
An Algorithm for Functional Uncertainty

Ronald M. KAPLAN and John T. MAXWEI,L I[I

Xerox Pale Alto Research Center
3333 Coyote Hill Road

Palo Alto, Californid 94304 USA

Abstract: The formal device of flmetional uncertainty has been
introduced into linguistic theory as a means of characterizing
long-distance dependencies alternative to conventional
phrase-structure based approaches. In this palter we briefly outline
the uneertMnty concept, and then present an algorithm for
determining the satisfiability of acyclic gramu~atical descriptions
containing uncertainty expressions and for synthesizing the
grammatically relevant solutions to those descriptions

1. Long-dis~ance l)ependeneies and Functional Uncertainty

In most linguistic theories hmg-distance dependencies such as are
found in topiealization and relative clause constructions are
characterized in tcrnrs of categoric,,; and configurations of
phrase-structure nodes. Kaplan and Zaenen (in press) have compared
this kind of an analysis with one based on the fimetional organization
of sentence:~, and suggest that tile relevant generalizations are instead
best stated in functional or predicate-argument terms.]'hey defined
and investigated a new tbrmal device, called "functional uncertainty"
that permit~ a functional statement of constraints on unbounded
dependeneie:~. In this paper, after reviewing their formal specification
of flmctional uncertainty, we present an algorithm for determining the
satisfiability of grammatical descriptions that incorporate uncertainty
specifications and fro" synthesizing the smallest solutions to such
descriptions.

/Kaplan and Zacnen (in press)/ started from an idea that
/Kaplan and Bresnan 1982/briefly considered but quickly rejected on
mathematical and (/Kaplan and Zaenerd suggest, mistaken) linguistic
grounds. They observed that each of the possible underlying positions
of an initial phrase could be specified in a simple equation locally
associated with that phrase. In tile topiealized sentence Mary John.
telephoned yesterday, the equation (in LFG notatiml) (1' TOPIC):
(1' (mJ) specifies that Mary is to be interpreted as the object of the
predicate telephoned. In Mary John claimed that Bill telephoned
yesterday, the appropriate equation is (1' TOHC)=(1' COMP {mJ),
indicating that Mary is still the object of telephoned, which because of
subsequent words in the string is itself the eonrplement (indicated by
the function name COMP) of the top-level predicate claim. The sentence
can obviously be extended by introducing additional complement
predicates (Mary John claimed that Bill said that that Henry
telephoned yesterday), for each of which stone equation of the general

fm'm (1' TOHC)=(1' COMP ('OMP On,I) would be appropriate. The
problem, of course, is that this is an infinite family of equations, and
hence impossible to enumerate in a finite disjunction appearing on a
particular rule of grammar. For this technical reason, Kaplan and
Bresnan abandoned the possibility of specifying unbounded
uncertainty directly in fimctional terms.

Kaplan and Zaencn reconsidered the general strategy that
Kaplan and Bresnan began to explore. Instead of formulating
uncertainty hy an explicit disjunctive enumeration, however, they
provided a formal specification, repeated here, that characterizes the
family of equations as a whole. A characterization of a family of
equations roay be finitely represented in a grammar even though the
family itself has an infinite number of members.]'hey developed this
notion from the elementary descriptive device in LFG, the
functional-application expression. This has the following
interpretation: /

(1) (f s)= e holds if and only if f is an f-structure, s is a symbol,

and the pair < s ; v > E f.

An f-structure is a hierarchical finite function from symbols to either
symbols, semantic forms, f-structures, or sets of f-structures, and a
parenthetic expression thus denotes the value that a thnetion takes for"
a particular symbol. This notation is straightforwardly extended to
allow for strings of symbols, as illustrated in expressions such as
(I" co,~w (re,l) above, l fx=sy is a string composedofan irfitial symbol s
followed by a (possibly empty) suffix stringy, then

(2) (fxI~((fs)y)

(f~) =-/', where c is the empty string.

The crucial extension to handle unbounded uncertainty is to allow the
argument position in these expressions to denote a set of strings.
Suppose u is a (possibly infinite) set of symbol strings. Then Kaplan
and Zaenen say that

(3) (f(r)= v holds if and only if ((fs) Suff(s,a))= v for some symbol

.s, where Suff(s,a) is the set of suffix strings y such that sy 6 a.

Thus, an equation with a string-set argnment holds if it wouhl hold for
a string in the set that results fl'om a sequence of left-to-right symbol
choices. This kind of equation is trivially unsatisfiable iffl denotes the
empty set. Ira is a finite set, this fornmlatiou is equivalent to a finite
disiunction of equations over the strings in a. Passing fi'om finite
disjunction to existential quantification enables us to capture the
intuition of unbounded uncertainty as an underspeeifieation of exactly
which choice of strings in a will ire compatible with tile functional
information carried by the surrounding surface environment.

