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Abstract: The formal device of flmetional uncertainty has been 
introduced into linguistic theory as a means of characterizing 
long-distance dependencies alternative to conventional 
phrase-structure based approaches. In this palter we briefly outline 
the uneertMnty concept, and then present an algorithm for 
determining the satisfiability of acyclic gramu~atical descriptions 
containing uncertainty expressions and for synthesizing the 
grammatically relevant solutions to those descriptions 

1. Long-dis~ance l)ependeneies and Functional Uncertainty 

In most linguistic theories hmg-distance dependencies such as are 
found in topiealization and relative clause constructions are 
characterized in tcrnrs of categoric,,; and configurations of 
phrase-structure nodes. Kaplan and Zaenen (in press) have compared 
this kind of an analysis with one based on the fimetional organization 
of sentence:~, and suggest that tile relevant generalizations are instead 
best stated in functional or predicate-argument terms. ]'hey defined 
and investigated a new tbrmal device, called "functional uncertainty" 
that permit~ a functional statement of constraints on unbounded 
dependeneie:~. In this paper, after reviewing their formal specification 
of flmctional uncertainty, we present an algorithm for determining the 
satisfiability of grammatical descriptions that incorporate uncertainty 
specifications and fro" synthesizing the smallest solutions to such 
descriptions. 

/Kaplan and Zacnen (in press)/ started from an idea that 
/Kaplan and Bresnan 1982/briefly considered but quickly rejected on 
mathematical and (/Kaplan and Zaenerd suggest, mistaken) linguistic 
grounds. They observed that each of the possible underlying positions 
of an initial phrase could be specified in a simple equation locally 
associated with that phrase. In tile topiealized sentence Mary John. 
telephoned yesterday, the equation (in LFG notatiml) (1' TOPIC): 
( 1' (mJ) specifies that Mary is to be interpreted as the object of the 
predicate telephoned. In Mary John claimed that Bill telephoned 
yesterday, the appropriate equation is ( 1' TOHC)=( 1' COMP {mJ), 
indicating that Mary is still the object of telephoned, which because of 
subsequent words in the string is itself the eonrplement (indicated by 
the function name COMP) of the top-level predicate claim. The sentence 
can obviously be extended by introducing additional complement 
predicates (Mary John claimed that Bill said that .... that Henry 
telephoned yesterday), for each of which stone equation of the general 

fm'm ( 1' TOHC)=( 1' COMP ('OMP .... On,I) would be appropriate. The 
problem, of course, is that this is an infinite family of equations, and 
hence impossible to enumerate in a finite disjunction appearing on a 
particular rule of grammar. For this technical reason, Kaplan and 
Bresnan abandoned the possibility of specifying unbounded 
uncertainty directly in fimctional terms. 

Kaplan and Zaencn reconsidered the general strategy that 
Kaplan and Bresnan began to explore. Instead of formulating 
uncertainty hy an explicit disjunctive enumeration, however, they 
provided a formal specification, repeated here, that characterizes the 
family of equations as a whole. A characterization of a family of 
equations roay be finitely represented in a grammar even though the 
family itself has an infinite number of members. ]'hey developed this 
notion from the elementary descriptive device in LFG, the 
functional-application expression. This has the following 
interpretation: / 

(1) (f s)= e holds if and only if f is an f-structure, s is a symbol, 

and the pair < s ; v >  E f. 

An f-structure is a hierarchical finite function from symbols to either 
symbols, semantic forms, f-structures, or sets of f-structures, and a 
parenthetic expression thus denotes the value that a thnetion takes for" 
a particular symbol. This notation is straightforwardly extended to 
allow for strings of symbols, as illustrated in expressions such as 
( I" co,~w (re,l) above, l fx=sy is a string composedofan irfitial symbol s 
followed by a (possibly empty) suffix stringy, then 

(2) ( fxI~(( fs)y)  

(f~) =-/', where c is the empty string. 

The crucial extension to handle unbounded uncertainty is to allow the 
argument position in these expressions to denote a set of strings. 
Suppose u is a (possibly infinite) set of symbol strings. Then Kaplan 
and Zaenen say that 

(3) (f(r)= v holds if and only if ((fs) Suff(s,a))= v for some symbol 

.s, where Suff(s,a) is the set of suffix strings y such that sy 6 a. 

