
Object-Oriented Parallel Parsing for Context-Free Grammars

Akinori Yonezmva
Ichiro Ohsawa

Department of Information Science
Tokyo Institute o] Technology

Ookayama, Meguro-ku
Tokyo 152, Japan

yonezawa ~is. tilech.junet ~utokyo- rela y. csnet @relay. es. net
ohsawa~i~.titech.junet~utokyo-rclay, csnet@relay, cs. net

A b s t r a c t

This paper describes a new parallel parsing scheme for
context-free grammars and our experience of implementing
this scheme, and it also reports the result of our simula-
tion for running the parsing program on a massive parallel
processor.

In our basic parsing scheme, a set of context free-
grammar :,:ules is represented by a network of processor-
like computing agents each having its local memory. Each
computing agent in the network corresponds to an occur-
fence of a non-terminal or terminal symbol appearing in
the grammar rules. Computing agents in the network work
concurrently and communicate with one another by passing
messages which are partial parse trees.

This scheme is shown to he fast (0(n ,h) time for the
first complete parse tree, where n is the length of an input
sentence and h is the height of the parse tree) and useful in
various modes of parsing such as on-line parsing, overlap
parsing, on-line unparsing, pipe-lining to semantics pro-
cessing, etc. Performance evaluation for implementing this
scheme on a massive parallel machine is conducted by dis-
tributed event simulation using the Time Warp mechanism
/Jeffersong5/.

Our parsing scheme is implemented in a programming
language called ABCL/1 which is designed for object-
oriented concurrent programming and used for various con-
current programming/Yonezawa86/ . The program is cur-
rently runing on standard single-cpu nlachines such as
SUN3s and Symbolics Lisp machines (by simulated par-
allelism).

In our experiment and simulation, a set of about 250
context-free grammar rules specifying a subset of English
is represented by the corresponding network of objects (i.e.,
computing agents) and about 1100 concurrently executable
objects are involved.

1 I n t r o d u c t i o n

This paper prcsents a new approach to parsing for
context-free grammars, which is Conceptually very sim-
ple. The significance of our approach is supported by re-
cent trends in computer-related fields. In computational
linguistics, much attention has been drawn to parsing of
context-free grammars owing to the progress of context-
free based grammatical frameworks for natural languages
such as LFG /Kaplan82/ , GPSG /Gazdar85/ . Further-
more, many practical natural language interface systems
are based on context-free (phrase structure) grammars.
In computer architecture and programming, exploitation

of parallelism has be actively pursued; innovative com-
puter architectures utilizing a large number of proces-
sors /Gott l ieb83/ /Sei tz85/ have been developed and ac-
cordingly new methodologies for concurrent l)rogramming
/AghaS6/ /Gelern te rS6/ /Yonezawa87/ha . re been actively
studied.

In our basic parsing scheme, a given set of context-
free grammar rules is viewed as a network of terminal
and non-terminal symbols, and a corresponding network
of processor-like computing agents with internal memory
(or simple processors) is constructed. The node set of the
network has a direct one-to-one correspondence to the set
of occurrences of symbols appearing in the grammar rules
and the link topology of the network is directly derived
from the structure of the set of grammar rules. Our pars-
ing scheme produces all the possible parse trees for a given
input string without duplication.

Since the notion of objects in object-oriented concurrent
programming /Yonezawa87/ naturally fits the computing
agents composing the network, this parsing scheme has
been implemented in an object-oriented language for con°
current programming ABCI, /1/Yonezawa86/by represent-
ing each computing agent in the network as an object of
ABCL/L

2 T h e Bas le S c h e m e

2:1 A S y m b o l as a C o m i) u t l n g A g e n t

Our approach is basically bottom-up. Suppose we have a
context fi-ee grammar rule such as:

VP --> V NP (1)

In bottom-up parsing, a usual interpretation of this kind
of rule is:

In a substring of an input string, if its first
half portion can he reduced to a category
(terminal/non-terminal symbol) V and subse-
quently, if its second half portion can be reduced
to a category VP, then the whole substring can be
reduced to a category VP.

This interpretation is implicitly based upon the following
two assumptions about parsing process:

- a single computing agent (processor or process) is
working on the input string, and

• non-terminal or terminal symbols such as VP, V, and
NP are viewed as passive tokens or data.