Kaplan and Zacnen of emu'se imposed the further requh'emmtt
that the membership of a be characterized in finite specifications.
Specifically, for linguistic, mathematical, and computational reasons
they required that a in fact be drawn from the class of regular
hmguages. The characterization of uncertainty in a partieuhu'
grammatical equation can then be stated as a regular expression over
the vocabulary of grammatical function names. The infnite
uncertainty for the topicalization example above, for example, can be
specified by the equation (]' TOPIC)=('[COMP*OBJ), involving the
Kleene closure operator. A specification for" a broader class of
topiealization sentences might be (1' TOPIC)={ T COMP* GF), where GF
denotes the set of primitive grammatical functions {SUFU, OgJ, OBJY,
XCOMP, ...}. Various restrictions on the domain over which these
dependencies can operate--the equivalent of the so-called island
constraints--can be easily formulated by constraining the uncertainty
language in different ways. ["or example, the restriction for English
and Icelandic that adjunct clauses are islands (Kaplan & Zaenen, in
press) might be expressed with the equation (1" TOPIC) =
(]" (GF-ADJ)* GF). One noteworthy consequence of this flmetional
approach is that appropriate predicate-argument relations can be
defined without relying on empty nodes or traces in constituent
structure.

In the present paper we study the mathematical and
computational propertiesofregular uncertainty. Specifically, we show
that two important problems are decidable and present algorithms for
computing their solutions. In LFG the f-structures assigned to a string
are characterized by a functional description ('f-description'), a Boolean
combination of equalities and set-membership assertions that
acceptable f-structures must satisfy. We show first that the
verification problem is decidable for any functional description that
contains regular uncertainties. We then prove that the satisfiability
problem is decidable for a linguistic interesting subset of descriptions,
namely, those that characterize acyclic structures.

297

2. Verification

The verification problem is the problem of determining whether or not
a given f-structure F satisfies a particular functional description for
some assignment of elements of F to the variables in the description.
This question is important in lexical-functional theory because the
proper evaluation of I,FG's constraint equations depends on it. It is
easy to show that the verification problem for an f-description
including an uncertainty such as (fa) = v is decidable ifF is a noncyc|ic
f-structure. If F is noncyclic, it contains only a finite number of
function-application sequences and thus only a finite number of
strings that might satisfy the uncertainty equation. The membership
problem for the regular sets is decidable and each of those strings can
therefore he tested to see whether it belongs to the uncertainty
language, and if so, whether the uncertainty equation holds when the
uncertainty is instantiated to that string. Alternatively, the set of
application strings can be treated as a (finite) regular language that
can be intersected with the uncertainty language to determine the set
of strings (if any) for which the equation must be evaluated.

This alternative approach easily generalizes to the more
complex situation in which the given f-structure contains cycles of
applications. A cyclic F contains at least one element g that satisfies
an equation of the form (g y) = g for some stringy. It thus involves an
infinite number of function-application sequences and hence an
infinite number of strings any of which might satisfy an uncertainty.
But a finite-state machine can be constructed that accepts exactly the
strings of attributes in these application sequences, for example, by
using the Kasper/Rounds automaton model for f-structures (Kasper
and Rounds, 1986). These strings thus form a regular language whose
intersection with the uncertainty language is a regular set I
containing all the strings for which the equation must be evaluated. If
I is empty, the uncertainty is unsatisfiable. Otherwise, the set may be
infinite, but ifF satisfies the uncertainty equation for any string at all,
we can show the equation will be satisfied when the uncertainty is
instantiated to one of a finite number of short strings in I. Let n be the
number of states in a minimum-state deterministic finite-state
acceptor for [and suppose that the uncertainty equation holds for a
string w in I whose length Iwl is greater than n. From the Pumping
Lemma for regular sets we know there are strings x, y, and z such that
w=xyz, lYl >- l, and for all m -> 0 the string xymz is in L But these
latter strings can be appfication-sequences in F only if y picks out a
cyclic path, so that ((fx) y) = (fx). Thus we have

(f w) = v i f f
(f xyz) = v iff
(((fx) y) z)=v iff
(fix) z) = v iff
(f xz) = u

with xz shorter than w but still in I and hence in the uncertainty
language a. lflxz I is greater then n, this argument can be reapplied to
find yet a shorter string that satisfies the uncertainty. Since w was a
finite string to begin with, this process will eventually terminate with
a satisfying string whose length is less than or equal to n. We can
therefore determine whether or not the uncertainty holds by
examining only a finite number of strings, namely, the strings in [
whose length is bounded by n.

This argument can be translated to an efficient, practical
solution to the verification problem by interleaving the intersection
and testing steps. We enumerate common paths from the start-state of
a minimum-state acceptor for a and from the f-structure denoted by fin
F. In this traversal we keep track of the pairs of states and subsidiary
f-structures we have encountered and avoid retraversing paths from a
state/f-structure pair we have already visited. We then test the
uncertainty condition against the f-structure values we reach along
with final states in the u acceptor.

3. Satisfiability

It is more difficult to show that the satisfiability problem is decidable.
Given a functional description, can it be determined that a structure
satisfying all its conditions does in fact exist? For trivial descriptions
consisting of a single uncertainty equation, the question is easy to

answer. If the equation has an empty uncertainty language,
containing no strings whatsoever, the description is unsatisfiable.
Otherwise, it is satisfied by the f-structure that meets the
requirements of any string freely chosen from the language, fro"
instance, one of the shortest ones. For example, the description
containing only (fTOPIC)=(fCOMP*GF) is obviously satisfiable
because (fTOPIC) = (fsuBJ) clearly has a model. There is a large cIass of
nontrivial descriptions where the question is easy to answer for
essentially the same reason. If we know that the satisfiability of the
description is the same no matter which strings we choose from the
(nonempty) uncertainty languages, we can iastantiate the
uncertainties with fi'eely chosen strings and evaluate the resulting
description with any satisfiability procedure (for example, ordinary
attribute-value unification) that works on descriptions without
uncertainties. The bnportant point is that for descriptions in this class
we only need to look at a single string from each uncertainty language,
not all the stririgs it contains, to determine the satisfiability of the
whole system. Particular models that satisfy the description will
depend on the strings that instantiate the uncertainties, of course, but
whether or not such models exist is independent of the strings we
choose.