Thus, an equation with a string-set argnment holds if it wouhl hold for 
a string in the set that results fl'om a sequence of left-to-right symbol 
choices. This kind of equation is trivially unsatisfiable iffl denotes the 
empty set. Ira is a finite set, this fornmlatiou is equivalent to a finite 
disiunction of equations over the strings in a. Passing fi'om finite 
disjunction to existential quantification enables us to capture the 
intuition of unbounded uncertainty as an underspeeifieation of exactly 
which choice of strings in a will ire compatible with tile functional 
information carried by the surrounding surface environment. 

Kaplan and Zacnen of emu'se imposed the further requh'emmtt 
that the membership of a be characterized in finite specifications. 
Specifically, for linguistic, mathematical, and computational reasons 
they required that a in fact be drawn from the class of regular 
hmguages. The characterization of uncertainty in a partieuhu' 
grammatical equation can then be stated as a regular expression over 
the vocabulary of grammatical function names. The infnite 
uncertainty for the topicalization example above, for example, can be 
specified by the equation (]' TOPIC)=('[ COMP*OBJ), involving the 
Kleene closure operator. A specification for" a broader class of 
topiealization sentences might be ( 1' TOPIC)={ T COMP* GF), where GF 
denotes the set of primitive grammatical functions {SUFU, OgJ, OBJY, 
XCOMP, ...}. Various restrictions on the domain over which these 
dependencies can operate--the equivalent of the so-called island 
constraints--can be easily formulated by constraining the uncertainty 
language in different ways. ["or example, the restriction for English 
and Icelandic that adjunct clauses are islands (Kaplan & Zaenen, in 
press) might be expressed with the equation ( 1" TOPIC) = 
(]" (GF-ADJ)* GF). One noteworthy consequence of this flmetional 
approach is that appropriate predicate-argument relations can be 
defined without relying on empty nodes or traces in constituent 
structure. 

In the present paper we study the mathematical and 
computational propertiesofregular uncertainty. Specifically, we show 
that two important problems are decidable and present algorithms for 
computing their solutions. In LFG the f-structures assigned to a string 
are characterized by a functional description ('f-description'), a Boolean 
combination of equalities and set-membership assertions that 
acceptable f-structures must satisfy. We show first that the 
verification problem is decidable for any functional description that 
contains regular uncertainties. We then prove that the satisfiability 
problem is decidable for a linguistic interesting subset of descriptions, 
namely, those that characterize acyclic structures. 
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2. Verification 

The verification problem is the problem of determining whether or not 
a given f-structure F satisfies a particular functional description for 
some assignment of elements of F to the variables in the description. 
This question is important in lexical-functional theory because the 
proper evaluation of I,FG's constraint equations depends on it. It is 
easy to show that the verification problem for an f-description 
including an uncertainty such as (fa) = v is decidable ifF is a noncyc|ic 
f-structure. If F is noncyclic, it contains only a finite number of 
function-application sequences and thus only a finite number of 
strings that might satisfy the uncertainty equation. The membership 
problem for the regular sets is decidable and each of those strings can 
therefore he tested to see whether it belongs to the uncertainty 
language, and if so, whether the uncertainty equation holds when the 
uncertainty is instantiated to that string. Alternatively, the set of 
application strings can be treated as a (finite) regular language that 
can be intersected with the uncertainty language to determine the set 
of strings (if any) for which the equation must be evaluated. 

This alternative approach easily generalizes to the more 
complex situation in which the given f-structure contains cycles of 
applications. A cyclic F contains at least one element g that satisfies 
an equation of the form ( g y ) = g  for some stringy. It thus involves an 
infinite number of function-application sequences and hence an 
infinite number of strings any of which might satisfy an uncertainty. 
But a finite-state machine can be constructed that accepts exactly the 
strings of attributes in these application sequences, for example, by 
using the Kasper/Rounds automaton model for f-structures (Kasper 
and Rounds, 1986). These strings thus form a regular language whose 
intersection with the uncertainty language is a regular set I 
containing all the strings for which the equation must be evaluated. If 
I is empty, the uncertainty is unsatisfiable. Otherwise, the set may be 
infinite, but ifF satisfies the uncertainty equation for any string at all, 
we can show the equation will be satisfied when the uncertainty is 
instantiated to one of a finite number of short strings in I. Let n be the 
number of states in a minimum-state deterministic finite-state 
acceptor for [ and suppose that the uncertainty equation holds for a 
string w in I whose length Iwl is greater than n. From the Pumping 
Lemma for regular sets we know there are strings x, y, and z such that 
w=xyz,  lYl >- l, and for all m -> 0 the string xymz is in L But these 
latter strings can be appfication-sequences in F only if y picks out a 
cyclic path, so that ((fx) y) = (fx). Thus we have 