773

r VP tl t2

Figure 1:

Instead, we will take a radically different approach, ill
which

* more than one, actually, a number of computing agents
are allowed to work concurrently, each performing a
rather simple task,

• for each occurrence of a non-terminal or terminal sym-
bol in grammar rules, a computing agent is assumed,

• such a computing agent receives data (messages), ma-
nipulates and stores data in its local memory, and
also can send data (messages) asynchronously to other
computing agents that correspond to non-terminal or
terminal symbols, and

• data to be passed around among such computing
agents are partial parse trees.

Suppose that the computing agent which acts for the V
symbol in Rule (1) has received a (token that represents
a) partial parse tree t l . Also suppose that the computing
agent which acts for the NP symbol in Rule (1) has received
a partial parse tree t2. If the terminal symbol which is
the right boundary of t l is, in the original input string,
adjacent to the terminal symbol which is the left boundary
of t2, then t l and t2 can be put together and they can
form a larger partial parse tree which corresponds to the
VP symbol in Rule (1). See Figure i.

For example, let us consider an input string:

I saw a girl wflh a ~elescope.

If t l is a parse tree constructed from 'saw' and t2 is a parse
tree constructed from 'a girl', then the right boundary of t l
is adjacenl to the left boundary of t2. But if t2 is a parse
tree constructed from ~a telescope', then t l and t2 are not
adjacent and a larger parse tree cannot be constructed from
them.

Now, which computing agent should check the bound-
ary adjacency, and which one should perform the tree-
constructing task? In our scheme, it is natural that the
computing agent acting for the NP symbol does the bound-
ary checking because, in many simple cases, the NP agent
often receives t2 after the V agent receives t l (due to the
left-to-right nature of on-llne processing). In order for the
NP agent to be able to perform this task, the V agent must
send t l to the NP agent. Upon receiving t l from the V
agent, tl~e NP agent checks the boundary adjacency be-
tween t l and t2 if it has already received t2. If t2 has
not arrived yet, the NP agent has to postpone the bound-
ary checking until t2 arrives and t l will be stored in the
NP agent's local memory. If the two boundaries are not
adjacent, the NP agent stores t l in its local memory for
future references. Later on.when the NP agent receives
subsequently arriving partial parse trees, their left bound-
ary will be checked againt the right boundary of t l .

When the adjacency test succeeds, the NP agent con-
catenates t l and t2 and sends them to the computing agent

774

acting for the non-terminal symbol VP in Rule (1). The
VP agent constructs, out of t l and t2, a partial parse tree
with the root-node tag being the non-terminal symbol 'VP.'
This newly constructed partial parse tree is then distribuled
by tile VP agent to all the computing agents each of which
acts for an occurrence of symbol VP in the right-hand side
of a rule. This distributed tree in turn plays a role of data
(messages) to the computing agents in exactly the same
way as t l and t2 play roles of data to the V and NP agents
above.

This is the basic idea of our parsing scheme. It is very
simple. It is the matter of course that every single comput-
ing agent acting for a non-terminal or terminal symbol can
work independently, in parallel and asynchronously. Rule
(1) is represented as the computing agent network illus-
trated in Figure 1. (This is part of a larger network.) Boxes
and arrows denote computing agents and flows of trees, re-
spectively.

2.2 A Set o f Ru le s as a Ne two l ' k o f C o m p u t i n g
A g e n t s

It should be clear from the previous subsection that a set
of context-free grammar rules (even a singleton grammar)
is represented as a network of computing agents each of
which acts for an occurrence of a non-terminal or terminal
symbol in a grammar rule. More precisely, the correspon-
dence between the set of computing agents and the set of
occurrences of symbols in the set of grammar rules is one-
to-one; for each occurrence of a symbol in a rule, there is
one distinct computing agent. For example, the following
set of rules (including Rule (1)) is represented as the net-
work depicted in Figure 2.

s --> NP vP (2)

s --> s PP (3)
NP --> DET N (4)

PP - -> PREP NP (5)

A white box corresponds to the computing agent acting
for a symbol in the right-hand side of a grammar rule and
a dark box corresponds to the computing agent acting for
the non-terminal symbol in the left-hand side of a gram-
mar rule. Note that the dark box labeled with 'NP' (at
the bottom of the figure) is linked to three boxes labeled
with 'NP.' This means that a partial parse tree constructed
by the computing agent acting for the left symbol NP in
Rule (4) is distributed to the three computing agents act-
ing for tile three occurrences of symbol NP ill Rules (1),
(2), and (5). Note that Rule (3) is left-recursive, which is
represented as the feed-back link in Figure 2.

