, August 1986, 195-198.

[15]: G. Lapalme, D. Richard
Un systéme de correction automatique des
accords des participes passeés.
Techniques et Sciences Informatiques, 4,
1986

[16} : J. J. Pollock & A.Zamora
Automatic spelling correction in scientific
and scholarly text.
CACM 27:4, 1984

[17]:D. Scott
Data Types as Lattices.
SIAM Journal on Computing 5:3, 1976, pp
522-587

[18] : S. M., Shieber
An Introduction to Unification-Based
Approach to Grammar.
CSLI Lecture Notes 4, 1986

[19] : G. Smolka and H. Ait-Kaci
Inheritance Hierarchies : Semantics and
Unification.
Journal of Symbolic Computation 7, 1989,
pp 343-370

[20] : Tesnigres
Eléments de syntaxe structurale.
Klincksiek, Paris, 1959

[21] : M. Tomita
Graph-structured Stack and Natural
Language Parsing.
Proceedings of the 26" Annual Meeting of
the ACL, Buffalo, USA, June 88

[22] : R. Zajac, M. Emele
Multiple Inheritance in RETIF.
Report of the ATR Interpreting Telephony
Research Laboratories.

144