( f w ) = v i f f  
( f  xyz) = v iff 
(((fx) y) z )=v  iff 
(fix) z) = v iff 
(f  xz) = u 

with xz shorter than w but still in I and hence in the uncertainty 
language a. lflxz I is greater then n, this argument can be reapplied to 
find yet a shorter string that satisfies the uncertainty. Since w was a 
finite string to begin with, this process will eventually terminate with 
a satisfying string whose length is less than or equal to n. We can 
therefore determine whether or not the uncertainty holds by 
examining only a finite number of strings, namely, the strings in [ 
whose length is bounded by n. 

This argument can be translated to an efficient, practical 
solution to the verification problem by interleaving the intersection 
and testing steps. We enumerate common paths from the start-state of 
a minimum-state acceptor for a and from the f-structure denoted by fin 
F. In this traversal we keep track of the pairs of states and subsidiary 
f-structures we have encountered and avoid retraversing paths from a 
state/f-structure pair we have already visited. We then test the 
uncertainty condition against the f-structure values we reach along 
with final states in the u acceptor. 

3. Satisfiability 

It is more difficult to show that the satisfiability problem is decidable. 
Given a functional description, can it be determined that a structure 
satisfying all its conditions does in fact exist? For trivial descriptions 
consisting of a single uncertainty equation, the question is easy to 

answer. If the equation has an empty uncertainty language, 
containing no strings whatsoever, the description is unsatisfiable. 
Otherwise, it is satisfied by the f-structure that meets the 
requirements of any string freely chosen from the language, fro" 
instance, one of the shortest ones. For example, the description 
containing only (fTOPIC)=(fCOMP*GF) is obviously satisfiable 
because (fTOPIC) = (fsuBJ) clearly has a model. There is a large cIass of 
nontrivial descriptions where the question is easy to answer for 
essentially the same reason. If we know that the satisfiability of the 
description is the same no matter which strings we choose from the 
(nonempty) uncertainty languages, we can iastantiate the 
uncertainties with fi'eely chosen strings and evaluate the resulting 
description with any satisfiability procedure (for example, ordinary 
attribute-value unification) that works on descriptions without 
uncertainties. The bnportant point is that for descriptions in this class 
we only need to look at a single string from each uncertainty language, 
not all the stririgs it contains, to determine the satisfiability of the 
whole system. Particular models that satisfy the description will 
depend on the strings that instantiate the uncertainties, of course, but 
whether or not such models exist is independent of the strings we 
choose. 

Not all descriptions have this desirable free-choice 
characteristic. If the description includes a conjunction of an 
uncertainty equation with another equation that defines a property of 
the same variable, the description may be satisfiable tbr some 
inst,antiations of the uncertainty but not for others. Suppose that the 
equation (fTOPIC)=(fCOMP*GF) is conjoined with the equations 
(f COMe SUBJ NUM) =SG and (f TOPIC NUM) = eL. This description is 
satisfiable on the string COMe COMe SUBJ but not on the shorter string 
COMe SUBJ because of the SG/PL ','inconsistency that arises. More 
generally, if two equations (fa)=vQ and (f {])=vp are conjoined in a 
description and there are strings in a that share a common prefix with 
strings in [I, then the description as a whole may be satisfiable for some 
strings but not for others. The choice of x from.a and xy from 13, tbr 
example, implies a further constraint on the values vQ and v13: (fx)= va 
and (fxy) = ((fx) y) = vp can hold only if (v a y) = vii, and this may or may 
not be consistent with other equations for vQ. 