2.3 T h r e e T y p e s o f C o m p u t i n g A g e n t s

1As the reader might have already noticed, there are three
types of computing agents: Type-1 corresponds to the left
symbol in a grammar rule, 'type-2 corresponds to the left--
corner (i.e. left-most) right symbol, and Type-3 corre-
sponds to other right symbols. (If a grammar rule has more
than two right symbols, each of tlle right symbols except
the left-corner symbol is represented as a Type-3 agent.)
For example, ill Rule (1), VP is Type-l , V is Type-2, and
NP is Type-3.

l This subsection may be skipped if the idea of the scheme is al-
ready clear.

L-I-

t t
:

Figure 2:

A Type-1 computing agent A1 receives a concatenation
of parse trees from the Type-3 agent acting for the right-
most right symbol (e.g., NP for the case of Rule (1)) and
constructs a new parse tree with its root node being the
non-terminal symbol that A1 acts for and distributes it to
all the Type-2 or Type73 agents acting for the occurrences
of the same non-terminal symbol (e.g., 'NP ' in the above
case).

A Type-2 computing agent A2 receives a partial parse
tree from some computing agent that is acting for the oc-
currence of the same symbol as A2 acts for, and simply
passes it to the computing agent acting for the symbol oc-
currence which is right-adjacent to the symbol occurrence
that A2 is acting for. In the case of Rule (1), a Type-2 agent
acting for V simply passes the received partial parse tree
to the computing agent acting for NP. In the case where a
grammar rule has just one right symbol as in

NP --> N, (6)
a Type-2 agent acting for N sends a partial parse tree to
the 'type-1 agent acting for NP.

A Type-3 computing agent has two kinds of sources of
parse trees to receive: one from Type-1 agents and the
other from the Type-2 or Typeo3 agent acting for its left-
adjacent symbol occurrence. In the case of Rule (1), the
Type-3 agent acting for NP receives partial parse trees from
Type-1 agents acting for occurrences of symbol NP in other
rules and also from the Type-2 agent acting for V in Rule
(1). Upon receiving a partial parse tree t l from one of the
sources, a Type-3 agent A3 checks to see if it has already
received, from the other kind of source, a partial parse tree
which clears the boundary adjacency test against t l . If such
a parse tree t2 has already arrived at A3, then A3 concate-
nates t l and t2 and passes them to the computing agent
acting ibr the symbol occurrence which is right-adjacent
to the symbol occurrence A3 acting for. If no such parse
tree has arrived yet, A3 stores t l in its local memory for
the future use. In the case where no right-adjacent symbol
exits in the grammar rule, (which means that the symbol
occurrence A3 is acting for is the right-most right symbol
in the glamrnar rule), A3 sends the concatenated trees to

the Type--1 computing agent acting for the left symbol of
the grammar rule.

2.4 T e r m i n a l S y m b o l s as C o m p u t i n g A g e n t s

It should be noted that, ill our basic scheme we do not make
any distinction between non-terminal symbols and terminal
symbols. In fact, this unlfonn treatment contributes to the
conceptual simplicity of our parsing scheme. We do not
have to make a special treatment for grammar rules such
as:

NP --> NP and NP (7)

where a lower case symbol 'and' is a terminal symbol. The
uniformity implies that a word of a natural language, say
'fly' in English, which has more than one grammatical cat-
egory should be described as follow:

v--> fly (8)
--> ~ly (9)

where Rules (8) and (9) indicate that a word 'fly' can be a
verb or noun. The two rules are represented by two Type-1
agents acting for V and N, and two Type-2 agents act-
ing for the two occurrences of 'fly' in Rules (8) and (9).
Thus, in our parsing scheme, the grammatical categories
of each word in the whole vocabulary in use are described
by grammar rules with a single right symbol. This means
that conceptually, one or more computing agents exist for
each word. (Those who might worry about the number of
computing agents acting for words should read Subsection
4.2.)