Not all descriptions have this desirable free-choice
characteristic. If the description includes a conjunction of an
uncertainty equation with another equation that defines a property of
the same variable, the description may be satisfiable tbr some
inst,antiations of the uncertainty but not for others. Suppose that the
equation (fTOPIC)=(fCOMP*GF) is conjoined with the equations
(f COMe SUBJ NUM) =SG and (f TOPIC NUM) = eL. This description is
satisfiable on the string COMe COMe SUBJ but not on the shorter string
COMe SUBJ because of the SG/PL ','inconsistency that arises. More
generally, if two equations (fa)=vQ and (f {])=vp are conjoined in a
description and there are strings in a that share a common prefix with
strings in [I, then the description as a whole may be satisfiable for some
strings but not for others. The choice of x from.a and xy from 13, tbr
example, implies a further constraint on the values vQ and v13: (fx)= va
and (fxy) = ((fx) y) = vp can hold only if (v a y) = vii, and this may or may
not be consistent with other equations for vQ.

We can formulate more precisely the conditions under which
the uncertainties in a description may be freely instantiated without
affecting satisfiability. For simplicity, in the analysis below we
consider a particular string of one or more symbols in a non-uncertain
application expression to be the trivial uncertainty language
containing just that string. Also, although out" satisfiability procedure
is actually implemented within the general framework of a directed
graph unification algorithm (the congruence closure method outlined
by /Kaplan and Bresnan 1982/), we present it here as a formula
rewriting system in the style of/Johnson 1987/. This enables us to
abstract away from specific details of data and control structure which
are irrelevant to the general line of argument. We begin with a few
definitions. We say that

(5) A description is in canonical form if and only if

(a) It is in disjunctive normal form,

(b) Application expressions appear only as the left-sides of
equations,

(c) None of its uncertainty languages is the empty string e,
and

(d) For any equation f = g between two distinct variables, one
of the variables appears in no other conjoined equation.

There is a simple algorithm for converting any description to a
logically equivalent canonical form. First, every statement containing
an application expression (g {]) not to the left of an equality is replaced
by the conjunction of an equation (g [3)= h, for h a new variable, with
the statement formed by substituting h for (g [3) in the original
statement. This step is iterated until no offending application
expressions remain. The equation (fa) = (g ~), for example, is replaced
by the conjunction of equations (f a) = h A (g{3)=h, and the
membership statement (g {])~f becomes h (f A (g {])= h. Next, every
equation of the form (f s)=v is replaced by the equation f=v in
accordance with the identity (2) above. The description is then

2981

transtbrmed to disjunctive normal form. Finally, for every equation of
tire form f = g between two distinct variables both of which appear in
other conjoined equations, all occurrences o fg i~ those other equations
are replaced by f Each of these transformations preserves logical
equivalence and the algorithm terminates after introducing only a
finite number of new equations and variables and performing a finite
number of substitutions.

Now let Z be the alphabet of attributes in a description and
define the set of first 'attributes in a language a as follows:

(5) First(a) ~-{s in E I sz is in u for some string z in E*}

Then we say that

(6) (a) Two application ex!Sressions (fa) and (g 13) are free if and
only if
(i) f and g are distinct, m" (ii) First(a) ~ First([l) = O and s is
in neither a nor 13.

(b) Two equations are free if and only if their application
expressions are pairwi.se free.

(c) A functional description is free if and only if i t ' i s in
canonical form and all its conjoined equations are pairwise
free.

If all the attribute strings on tire same variable in a canonical
description differ on their first element, there can be no shared
prefixes. The fi'ee descriptions are thus exactly those whose
satisfiability is not affected by different uncertainty instantiations.

3.1 Remoeing interactions

We attack the satisfiability problem by providing a procedure for
t ransforming a thnctional description D to a logically equivalent but
free description D ' any of whose instantiations .can he tested for
satisfiability by traditional algorithms. We show that this procedure
terminates for the desm'iptions that usually appear in linguistic
grammars, namely, the descriptions whose atinimal models are all
aeyclic. Although the procedure can detect that a description may
have a cyclic minimal model, we cannot yet show that the procedure
will always terminate with a correct answer if a cyclic specification
interacts with an infinite uncertainty language.

