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Abstract: Description of a connectionist implementation of an 
Earley parser. 

1. Introduction 

We are going to describe a connectivity structure which is a 
quasi neuronal representation of the computational knowledge 
usually presented in terms of rules and algorithms. Our system 
provide.,; the proof that connectionist networks can represent 
cognitive knowledge of high complexity a fact that has 
recently been questioned by critics of connectionism (cp. 
FODOR and PYLYSHYN 1988). However, our system is of 
the variety of an implementational connectionism imple- 
menting systems, whose computational knowledge is already 
defined by rules - it is not a system which generates new 
knowledge structures through learning. 

More specifically, our system implements parsers for 
constituent structure grammars according to Earley's rules in 
terms of networks of Boolean operators. The implementation 
is automatic, i.e. executed by a compi-ler which automatically 
translates a grammar into a set of Boolean equations. Our 
connectionist net is thus like a special purpose parser network 
defined by the Boolean equations in the same way as any 
costums specific circuit definition. We shall now explain the 
essential ideas which characterize the parallel (connectionist) 
networks compiled from constituent structure rule systems 
through parallelizing Earley's algorithm. The formal 
def'mifions of the compilation algorittun and of the definition 
of the resulting connectionist network can be found in 
SCHNELLE and DOUST (1989). 

In the following paragraphs our essential ideas will be 
presented by means of a simple example, the system of 
constituent structure rules S °-> aA, S --> Ab, A --> aa, A -- 
> a to be applied in a parsing process on the string aab. 

2. Earley's Representation 

Let us first summarize the essentials of Earley's algo-rithm. 
It operates in two stages: In the first stage, a parse list is 
computed and in the second stage the correct parse is filtered 
out from the parse list. For the string aab the information 
contained in the parse list can be represented as in figure 1 by a 
superposition of possible sub-trees found applicable in going 
through the string from left to fight. The correct parse "filtered 
out" is represented in figure 2. 

Earley uses another way of representing parse lists and 
correct parses. He represents them by means of dotted rule 
symbols and dominance scope numbers entered in ists, one for 
each input interval. The parse list containing the same 
information given in the superposifion of the trees is as in 
figure 3. The meaning of such a list should be clear: The 
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Figure 1: Figure 2: 
Parse list tree Correct parse tree 

symbols of the input string represented at the bottom exist in 
the intervals <0,1>, <1,2>,<2,3>. At each completed inter- 
val, the rules which have found application so far are entered in 
the corresponding list.s, together with a number indicating the 
number of intervals dominated by the head symbol of the rule. 

List 0 List 1 List 2 List 3 

<S->aA., 2> 
<A->aa. , 2> 

<A->a., 1> <A->a. ,1> <S->Ab., 3> 
a a b 

Figure 3. Parse list information with completed dotted rule 
symbols according to Earley 

Let us indicate a feature which is essential in view of our 
connectionist implementation: Each piece of information in 
Earley's system is in fact a triple 

< list number, dotted symbol, length of dominance >. 
The representation in figure 3 is, however, not yet complete as 
a representation of the parse list. In fact, the parsing process as 
def'med by Earley makes use of further dotted symbols derived 
from the rules of the underlying constituent struture, namely 
all dotted rule symbols which can be obtained by placing 
exactly one dot between symbols to the right of the arrow. The 
system of dotted rule symbols for our grammar is presented in 
figure 4. All dotted rule symbols are needed for controlling the 
parse process. 

S - > a A . ,  S - > a . A ,  S - > . a A ,  
S->Ab. ,  S - > A . b ,  S - > . A b  
A - > a a . ,  A - > a . a ,  A - > . a a ,  
A - > . a ,  A - > . a  
.a .  , .b .  , . S .  

Figure 4 The set of dotted rule symbols derived from the 
example grammar 
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The cornplete parse is computed list by list from left to right 
as the input string is read in. In principle many dotted rule 
symbols in the hst could be placed simulta-nously but only in 
a parallel system like the one we shall present, not in Earley's 
completely sequential implementation on a yon Neumann 
machine. 

3.Our representation 

How are we going to implement Earley's algorithm in a 
cormectionist net? We follow the localist principle of 
connectionist implementation: One concept - one unit, but we 
apply it to the triples in Earley's represen-tation: One triple - 
one unit. This principle applied to our example of three 
intervals and, correspondingly, to 3 as the longest possible 
dominance and to 14 dotted rules (as eninnerated in figure 4) 
yields 3"14"3 = 126 units. In general, a system with n dotted 
rules and length of input string 1 would have n*l 2 units. The 
connectivities between the units must be defined in such a way 
that they generate activity patterns over the three-dimensional 
system of units (each member of a triple indi- eating a 
dimension), such that a unit becomes active (1) exactly when 
the corresponding triple is specified in the Earley algorithm. 
All other units not specified in the algorithm must remain 
inactive (0). The parse list given in figure 3 would be 
represented by the activity pattern over the units in a three 
dimensional space indicated in figure 5. 

/ ' ~  -¢ Ab.  

.i-~ aa. 

3 2 

/ 
/!S * A b .  
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./ 

/)S -~ Ab.  

/ b.  