2.5 I n p u t to t h e N e t w o r k

In our parsing scheme, a given set of grammar rules is com-
piled as a network of computing agents in the manner de-
scribed above. Then, how is an input string fed into the
network of computing agents? We assume that an input
string is a sequence of words (namely, terminal symbols).

In feeding an input string into the network, two things
has to be taken into account. One is: for each word in
an input string, appropriate computing agents, to which
the word should be sent, must be found. Of course, such
computing agents are ones that act for the occurrences of
.the word in the grammar rules. Notice that there can be
more than one such computing agent for each word, due
to multiplicity of grammatical category and the multiple
occurrences of the same symbol in grammar rules. Since
the set of appropriate computing agents can be known in
compiling a given set of grammar rules, such information
should be kept in a special computing agent which does the
managerial work for the network. Let us call it the manager
agent The manager agent, receives an input string and
sends (or distributes) each word in the input string to the
corresponding agents in the network in the on-line manner.

The other thing needed to be considered in feeding the in-
put is: the information about the order of words appearing
in an input string must be provided to computing agents
in the network in an appropriate manner. This is because
Type-3 computing agents need such information to perform
the boundary adjacency test. For this, each word to be sent
(or distributed) to computing agents in the network should
be accompanied with its positional information in the in-
put string. Snppose an input string is I saw a g i r l with
a t e l e s c o p e . Then a word g i r l should be sent with the
pair of its starting position and its ending position. The

775

~ 4 , A NETWORK
(0 1 z) II I -'HL-_~ ,~,
'H' I' (~ 2 .;,~ I I - - - - ~ ~

T ~ I'¢----I' (3 4 ,i,-z, I I I
/ / 1 ' , ,swish) . . .
l L- - - ,::r-

"~ Manager

" - - - ' I ' 'saw' 'a' 'girl' 'with' ...
0 1 2 3 4 5

Figure 3:

actual form of data (message) for the word g i r l may look
like (3 4 g i r l) . See Figure 3. This data form convention
is adopted in dealing with more general parse trees. (In
fact, a single word (terminal symbol) is also the simplest
case of parse tree.)

2.6 How Par t i a l Parse Trees Flow

To get a more concrete feeling of how symbols are processed
in the network, let us look at the flows of words a and
g i r l in the initial phase. (See Figure 4) Assuming that
the following rules are compiled in addition to Rules (1)
through (5),

DET - - > a (lO)

N - - > girl (11)

the manager agent sends (2 3 a) and (3 4 girl) to the
Type-2 computing agent acting for a in Rule (10) and the
Type-2 computing agent acting for g i r l in Rule (11), re-
spectively. They are in turn sent to a Type-1 agent Detl
acting for DET in Rule (10) and a Type-1 agent N1 acting
for N in Rule (11), respectively. These Type-1 agents con-
struct a parse tree with its root node label being DET or N.
Then the parse tree constructed by Detl is sent to a Type-2
agent Det2 acting for DET in Rule (4). Similarly, the parse
tree constructed by N1 is sent to a Type-3 agent N2 acting
for N in Rule (4). In both cases, the positional information
is accompanied. That is, the actual data forms to be sent
are (:2 3 (DET a)) and (3 4 (N g i r l)) .

Agent Det2 simply passes the parse tree to agent N2.
N2 performs the boundary adjacency test between (2 3
(DET a)) and (3 4 (N g i r l)) and finds the test to be
ok. Since the test is ok, N2 concatenates the two data
forms, constructing a new single data form:

(2 4 (DET a) (N girl))

This new data form is then sent to the Type-1 agent acting
for NP in Rule (4). This agent constructs a data form of
the parse tree for NP, which looks like:

(2 4 (NP (DET a) (N girl)))

This data form will be distributed among the Type-2 and
Type-3 computing agents acting for symbol NP in the net-
work. (See Figure 4.) Finally, when a computing agent
acting for S receives a message (0 7" (S . . .)), we can say
that a complete parse tree for the input string has been
constructed as part of the message.