The key ingredient of this procedure is a transfornmtion that
converts a conjunction of two equations that are not free into an
equivalent finite disjunction of conjoined equations that are pairwise
free. Consider the conjoined equations (f a)= v~ and (f~)=vo for some
value expressions va and vl~, where (fn) and (fL3) are not free. Strings x

and y arbitrarily chosen frmn a and 13, respectively, might be related in
any of three significant ways: Either (a) x is a prefix ofy (y is xy' for
some string y'), (b) y is a prefix ofx (x is yx'), or (c) x and y are identical
up to some point and then diverge (x is zsxx' and y is zsyy' with symbol
Sx distinct from Sy). Note that the possibility that x and y are identical
strings is covered by both (a) and (b) with either y' or x' being empty,
and that noninteracting strings fall into case (c) with z being empty.
In each of these cases there is a logically equivalent reformulation
involving either distinct variables or strings that share no first
symbols:

(7) (a) x i s a prefixofy:
(fx) = v~ A (fxy') = v~ iff
(f x) = v,~ A ((f x) y') = v~ iff

(f x) = vQ A (on y') = V~ (by substituting va for (~x)

(b) y is a prefix of x:
(fyx') ~- va A (fy) :: el3 iff
(v~ x) = v~ A (f)') = Ul~

(c) x and y have a (possibly mnpty) common prefix and then
diverge:
(f zs~') = o, A (f ZSyy') = v~ iff
(f z) = g A (g s~x') =.vo A bX Syy ') = u~

for g a new variab!e and symbols s~ ~e sy

All ways in which the chosen strings can interact are covered by the
disjunction of these reformulations. We observe that if these specific
attribute strings are considered as trivial uncertainties and if va and vl~

are distinct from f, the resulting equations in each case are pairwise
free.

In this analysis we transfer the dependencies among chosen
strings into different branches of a disjunction. Although we have
reasoned so far only about specific strings, an analogous line of
argument can be provided for families of strings in infinite uncertainty
languages. The strings in these languages fall into a finite set of
classes to which a similar case analysis applies. Let <Qq, 8~, qu, Fa,

E> be the states, transition function, start state, final states, and
alphabet of a (perhaps nondeterministic) finite-state machine that
accepts a and let < QIt, 50, q13, Fl3, E > be an accepter for [l. Let 8" be the
usual extension of 8 to strings in E* and define

(8) Prefix(a,q) -= {x[q (8*a(qa,x) }
(the prefixes of strings in u that lead to state q)

Suffix(u,q) -~ {xJS*(q'x)flFn ~: O} ifq~Q~
U Suffix(u,p) ifq C Qa

pEq

(the suffixes of strings in a whose prefixes lcad to states q)
and note that Prefix(a,q) and Suffix(a,q) are regular sets for all q in Q~

(since finite-state acceptm's for them can easily be constructed from the
accepter for a). Further, every string in a belongs to the concatenation
of Prefix(a,q) and Suffix(a,q) for some state q in Qa. The prefixes of all

strings in u thus behmg to a finite number of languages Prefix(n,q),
and every prefix that is shared between a string in a and a string in fl
also belongs to a finite number of classes formed by intersecting two of
regular sets of this type. The common prefix languages fill the role of
the prcfix strings in the three-way analysis above. All interactions of
the strings in a and 13 that lead through states q and r, respectively, are
covered by the following possibilities:

(9) (a) Strings fi'om a are prefixes of strings fiom 13:
(f aCIPrefix(~,r)) = va A (v(~ Suffix(13,r)) = uf~

(b) Strings fi'om 13 are prefixes of strings from a:
(f [ff/Prefix(a,q))= ell A (v~ Suffix(a,q))= u a

(c) Strings have a common prefix and then diverge on some sa
and sl~ in Z:

(f Prefix(n,q)NPrefix([J,r)) == gqv A
[(g'q,r ,%Suffix(u,8~,(q,so)))= vQ A

(g,q,,. s~Suffix([3,8~(r,sl0)) = rid

where the gq,r in (9c) is a new variable and sa:esl~. Taking the
disjunction of these cases over the cross-product of states in Qa and Q~

and pairs of distinct symbols in E, we define the following operatm':

(10) Free((fa)=v, , (fl~)=vo)

[(f anPrefix(13, r)) = ua A (v, Suffix(13, r)) = vl3l (a)

V [(f ~(1Prefix(a, q)) = el3 A (v{] Suffix(u, q)) = ea] (b)

V V [(f Prefix(a, q)APrefix(13, r))=gq,r A
q(Qa \ / (c)

V [(gq,,. sQSuffix(n, Sa(q, sn)))=v~A r~Q~
8c~,8[J~ (gq,r s[3Suffix(~, 813(r , St3))) :Vii]]
sa :~ s13

This operator is the central component of our satisfiability
procedure. It is easy to show that Free is truth-preserving in the sense
that Free((fa)= va, (f 13)= v 0) is logically equivalent to the conjunction

(fa) = va A (f13) = v~. Any strings x and y that satisfy the uncertainties
in the conjunction must fall into one of the cases in (7). I f y=xy ' applies
(case 7a), we have (f x) ~= va A (va y') = vf~. But x leads to some state rx in
Q~ and therefore belongs to Prefix(~,rx) while y' belongs to Suffix(13,rx).
Thus, x satisfies (f a(3Prefix(13,rx))=va and y' satisfies

(va Suffix(~,rx) = v~, ann (10a) is satisfied for one of the r x disjunctions.
A symmetric argument goes through ifcas e (7b) obtains.