We can formulate more precisely the conditions under which 
the uncertainties in a description may be freely instantiated without 
affecting satisfiability. For simplicity, in the analysis below we 
consider a particular string of one or more symbols in a non-uncertain 
application expression to be the trivial uncertainty language 
containing just that string. Also, although out" satisfiability procedure 
is actually implemented within the general framework of a directed 
graph unification algorithm (the congruence closure method outlined 
by /Kaplan and Bresnan 1982/), we present it here as a formula 
rewriting system in the style of/Johnson 1987/. This enables us to 
abstract away from specific details of data and control structure which 
are irrelevant to the general line of argument. We begin with a few 
definitions. We say that 

(5) A description is in canonical form if and only if 

(a) It is in disjunctive normal form, 

(b) Application expressions appear only as the left-sides of 
equations, 

(c) None of its uncertainty languages is the empty string e, 
and 

(d) For any equation f = g  between two distinct variables, one 
of the variables appears in no other conjoined equation. 

There is a simple algorithm for converting any description to a 
logically equivalent canonical form. First, every statement containing 
an application expression (g {]) not to the left of an equality is replaced 
by the conjunction of an equation (g [3)= h, for h a new variable, with 
the statement formed by substituting h for (g [3) in the original 
statement. This step is iterated until no offending application 
expressions remain. The equation (fa) = (g ~), for example, is replaced 
by the conjunction of equations ( f a ) = h  A (g{3)=h, and the 
membership statement (g {])~f becomes h ( f  A (g {])= h. Next, every 
equation of the form (f s)=v is replaced by the equation f=v in 
accordance with the identity (2) above. The description is then 
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transtbrmed to disjunctive normal form. Finally, for every equation of 
tire form f = g  between two distinct variables both of which appear in 
other conjoined equations, all occurrences o fg  i~ those other equations 
are replaced by f Each of these transformations preserves logical 
equivalence and the algorithm terminates after introducing only a 
finite number of new equations and variables and performing a finite 
number of substitutions. 

Now let Z be the alphabet of attributes in a description and 
define the set of first 'attributes in a language a as follows: 

(5) First(a) ~-{s in E I sz is in u for some string z in E*} 

Then we say that 

(6) (a) Two application ex!Sressions (fa) and (g 13) are free if and 
only if 
(i) f and  g are distinct, m" (ii) First(a) ~ First([l) = O and s is 
in neither a nor 13. 

(b) Two equations are free if and only if their application 
expressions are pairwi.se free. 

(c) A functional description is free if and only if i t ' i s  in 
canonical form and all its conjoined equations are pairwise 
free. 

If all the attribute strings on tire same variable in a canonical 
description differ on their first element, there can be no shared 
prefixes. The fi'ee descriptions are thus exactly those whose 
satisfiability is not affected by different uncertainty instantiations. 

3.1 Remoeing interactions 

We attack the satisfiability problem by providing a procedure for 
t ransforming a thnctional description D to a logically equivalent but 
free description D '  any of whose instantiations .can he tested for 
satisfiability by traditional algorithms. We show that this procedure 
terminates for the desm'iptions that usually appear in linguistic 
grammars,  namely, the descriptions whose atinimal models are all 
aeyclic. Although the procedure can detect that a description may 
have a cyclic minimal model, we cannot yet show that the procedure 
will always terminate with a correct answer if a cyclic specification 
interacts with an infinite uncertainty language. 

The key ingredient of this procedure is a transfornmtion that 
converts a conjunction of two equations that are not free into an 
equivalent finite disjunction of conjoined equations that are pairwise 
free. Consider the conjoined equations ( f a )=  v~ and (f~)=vo for some 
value expressions va and vl~, where (fn) and (fL3) are not free. Strings x 

and y arbitrarily chosen frmn a and 13, respectively, might be related in 
any of three significant ways: Either (a) x is a prefix ofy (y is xy' for 
some string y'), (b) y is a prefix ofx (x is yx'), or (c) x and y are identical 
up to some point and then diverge (x is zsxx' and y is zsyy' with symbol 
Sx distinct from Sy). Note that the possibility that x and y are identical 
strings is covered by both (a) and (b) with either y' or x' being empty, 
and that noninteracting strings fall into case (c) with z being empty. 
In each of these cases there is a logically equivalent reformulation 
involving either distinct variables or strings that share no first 
symbols: 