It should be reminded that actions taken by computing
agents such as Detl, Det2, N1, and N2 are performed all

776

(2 4 (NP (DET a)

(N g i r l)

(N g i r l))

(2 3 (DET a)) (3 4 (N l i r J))
~ I I ~ I (

@ N N
.

10 7 (S . . .))

Figure 4:

in parallel. Also note that such computing agents keep be-
ing activated as long as data forms continue to arrive, and
computing agents acting for S receive messages containing
(partial) parse trees with the root node label being S.

3 Appl ieat lons

3.1 On-Line Pa r s ing and Overlap Pars ing

In starting the parsing process, our scheme does not re-
quire the network of computing agents to be fed any token
that indicates the end of an input string. That is, an input
string can be processed one by one from the beginning in
an on-line fashion. Even if feeding an input string to the
network is suspended in the middle of the "string, partial
parse trees can be constructed based on the part of the in-
put string that has been fed so far, and the feeding of the
rest of the input string can be resumed at any moment.
Thus, our parsing scheme is quite useful in real-time appli-
cations such as interpreting telephony (simultaneous inter-
pretation). Notice that our scheme does not require that
an input string is fed in the left-to-right manner; words
in the input string can be fed in any order as long as the
positional information of each word in the input string is
accompanied. (cf. Subsection 2.5)

Our parsing scheme has no difficulty even when more
than one input string is fed to the network simultaneously
as long as different input strings are fed separately. The
separation can be easily made by attaching the same tag
(or token) to each word in the same input string. Such
a tag is copied and inherited to partial parse trees which
are constructed from the same input string. When a Type-
3 computing agent tests the boundary adjacency between
two partial parse trees, the sameness of the tags of the two
partial parse trees are checked additionally. This capability
of handling the multiple input strings is useful in process-
ing the overlapping utterances by more than two persons
engaged in conversation.

This way of handling the multiplicity of input strings is
similar to the idea of color tokens used in data-flow com-
puter architectures.

NP "))l Processing

P . . . (* * (NP

Figure 5:

3.2 Unpars ing

Suppose the user is typing an input string on a keyboard
and s/he hits the 'backspace' key to correct previously
typed words. In the case where these incorrect words have
already been fed to the network, our parsing scheme is able
to unpart;e the incorrect portion of the input string and
allows the user to retype it. Furthermore, the user can
continue to type the rest of the originally intended input
string.

This unparsing capability is realized by the use of anti-
messages. The anti-message/Jefferson85/of a message M
sent to a computing agent A is a message that will be sent
to A in order to cancel the effects caused by M. The actual
task of cancelling the effects is carried out by A. (Thus
A has been programmed beforehand so that it can accept
cancelling messages and perform the cancelling task.) If
necessary, A must in turn send anti-messages to cancel the
effects caused by the messages A itself has already sent. In
implementing the unparsing capability, the express-mode
message passing in ABCL/1/Yonezawa86/is useful, which
iz a kind of interrupt-like high priority message passing.

3.3 P ipe-Lin lng to Semant ic Processing Agents

Our parsing scheme produces all the possible (partial) parse
trees for a given input string. In fact, if each Typed com-
puting agent in the network stores in its local memory all
the parse trees it constructs, all the components of the tri-
angle matrix used in CKY parsing method (i.e., all the
possible parse trees) are in fact stored among the Type-
1 agents in the network in a distributed manner. If the
semantic processing is required, these partial or complete
parse trees can be sent to some computing agents which do
semantics processing.

Actually, parse trees can be sent to semantic processing
agents in a pipe..liniTtg manner. Suppose a Type-1 com-
puting agent Npl is acting for an occurrence of a non-
terminal symbol NP. Instead of letting Npl distribute the
parse trees it constructs to Type-2 or Type-3 agents acting
for occurrences of the symbol NP, we can let Npl send the
parse trees to the semantics processing agent which checks
the semantic validity of the parse trees in tim pipe-lining
manner. After filtered by the semantic processing agent,
only semantically valid parse trees (possibly with seman-
tics information being attached) are distributed to Type-2
or Type-3 computing agents acting for NP. See Figure 5.