Now suppose the strings diverge to SxX' and Syy' for distinct sx
and Sy after a common prefix z (case 7c) and that z leads to q in Qa and r
in Q~. Then z belongs to Prefix(a,q)NPrefix(~,r) and satisfies the
uncertainty (f Prefix(a,q)APrefix(~,r))=gq,r. Since x' belongs to

299

Suffix(a,Sa(q,sx))) and y' belongs to Suffix(13,Si~(r,sy))), the gq.,. equations

in the s~,sp disjunction also hold. Thus, if both original equations are

satisfied, one of the disjunctions in (10) will also be satisfied.
Conversely, if one of the disjunctions in (lO) holds for some part icular
str ings, then we can find other s t r ings tha t satisfy both original
equations. If (f oC~Prefix(!3,r)) = va hokts for some s t r ing x in a leading

to s ta te r in it's accepter and (va Suffix(ILr))= % holds for some s t r ingy '

in Suffix([~,r),then (f a)=va holds because x is in a and (f[~)=v~ holds

because ((f x) y') = v~ = (f xy') and xy' is in [k The argmnents for the

other cases in (10) are s imi lar ly easy to construct. Thus, logical
equiwdenee is establ ished by reasoning back and forth between s t r ings
and languages and between s t r ings and their prefixes and suffixes.

If the operands to Free are from a description in canonical
form, then the canonical form of the resul t is a free descr ipt ion--al l its
conjoined equations are pairwise free. This is t rue whether or not the
original equations were free, provided that the value expressions va

and v[3 are dist inct from f (i f e i ther value was f, the original equations

would have only cyclic models, a point we will return to below). In the
first two eases in (10), the resul t ing equations are fi'ee because they
have dist inct var iables (if nei ther vQ nor vp is f). In the third ease, the f

equation is free of the other two because gq,r is a new variable, and the

two gq,r equations are free because the first symbols of their

uncer ta int ies are distinct. In sum, the Free operator t ransforms a
conjunction of two non-fl'ee equations into a logically equivalent
formula whose canonical form is free.

The procedure for convert ing a description D to free form is
now straightforward. The procedure has four simple steps:

(I t) (a) Place D in canonical form.

(b) If all conjoined equations in D are pairwise free, stop. D is
free.

(el Pick a conjunction C in D with a pair of non-free equations
(f a)=v~ and (f l~)=vi~, and replace C in D with the

canonical form of its other equations conjoined with
Free(((fn) = va, (fl~) = %)

(d) Go to step (a).

3.2 Termination

l fD has only aeylic models, this procedure will te rminate after a finite
number of i terations. We argue tha t there are a cer ta in number of
ways in which the equations in each conjunction in D's canonical form
can interact. Ini t ial ly, for a conjunction C of N equations, the maximal
number Of non-free pairs is N(N-1)/2, on the worst-ease assumption
that every equation may potent ia l ly interact with every other
equation. Suppose step (1 le) is applied to two in terac t ing equations in
C. The resul t will be a disjunction of conjunctions each of which
includes the remain ing equat ions from C and new equations
introduced by one of the eases in (10). In eases (10a) and (10b) the
interact ion is removed from the common variable of the two equations
(D and t ransferred to a new var iable (ei ther va or %). In ease (10c), the

interact ion is actual ly removed from the system as a new variable is
introduced. Since new var iables are introduced only when an
interact ion is removed, the number of new var iables is bounded. Thus
each interact ion is processed only a bounded number of t imes before i t
is either" removed (10el or t ransferred to a var iable tha t i t was
previously associated with (t0a, b). t towever, it can only t ransfer to a
previous variable if the description has cyclic models. Suppose tha t f
is reached again through a series of (10a,b) s t eps Then there is a
conjoined sequence of equat ions (f a) : v a , (va u t) = v a v ...,

(v% an + 11 = f But these can only be sat isf ied if there is some s t r ing x

in aat . . .an+ 1 such tha t (f x) = f and this holds only of cyclic models.

Since the number of var iables introduced is bounded by the original
number of possible interact ions, al l actual interact ions in the system
must eventual ly disappear e i ther through the applicat ion of (10c) or by
being t ransferred to a var iable whose other equat ions i t does not
interact with.

300

As we argued above, the sat isf iabi l i ty of a free description can
be determined by a rb i t ra r i ly ins tan t ia t ing the residual uncertaint ies
to par t icular s tr ings and then applying any t radi t ional sat isf iabi l i ty
a lgor i thm to the result. Given the Free operator and the procedure in
(l l) , the sat isf iabi l i ty of an a rb i t ra ry acyclic description is thus
decidable.

'Phe possibility of nonterminat ion with cyclic descriptions may
or may not be a problmn in l inguist ic practice. Although the formal
system makes it easy to write descriptions of t h i s sort, very few
l inguist ic analyses have made use of them. The only example we are
aware of involves modification s t ructures (such as relat ive clauses)
tha t both belong to the e lement they modify (the head) and also
contain that element in ternal ly as an a t t r ibute value. But out'
procedure will in fact te rmina te in these sorts of eases. The difficulty
with cycles crones fl'om thei r interact ion with infinite uncertaint ies .
That is, the desm'iption may have cyclic models, but the cyclic
specifications will not a lways lead to repeat ing var iable t ransfers and
nontermination. For example, if the cycle is required by an
uncer ta inty that interacts with no other infinite uncertainty, the
procedure will eventual ly te rmina te with a fi'ee description. This is
what happens in the modification ease, because the cycle involves a
grammat ica l function (say RELCLAUSE o r MOD) which belongs to no
infinite uncertainty.