(7) (a) x i s a  prefixofy: 
(fx) = v~ A (fxy') = v~ iff 
( f  x) = v,~ A ((f x) y') = v~ iff 

( f  x) = vQ A (on y') = V~ (by substituting va for (~x) 

(b) y is a prefix of x: 
(fyx') ~- va A (fy) :: el3 iff 
(v~ x) = v~ A (f)') = Ul~ 

(c) x and y have a (possibly mnpty) common prefix and then 
diverge: 
(f  zs~')  = o, A ( f  ZSyy') = v~ iff 
(f  z) = g A (g s~x') =.vo A bX Syy ') = u~ 

for g a new variab!e and symbols s~ ~e sy 

All ways in which the chosen strings can interact are covered by the 
disjunction of these reformulations. We observe that if these specific 
attribute strings are considered as trivial uncertainties and if va and vl~ 

are distinct from f, the resulting equations in each case are pairwise 
free. 

In this analysis we transfer the dependencies among chosen 
strings into different branches of a disjunction. Although we have 
reasoned so far only about specific strings, an analogous line of 
argument can be provided for families of strings in infinite uncertainty 
languages. The strings in these languages fall into a finite set of 
classes to which a similar case analysis applies. Let <Qq, 8~, qu, Fa, 

E>  be the states, transition function, start  state, final states, and 
alphabet of a (perhaps nondeterministic) finite-state machine that 
accepts a and let < QIt, 50, q13, Fl3, E > be an accepter for [l. Let 8" be the 
usual extension of 8 to strings in E* and define 

(8) Prefix(a,q) -= {x[ q (8*a(qa,x) } 
(the prefixes of strings in u that lead to state q) 

Suffix(u,q) -~ {xJS*(q'x)flFn ~: O} ifq~Q~ 
U Suffix(u,p) ifq C Qa 

pEq 

(the suffixes of strings in a whose prefixes lcad to states q) 
and note that Prefix(a,q) and Suffix(a,q) are regular sets for all q in Q~ 

(since finite-state acceptm's for them can easily be constructed from the 
accepter for a). Further, every string in a belongs to the concatenation 
of Prefix(a,q) and Suffix(a,q) for some state q in Qa. The prefixes of all 

strings in u thus behmg to a finite number of languages Prefix(n,q), 
and every prefix that is shared between a string in a and a string in fl 
also belongs to a finite number of classes formed by intersecting two of 
regular sets of this type. The common prefix languages fill the role of 
the prcfix strings in the three-way analysis above. All interactions of 
the strings in a and 13 that lead through states q and r, respectively, are 
covered by the following possibilities: 

(9) (a) Strings fi'om a are prefixes of strings fiom 13: 
(f aCIPrefix(~,r)) = va A (v(~ Suffix(13,r)) = uf~ 

(b) Strings fi'om 13 are prefixes of strings from a: 
(f [ff/Prefix(a,q))= ell A (v~ Suffix(a,q))= u a 

(c) Strings have a common prefix and then diverge on some sa 
and sl~ in Z: 

(f  Prefix(n,q)NPrefix([J,r)) == gqv A 
[(g'q,r ,%Suffix(u,8~,(q,so)))= vQ A 

(g,q,,. s~Suffix([3,8~(r,sl0)) = rid 

where the gq,r in (9c) is a new variable and sa:esl~. Taking the 
disjunction of these cases over the cross-product of states in Qa and Q~ 

and pairs of distinct symbols in E, we define the following operatm': 

(10) Free(( fa)=v, ,  (fl~)=vo) 

[(f anPrefix(13, r)) = ua A (v, Suffix(13, r)) = vl3l (a) 

V [(f ~(1Prefix(a, q)) = el3 A (v{] Suffix(u, q)) = ea] (b) 

V V [(f Prefix(a, q)APrefix(13, r))=gq,r A 
q(  Qa \ /  (c) 

V [(gq,,. sQSuffix(n, Sa(q, sn)))=v~A r~Q~ 
8c~,8[J~ (gq,r s[3Suffix(~, 813(r , St3))) :Vii]  ] 
sa :~ s13 

This operator is the central component of our satisfiability 
procedure. It is easy to show that Free is truth-preserving in the sense 
that Free((fa)= va, (f 13)= v 0) is logically equivalent to the conjunction 