Figure 5. Terminal stage of parse list generation (for 
terminal dotted rules only). The arrows show how a pattern of 
activity in this system can be used to represent the correct 
parse tree given in figure 2. 

The repr(mentation outlined so far seems to have an essential 
disadvantage: The space built by the units which represent the 
parse hst structures seems to be unlimited, since it depends on 
the length of the input string. This is indeed the case. 
However, the structurally essential feature is not the space used 
for representing the complete parse list structure but only the 
space in wlfich the process of generating the parse list structure 
is executed. Our system can indeed be subdivided archi- 
tectonically into the representation spaces - one for the parse 
list, one for the correct parse, and a limited space containing 
the units which generate the representations. It is only this 
latter space - comprising grammar units (0,Y,0),(-1,Y,0) and 
control units (0,Y,-1).(-I,Y,-1) for all dotted rules Y - which 
has an inhomogenous connectivity structure whose specificity 
is determined by the constituent structure rule system from 
which it is compiled. Obvviously, this space of inhomogenous 
connectivity is limited in our implementation and is 2"2"n 
(where n is the number of dotted rules). 

In this space 2*n units are control bit units whereas 2*n 
units correspond directly to dotted rule symbols of the original 
grammar such that their connectivities represent the logical and 
procedural interdependencies between these symbols in Earley's 
algorithm. The extension of this space is thus independent of 
the length of the input string to be parsed. 
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Figure 6. The architecture of the connectionist parser 
system. (Parse list representation corresponding to figures 1 in 
space HI and correct parse representation corresponding to 
figure 2 in space 4. Input representations in spaces I arid II) 

In contrast to this, the units in the representation space have 
a homogenous connectivity among them, which is completely 
independent of the gramrnar implemented. Instead, this 
connectivity corresponds to the circuit connectivity of a shift 
register implemented as an integrated circuit. 

The overall architecture which derives from our automatic 
compilation process applied to a given constituent structure is 
now given as in figure 6. Space I and H contain the 
representations of the input string, the units in space HI 
represent the parse list under construction and after completion, 
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Figure 7 The internal connectivity of the units in the 
processing space derived from our simple grammar 
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space IV represents the same for the correct parse. Space IX 
(resp. X) is the inhomogenous processing space whose 
connectivity corresponds strictly to the structure of the 
grammar from which it is compiled. 

The inhomogenous internal connectivity within space IX is 
represented in figure 7. The units represented are also connected 
to the neighbouring units in the representation space 1II and to 
control bits which determine the shifting processes in the 
representation space. 
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Figure 8 The initial stage of processing. The activity of a 
control bit unit (0, .S. ,-1) forces the parser to shift the input 
string in the next step 

4. An outline of the cormectionist parsing process 

The computational process is as follows: Initially the input 
string is in space I ( or is transferred to this space from a word 
recognizer array analysing acoustic or graphic input). The first 
input symbol is read into the processing space - more correctly 
into a connected buffer place of space VII, i.e. the unit (-2, .a., 
1) is activated and simultanously the unit (0, .S., O) - i. e. the 
initializer unit. (Cp. figure 8) 
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Figure 9 An intermediate stage occurring after reading in the 
first symbol 

Due to the connectivities in position 0 ( i.e. in space IX) the 
units (0, S -> .aA , 0) and (0, S -> .Ab, 0) become 
simuhanously active, and then, depending on them, 
simultanously the units (0, A-> .aa, 0) and (0, A-> .a, 0). 
To scan-in the the first terminal the complete pattern of 
activity has to be shifted one step to the left with the exception 
of the activation of unit (-2..t. ,1). The activity of this unit ist 
transferred to the unit (0, .t. , 1). (This is done because the 
units located at X=-I are used as a temporary buffer by the 
parser.) Figure 9 shows the state after this shifting process has 
been carried out. But simultanously the parser has to perform 
the computation of the parse list for the terminal just read. 
Since the units (O, A ->.a,0), (0,A ->.aa,0) and (0,S->.aA,0) 
were active while the terminal "a" was read, the parser must 
activate the units (0,A->a.,1), (0,A->a.a,1) and (0,S->a.A,1). 
And the activity of the unit (0,A->a.,1) forces the unit (0, 
S->A.b,1) to become active. These actions take place according 
to the cormectivifies in space IX of figure 6 represented in 
figure 7. 

It should be clear by now how, in principle, the parsing 
process develops over the connectionist space until the final 
stage represented schematically in figure 5 is reached. It should 
also be clear, in principle, how the process of generating the 
complete parse is produced in space IV through the operation 
of the units in space X. They determine the "filtering out" of 
certain unconfirmed parse tree information in the parse list in a 
process of stepwise information shift from III to IV. We shall 
not discuss tiffs process here. 

5. Perspectives for further research 

From a linguistic point of view, it is important to be able to 
generate connectionist networks for more complicated 
grammars, in particular for tmification based grammars and for 
principles and parameters based approaches such as those 
recently developed by Chomsky. So far we have been able to 
define the appropriate representation space - i.e. the extension 
of our spaces HI and IV - and to develop first ideas about the 
connectivities derived from symbolic definitions of 
grammatical properties, i.e. the structures in our spaces IX and 
X. We are optimistic about the possibilities of translating any 
unification based formalism working with feature structures 
into a corresponding cormectionist network. 
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