I,'or cycles that are not of this type, there is a s t ra ightforward
modification to the procedure in (11) that at least enables them to be
detected. We main ta in with each uncer ta inty a reem'd of al l the
var iables tha t it or any of i ts ancestors have been associated with, and
recognize a potential ly non te rmina t ing cycle when the a t ransfer to a
var iable already in the set is attemi~ted. If we terminate the procedure
when this happens, a ssuming in effec~ tha t all subsequent disjunctions
are unsatisfiable, we cannot be sure that al l possible solutions will be
aeemmted for and thus cannot guarantee the completeness of our
procedure in the cyclic case. We can refine this s t ra tegy by recording
and avoiding i terat ion over combinations of var iables and uncer ta in ty
languages. We thus safely explore more of the solution possibil i t ies
but perhaps st i l l not al l of them. It is an open question whether or not
there is a sa t is f iabi l i ty procedure different from the one we have
presented tha t te rminates correctly in al l eases. On the other band, i t
is also not clear that potent ial solutions tha t might be lost through
ear ly terminat ion are l inguis t ica l ly significant. Perhaps they should
be excluded by definition, much as /Kaplan and Bresnan 1982/
excluded c~structure der ivat ions with nonbranching dominance chains
because of their l inguis t ical ly unin teres t ing redundancies.

4. The Smal l e s t Models

The sat is f iabi l i ty of a description in free form is independent of the
choice of s t r ings from its uncer ta in ty languages, but of course different
s t r ing choices resul t in different sat isfying models for the description.
An infinite number of s t r ings can be chosen from even a very s imple
functional uncer ta inty such as (f COMP* SUBJ) : V, and thus there are
an infinite nunlber of dis t inct possible models. This is reminiscent of
the infinite nmnber of models for descriptions with no uncer ta int ies a t
a l l (just (f sunJ)=v) , but in this case the models are sys temat ica l ly
re la ted in the na tura l subsumption ordering on the f~structure lattice.
There is one smal les t s t ructure; the others include the information it
contains and thus satisfy the description. But they also include
a rb i t ra ry amounts of addit ional information that the descript ion does
not call for. This is discussed by /Kap lan and Bresnan 1982/, where the
subsumpt ion-minimal s t ructure is defined to be the g rammat ica l ly
re levant one.

The models corresponding to the choice of different s t r ings
from an infinite uncer ta inty are also sys temat ica l ly re la ted to each
other but on an metrle tha t is orthogonal to the subsumption ordering.
Again appeal ing to the Pumping Lemma for regular sets, s t r ings tha t
are longer than the number of s ta tes in an uncer ta inty 's minimal -s ta te
f ini te-state accepter include a subs t r ing tha t is accepted by some
repeat ing sequence of t ransi t ions. Repl icat ing this subs t r ing
a rb i t r a r i ly st i l l yields a s t r ing in the uncertainty, so in a cer ta in sense
these replications contribute no new grammat ica l ly in teres t ing

information. Since all the intbrmatim~ is esseut ial ly contained in tile
shorter st,rinh~ that has no oeeurreuce of this imrt ieular subs(ring, we
define this t . be the g rammat ica l ly relevant representa t ive fin" the
whole class. Thus a description with uncertaint ies has only a finite
number of lir~guistically signif icant models, those that resul t h'mn the
5ni te disjunci:ions that are introduced in converting the description to
flee form and fl'om choosing among the finite nmnber of Short s t r ings
in the residual uncertainties.

5. Pek'farmmice C o n s i d e r a t i o n s

We have outlined a general, abs t ract procedure fro' solving uncertainty
descriptions, making the smal les t number of assumptions about the
detai ls of its operatiml, '['he efficiency of any i ,nphmmntation will
depend in huge nleasure in jus t how details of data str(u:ture and
explicit COlnp~ttational control are fixed.

There are a nuruber of obvious optimizations tbat can be made.
First, a l though not required by the abst ract procedure, perfornmnce
will clearly be bet ter if determinist ic, minimal-s ta te finite-state
nmchines are used to represent the uncertainties. This reduces the
size of the :;late eross-prodnets, which is the leading term in the
number of disiunctions tha t nnlst be processed. Second, the cases in
the Free operatm' are not mutua l ly distinct: if identical s t r ings behmg
to the two um-ertainty languages, those wonld full into both cases (at
and (b) and hence be processed twice with exactly equivalent results.
The solution to this redundancy is to restr ict one of tile cases (say (at)
so that it only handles proper prefixes, consigning the identical s tr ings
to the otber case. Third, when pairs of symbols are enumera ted in the
(el case, there is obviously no point in even considering symbols that
are in the alphabet bnt are not First symbols of the suff'ix
uncertainties. This optimization is applied automat ical ly if only the
t ransi t ions leaving the s tar t s tates are enmnera ted and the
finite-state machines tire represented with part ial t ransi t ion functions
pruned of t ransi t ions to failure states.