(fa) = va A (f13) = v~. Any strings x and y that satisfy the uncertainties 
in the conjunction must fall into one of the cases in (7). I f y=xy '  applies 
(case 7a), we have (f  x) ~= va A (va y') = vf~. But x leads to some state rx in 
Q~ and therefore belongs to Prefix(~,rx) while y' belongs to Suffix(13,rx). 
Thus, x satisfies (f a(3Prefix(13,rx))=va and y' satisfies 

(va Suffix(~,rx) = v~, ann (10a) is satisfied for one of the r x disjunctions. 
A symmetric argument  goes through ifcas e (7b) obtains. 

Now suppose the strings diverge to SxX' and Syy' for distinct sx 
and Sy after a common prefix z (case 7c) and that z leads to q in Qa and r 
in Q~. Then z belongs to Prefix(a,q)NPrefix(~,r) and satisfies the 
uncertainty ( f  Prefix(a,q)APrefix(~,r))=gq,r. Since x' belongs to 
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Suffix(a,Sa(q,sx))) and y' belongs to Suffix(13,Si~(r,sy))), the gq.,. equations 

in the s~,sp disjunction also hold. Thus, if both original  equations are 

satisfied, one of the disjunctions in (10) will also be satisfied. 
Conversely, if one of the disjunctions in (lO) holds for some part icular  
str ings,  then we can find other s t r ings  tha t  satisfy both original  
equations. If (f oC~Prefix(!3,r)) = va hokts for some s t r ing x in a leading 

to s ta te  r in it's accepter and (va Suffix(ILr))= % holds for some s t r ingy '  

in Suffix([~,r),then ( f a )=va  holds because x is in a and (f[~)=v~ holds 

because ( ( f  x) y') = v~ = (f xy') and xy' is in [k The argmnents  for the 

other cases in (10) are s imi lar ly  easy to construct. Thus, logical 
equiwdenee is establ ished by reasoning back and forth between s t r ings 
and languages  and between s t r ings and their  prefixes and suffixes. 

If the operands to Free are  from a description in canonical 
form, then the canonical form of the resul t  is a free descr ipt ion--al l  its 
conjoined equations are pairwise free. This is t rue whether or not the 
original  equations were free, provided that  the value expressions va 

and v[3 are dist inct  from f ( i f  e i ther  value was f, the original  equations 

would have only cyclic models, a point we will return to below). In the 
first two eases in (10), the resul t ing  equations are fi'ee because they 
have dist inct  var iables  (if nei ther  vQ nor vp is f). In the third ease, the f 

equation is free of the other two because gq,r is a new variable,  and the 

two gq,r equations are free because the first symbols of their  

uncer ta int ies  are distinct.  In sum, the Free operator t ransforms a 
conjunction of two non-fl'ee equations into a logically equivalent  
formula whose canonical form is free. 

The procedure for convert ing a description D to free form is 
now straightforward.  The procedure has four simple steps: 

( I t )  (a) Place D in canonical form. 

(b) If all  conjoined equations in D are pairwise free, stop. D is 
free. 

(el Pick a conjunction C in D with a pair  of non-free equations 
(f a)=v~ and (f l~)=vi~, and replace C in D with the 

canonical form of its other equations conjoined with 
Free(((fn) = va, (fl~) = %) 

(d) Go to step (a). 

3.2 Termination 

l fD  has only aeylic models, this  procedure will te rminate  after a finite 
number  of i terations.  We argue tha t  there are a cer ta in  number of 
ways in which the equations in each conjunction in D's canonical form 
can interact.  Ini t ial ly,  for a conjunction C of N equations, the maximal  
number  Of non-free pairs  is N(N-1)/2, on the worst-ease assumption 
that  every equation may potent ia l ly  interact  with every other 
equation. Suppose step (1 le) is applied to two in terac t ing  equations in 
C. The resul t  will be a disjunction of conjunctions each of which 
includes the remain ing  equat ions from C and new equations 
introduced by one of the eases in (10). In eases (10a) and (10b) the 
interact ion is removed from the common variable  of the two equations 
(D and t ransferred to a new var iable  (ei ther va or %). In ease (10c), the 

interact ion is actual ly  removed from the system as a new variable  is 
introduced. Since new var iables  are introduced only when an 
interact ion is removed, the number  of new var iables  is bounded. Thus 
each interact ion is processed only a bounded number  of t imes before i t  
is either" removed (10el or t ransferred to a var iable  tha t  i t  was 
previously associated with (t0a,  b). t towever,  it can only t ransfer  to a 
previous variable if the description has cyclic models. Suppose tha t  f 
is reached again through a series  of (10a,b) s t eps  Then there is a 
conjoined sequence of equat ions ( f  a ) : v a ,  (va u t ) = v a v  ..., 