These ,~emantic filtering agents can be inserted at any

links between Type-1 agents and Type-2 or Type-3 agents.
The complete separation of the semantic processing phase
from the syntactic processing phase in usual natural lan-
guage processing systems corresponds to the placing se-
mantic processing agents only after the Type-1 computing
agents that act for tile non-terminal symbol S that stands
for correct sentences.

4 Analysis and Discussion

4.1 Imp lemen ta t i on a n d Exper iment

Our parsing scheme has been implemented using an object-
oriented concurrent language ABCL/1. In this implemen-
tation, each computing agent in the network is represented
as an ABCL/1 object which becomes active when it receive
a message~ and data forms containing partial parse trees are
represented as messages that are passed around by objects.

The parsing program written in ABCL/1 runs on a stan-
dard single-cpu machine (e.g., Symbolics Lisp machines and
Sun3s) in which parallelism is simulated by time-slicing.
(The code for a simplified version of this program and sam-
ple session are given in /Yonezawa87a/.) Using this prc~
gram, we have been conducting an experiment of our pro-
posed parsing scheme for a context-free English grammar
/Tomita86/with the following characteristics:

• 224 context-free rules for non-terminal symbols (e.g.,
NP -> DET N),

• 445 context-free rules for terminal symbols (e.g., N ->
fly),

• 94 distinct nonterminal symbols and 679 occurrences,
and

• 295 distinct terminal symbols and 445 occurrences.

About 40 input sentences are used for the experiment and
they are typically: 10 - 30 in length, and 10 - 20 in height
(the height of a correct parse tree).

4.2 The N u m b e r of Compu t ing Agents (Objects)

As is obvious from the construction of the network, the
number of computing agents is exactly the same as that of
the nodes of the network. Since the node set of the network
has one-to-one correspondence to the set of symbol occur-
rences in a given set of grammar rules, the nmnber of com-
puting agents can be very large if the grammar is complex.
Thus the number of computing agents (i.e., objects) of the
network representing the above English grammar amounts
to more than 1100 (more exactly 1124 = 445+679).

Of course, not all these agents can be active simultane-
ously. The number of all the agents that become active
in processing an input string is small compared to that of
the computing agents consisting of the network. Since the
main task of a Type-1 agent (acting for the left symbol of a
grammar rule) is just to distribute a constructed parse tree,
this task Can be performed by the Type-3 agent which acts
for the rightmost right symbol of the grammar rule. Thus
all the Typed ag~ents can be eliminated. This reduces the
number of computing agents considerably. Furthermore,
there are number of other ways to reduce the number of
computing agents at the sacrifice of both processing speed
and the conceptual clarity of the parsing scheme. (We,
however, believe that maturity of the technology for ex-
ploitation of parallelism will dispel the apprehensions re-
garding the number of computing agents.)

777

4.3 Pe r fo rmance Analysis by Dis t r ibu ted Event
S imula t ion

We are interested in the performance of our parsing scheme
in the case where the scheme is implemented on a paral-
lal architecture which allocates a single processor for each
computing agent (i.e., object) in the network. Since it is
not much interesting to theoretically analyze the complex-
ity of our parsing scheme, we have conducted simulation.

The simulation has been done by using a distributed
event simulation technique. The very parsing program
written in ABCL/1 was reused and slightly modified to
form our distributed simulation program. As we mentioned
above, the Original parsing program is written in such a way
that each computing agent in the network is represetnted
by a concurrently executable object which becomes active
when it receives a message. The simulation program pre-
serves the original network structure of objects (i.e., com-
puting agents in the scheme) of the parsing program. The
only modifications made to the original parsing program
are:

• each object keeps its local time,
• each message passed around by objects additionally

contains a time stamp indicating the time of the mes-
sage transmission measured at the local time of the
object which sent the message,

• each object sends anti-messages~Jefferson85/when it
receives a message containing a time stamp indicat-
ing an earlier time than the current local time of the
object, and

• accordingly, each object can handle an anti-message
which requests to cancel the effects made by the orig-
inal message.

The initial result of our simulation is that the first com-
plete parse tree is produced from the network in 0(n.h)
time, measuring from the beginning of feeding an input
string to the network, where n is the length of the input
string and h is the height of the parse tree (not the height of.
the network). This result was obtained for the context-free
English grammar mentioned in Section 4.1. In this simu-
lation we assumed that both processing of a partial parse
tree by a single object (i.e., a single computing agent) and
a message transmission between two objects (i.e., two com-
puting agents) take a single unit time.