Four(b, a der ivat ive uncer ta inty produced by the Free opm'ator
will sometimes be empty. Since equations with empty nncertaint ies
are imsatisfiable by definition, tiffs case should be detected and tha t
disjunctive brt, nch immedia te ly discarded. Fifth, the same der ivat ive
suffix and prefix languages of a par t icular s tate may appear in
pursuing diffecent branches of the disjunction er processing different
combinations af equations. Some conq)utaUonal advantage may be
gained by saving the der ivat ive finite-state machines in a cache
associated with the s ta tes they are based on. Finally, successive
i terat ions of the Free procedure may lead to t ransparent
inconsistencies; (an asser t ion of equali ty between two dist inct symbols;
m" equat ing a synlbol to a var iable that is also nsed as a functimi). It is
important to detect these inconsistencies when they first appear and
again discard the corresponding disjunctive branch. In fact, if' this is
done systemaUcally, i terated application of the Free operator by i tself
s imulates the effect of t radi t ional unification algori thms, with
variables corresponding to f-structures or nodes of a directed graph.

There are also some less obvious but also quite important
peribrmance considerations. What we have described is an equational
rewri t ing system tha t is quite different fl'om the usual reeursive
unification a lgor i thm tha t operates on directed graptl representat ions.
Directed graph data s t ructures index the information in the equations
so tha t related s t ructures are quickly accessible through the reem'sive
control structure. Since our procedure does not depend for its
correctness o~, (he order in which interact ing equations arc chosen for
i:recessing, it ought to be easy to embed Free as a s imple extension of a
t radi t ional algori thm. However, t radi t ional unification a lgor i thms do
not deal with disjnnetion gracefully. In part icular , they typically do
net expect new disjunctive branches to arise (luring the course of a
reeursive invocation; this would require inser t ing a fork in the
reeursive control s t ruc ture or saving a emnplete 'copy of the enrrent
computat ional context for each new disjunction. We avoid this
~wkwar(tness by postponing tile processing of the functional
uncertainty nat i l al l s imple unifications are complete. Before
performing a s imple unification step, we remove from the data
s truetures all uncer t s in t ies tha t need to be resolved and store them

with a pointer to their contahdng s t ructures on a qmme or agenda of
peuding t.mificaLions. Uncertainty proceasing can be resumed at a
later, more convenient time, after tile sinlpler unil 'lcations have hecIl
completed. (Indeed, if mm of tile s impler unifications fails, the
mlcer ta inty may never be processed at all.) Wai t ing until sinipler
nnifications are done means that no computational state has to be
preserved; only data s t ructures have to be copied to [wmre the
independence of the various disjunctive paths.

We also note tha t as l<lng as the machinery [br postponing
thnctiona[uncertainty 6~r some anmunt of t ime is needed, it is often
advantagemm to postpoue it even hinter than is absohltely necessary
In i)artieuhu', we fonnd I:lalL il' uncertaint ies are postl)nned until
predicates (seulantic form values lilt' PIU'tD at tr ibutes) at'(! assigned to
the I' s t ructures they belong to, the nuluber of cases that must be
explored is dramat ica l ly reduced. This is heeause of the coherence
cm~dition that I,FG imposes on t \s truetures with In'edicates: an
['-structure with a predicate can only contain (.hose govvrnable
functions that are explicit ly mentioned by the predicate. Any other
governable ['unctions are considered unacceptable. Thus, if we wail
until the predicate is klentified, we need only consider the small
number of governable a t t r ibutes that any par t icular predicate allows,
even though the ini t ial a t t r ibutes in an uncertainty may include the
entire set of governab[e functions (SUB J, oBJ, and various kinds of
obliques and eonlplmnents), and this may be quite large. The effect is
to make tim processing of hmg distance dependencies sensit ive to the
subeategorization fralne of the predicate: we haw=" ahserved eUOFInOUS
ow, 'a l l performance ilnprovemetm; from applying this delay s t r a t egy
Note that m a left.to-right parsing model, the processing h)ad therefore
increases iu relat ive clauses just after the predicate is seen, and this
might bare a variety of in teres t ing psycholinguistic implications.

Finally, we observe that there is a specialization of the Free
operator tha t applies when an uncertainty interacts with several
non uncertainty equations (equations whose a t t r ibute expressions
have singleton Firs t set:;), instead of separa t ing one interaction flxun
the uncertainty with each application of Fl'eo, the Itncertainty is
divided in a single step into u min imum nmuber of disjunctive
possibili t ies e a c i l e f which interacts with jus t one of the. other
equations. The disjunction contains one branch for each symbol in the
uneertainty 's Fi rs t set that is an ini t ial a t t r ibute in one of the other
equations, ohm a single branch tbr all of the residual ini thd symbols:

(12) (f a) = u iff (fslSuffix(a,S(qa,st)))-:v ...v(fsnSuffix(u,5(q(,,st~)))::::v
V (l'n--{s b...s,d~:*) = v

The s ta tement of the generic Free a/gm'ithm (10) is simplified by
considering specific a t t r ibu tes as t r ivial regular languages, buL this
suggests that COlnplex finite-state machinery would be roquh'ed to
process them. This a l ternat ive works in the opposite direction: it
reduces leading ternls in an uncertainty to simph. ~ a t t r ihutes boil)re
pursuing their interactions, so that efficient a t t r ibute lnatehing
routines of a normal unification procedm'e can be applied. This
a l te rna t ive has a second computational advantage. The generic
a lgor i thm unwinds the uncertainty one a t t r ibute at a time,
construct ing a residual regular set at each step, which is then
processed agains t the other nml-uncertain equations. The a l ternat ive
pr(leesses them all at once, avoiding the construction of these
in termediate residual languages. This is a very i lnportanl
optimization, since we lbund it to be the most colnmon case when we
embedded uncer ta inty resohltion in our reeursive unification

algori thm.