Since all the possible complete parse trees for a given
input string are produced from the network in the pipe-
lining manner, the second and subsequent complete trees
are expected to be produced in a short interval one by one.
We have not yet analyzed the simulation results for these
parse trees.

4 . 4 Genera l i ty of the Pars ing Scheme

Our parsing scheme can handle the most general class of
context free grammars except cyclic grammars. If a set
of grammar rules has circularity 9, infinite message pass-
ing may take place in the network. To detect or avoid
such infinite message passing~ a special provision must be
made. But fortunately such a provision can be done at the
time of compiling the set of grammar rules into the cor-
responding network of computing agents. As suggested in

2A simple example of circular rules i s : 1 - -> B, B - -) A, B -->
C.

Subsection 2.2 and Figure 2, left-recursive grammar rules
can be handled without any modification to the grammar
rules. However, from the nature of bottom-up parsing, our
parsing scheme cannot handle an e-rule (a rule that pro-
duces a null string). But ms is well known/Hopcroft79/, all
the e-rules can be eliminated from a given set of grammar
rules by transforming the set of rules without changing the
generative power of the original set of rules. 3 It should
be noted that our scheme can be extended to cope with
context-sensitive grammars (or more expressive ones).

4.5 Previous Work

R.M. Kaplan advocated in /Kaplan73/ that natural lan-
guage parsing should be conceptualized and implemented
as a collection of asyncbronous communicating parallel pro-
cesses. Our work is basically along his line, but our algo-
rithm is completely different from his and is based on finer
grain and more massive parallelism than his idea illustrated
in/Kaplan73/.

References

[Agha86] G. Agha, Actors: A Model of Concurrent Com-
putation in Distributed Systems, The MIT Press, 1986.

[Gazdar85] G. Gazdar, E. Klein, G. K. Pullum and I. A.
Sag, Generalized Phrase Structure Grammar, Basic
Blackwell Publisher, 1985.

[Gelernter86] D. Gelernter, Domesticating Parallelism,
IEEE Computers, No. 8, 1986.

[Gottlieb83] A. Gottlieb et al.: The NYU Ultracomputer
- Designing an MIMD Shared Memory Parallel Com-
puter, IEEE Trans. Computers, C-32, No.2, 1983.

[Hopcroft79] J. E. H0pcroft and :I. D. Ullman, Introduc.
lion to Automata Theory, Languages, and Computa-
tion, Addison-Wesley, 1979.

[Jefferson85] D. R. Jefferson: Virtual Time, ACM Trans.
Prog. Lang. Syst., Vol.7, No.3, 1985.

[Kaplan73] R. M. Kaplan: A,Multi-Processing Approach
to Natural Language , Proc. NCC, 1973.

[Kaplan82] R. M. Kaplan and J. Bresnan: Lexical-
Functional Grammar: A Formal System for Gram-
mar Representation, in The Menlal Representation
of Grammatical Relations J. Bresnan (ed.), The MIT
Press, 1982.

[Kay67] M. Kay: Experiments with a Powerful Parser,
RM-5,~52-PR, The Rand Corporation, 1967.

[Seitz85] C. L. Seitz: The Cosmic Cube, CACM, Vol.28,
No. I, 1985.

[Tomita86] M. Tomita, Efficient Parsing for Natural Lan-
guage, Kluwer Academic Publisher, 1986.

[Yonezawa86] A. Yonezawa, J.-P. Briot and E. Shibayama:
Object-Oriented Concurrent Programming
in ABCL/1, Proc. 1st ACM Symposium on Object-
Orie,ted Programming, Systems, Languages, and Ap-
plications, 1983.

[Yonezawa87] A. Yonezawa and M. Tokoro (Eds), Object-
Oriented Concurrent Programming, The MIT Press,
1987.

[Yonezawa87a] A, Yonezawa and I. Ohsawa: A New Ap-
proach to Parallel Parsing for Context-Free Gram-
mars, Res. Report, C-78, Dept. of Info. Sci., Tokyo
Inst. of Tech., September 1978.

3The original language is assumed to contain no null symbol.

778