Unem'tainty sl/ecificatlons are at colnI)act way of expressing a
large number of disjunctive possibil i t ies that are uncovered one by one
as our procedure operates. I t might seem tha t this is an extremely
expensive descriptive device, one which should lie avoided in tltvor of
apparent ly s impler 'mechanisms. Bul; the disjunctions that emerge
fl'om processing uncer ta int ies arc real: they represent independent
g rammat ica l possibil i t ies tha t would require addit ional computat ional
resources no matter how they were expressed. In theories in which
long-distance dependencies are based ou empty phase~strueture nodes
and implemented, for example, by gap..threading machinery, a'rN
tIol,I) lists, and the like, the exact h)cation of these empty nodes is not
s ignaled by any in(urination directly visible in the sentence. This

301

increases the number of phrase.structure rules that can he applied.
What we see as the computational cost of functional uncertainty shows
up in these systems as additional resources needed for
phrase-structure analysis and for functional evaluation of the larger
number of trees that the phrase-structure component produces.
Unlike phrasally-based specifications, fnnctional uncertainties in LFG
are defined on the same level of representation as the
subcategorization restrictions that constrain how they can he resolved,
which our coherence-delay strategy easily takes advantage of. But the
thct remains that functional uncertainties do generate dlsjueetions,
and thus strongly highlight the already perceived need for efficient
disjunction-processing techniques if acceptable performance is to be
achieved with I,FG and related grammatical formalisms. Recent
disjunction proposals by/Kasper 1987/and/Eisele and D0rre 1988/are
important steps in the development of the necessary computational
technology.

6. Conclusion

The notion of regular functional uncertainty thus has very nice
mathematical properties. Our state-decomposition algorithm provides
a very attractive method for resolving functional uncertainties as
other phrasal and functional constraints are computed during the
parse of a sentence. This algorithm expands the uncertainties
incrementally, introducing at each point only as much disjunction as is
necessary to avoid interactions with other functional information that
has already been taken into account. We bare recently added this
algorithm and the functional uncertainty notation to our LFG
Grammar Writer's Workbench, and we can now rigorously but easily
test a wide range of linguistic hypotheses. We have also begun to
investigate a number of other computational heuristics for the
efficient, controlled expansion of uncertainty.

Kaplan and Zaenen (in press) first proposed the idea of
functional uncertainty as sketched in this paper to account for the
properties of long-distance dependencies within the LFG h'amework.
In this fi'amework, it has already shed new light on long-standing
problems like island constraints (see, e.g., /Saiki 1985/ for an
application to Japanese). But the notion is potentially of much wider
use: first, it can be adapted to other unification grammar formalisms
to handle facts of a similar nature; and second, it can be used to handle
phenomena that are traditionally not thought of as falling into the
same class as long-distance dependencies but that nevertheless seem
to involve nonlocal uncertainty. A discussion of its application in the
LFG framework to infinitival complements can be found in/Johnson
1986/for Dutch and/Netter 1986/for German;/Karttunen (in press)/
discusses how similar extensions to Categorial Unification Grammar
(CUG) can account in a simple way for related facts in Finnish that
would otherwise require type-raising. Halvorsen has suggested that
scope ambiguities in semantic structures might also be characterized
by this device.

Acknowledgements

Our understanding of the linguistic applications of functional
uncertainty developed over a long period of time in discussions with
Joan Bresnan, Kris Halvorsen and Annie Zaenen. Discussions with
Mark Johnson helped us in the early formulations of the satisfiability
procedure, and Bill Rounds assisted us in understanding the
difficulties of the cyclic case. We are grateful for the invaluable
assistance these colleagues have provided.

References

Eisele, A. and D6rre, J. 1988. Unification of disjunctive feature
descriptions. Proceeedings of the 26th Annual Meeting of the
Association fo~'Computational Linguistics.

Johnson, M. 1986. An LFG description of the double infinitive
construction in Dutch and German, CSLI report.

Johnson, M. 1987. Attribute-value logic and the theory of grammar.
Unpublished doctoral dissertation, Stanford University.

302

Kaplan, R. M. andBresnan, J. 1982. 1,exicaLfunctional grammar: A
formal system for grammatical representation. In J. Bresnan
(ed.), The mental representation of grammatical relations.
Cambridge: MIT Press.

Kapian, R. M. and Zaenen, A. In press. Long-distance dependencies,
constituent structure, and functional uncertainty. In M. Baltin
and A. Kroch (eds.), Alternative Conceptions of Phr~tse Structure.
Chicago: Chicago University Press.

Karttuncn, L. In press. Radical [,exicalism. In M. Baltin and A. Kroch
(eds.), Alternative Conceptions of Phrase Structure. Chicago:
Chicago University Press.

Kasper, R. 1987. A unification method for disiunetive feature
descriptions. Proceedings of the 25th Annual Meeting of the
Association for Computational Linguistics.

Kasper, R. and Rounds. W. 1986. A logical semantics for feature
structures. Proceedings of the 24th Annual Meeting of the
Association for Computational Linguistics.

Netter, K. 1986. Getting Things out of Order. COLING l 1.

Saiki, M. 1985. On the coordination of gapped constituents in
Japanese. CLS 21.