(v% an + 11 = f But these can only be sat isf ied if there is some s t r ing x 

in aat . . .an+ 1 such tha t  (f x ) = f  and this  holds only of cyclic models. 

Since the number  of var iables  introduced is bounded by the original  
number  of possible interact ions,  al l  actual  interact ions in the system 
must  eventual ly  disappear  e i ther  through the applicat ion of (10c) or by 
being t ransferred to a var iable  whose other equat ions i t  does not 
interact  with. 
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As we argued above, the sat isf iabi l i ty  of a free description can 
be determined by a rb i t ra r i ly  ins tan t ia t ing  the residual  uncertaint ies  
to par t icular  s tr ings and then applying any t radi t ional  sat isf iabi l i ty  
a lgor i thm to the result. Given the Free operator and the procedure in 
( l l ) ,  the sat isf iabi l i ty of an a rb i t ra ry  acyclic description is thus 
decidable. 

'Phe possibility of nonterminat ion with cyclic descriptions may 
or may not be a problmn in l inguist ic  practice. Although the formal 
system makes it easy to write descriptions of t h i s  sort, very few 
l inguist ic  analyses have made use of them. The only example we are 
aware of involves modification s t ructures  (such as relat ive clauses) 
tha t  both belong to the e lement  they modify (the head) and also 
contain that  element in ternal ly  as an a t t r ibute  value. But out' 
procedure will in fact te rmina te  in these sorts of eases. The difficulty 
with cycles crones fl'om thei r  interact ion with infinite uncertaint ies .  
That  is, the desm'iption may have cyclic models, but the cyclic 
specifications will not a lways lead to repeat ing var iable  t ransfers  and 
nontermination.  For example,  if the cycle is required by an 
uncer ta inty  that  interacts  with no other infinite uncertainty,  the 
procedure will eventual ly  te rmina te  with a fi'ee description. This is 
what  happens in the modification ease, because the cycle involves a 
grammat ica l  function (say RELCLAUSE o r  MOD) which belongs to no 
infinite uncertainty.  

I,'or cycles that  are not of this  type, there is a s t ra ightforward 
modification to the procedure in (11) that  at  least  enables them to be 
detected. We main ta in  with each uncer ta inty  a reem'd of al l  the 
var iables  tha t  it or any of i ts  ancestors have been associated with, and 
recognize a potential ly non te rmina t ing  cycle when the a t ransfer  to a 
var iable  already in the set is attemi~ted. If we terminate  the procedure 
when this  happens, a ssuming  in effec~ tha t  all  subsequent  disjunctions 
are unsatisfiable,  we cannot  be sure that  al l  possible solutions will  be 
aeemmted for and thus cannot guarantee  the completeness of our 
procedure in the cyclic case. We can refine this  s t ra tegy by recording 
and avoiding i terat ion over combinations of var iables  and uncer ta in ty  
languages. We thus safely explore more of the solution possibil i t ies 
but perhaps st i l l  not al l  of them. It is an open question whether  or not 
there is a sa t is f iabi l i ty  procedure different from the one we have 
presented tha t  te rminates  correctly in al l  eases. On the other band, i t  
is also not clear  that  potent ial  solutions tha t  might  be lost through 
ear ly  terminat ion are l inguis t ica l ly  significant.  Perhaps they should 
be excluded by definition, much as /Kaplan and Bresnan 1982/ 
excluded c~structure der ivat ions with nonbranching dominance chains 
because of their  l inguis t ical ly  unin teres t ing  redundancies.  

4. The  Smal l e s t  Models  

The sat is f iabi l i ty  of a description in free form is independent  of the 
choice of s t r ings  from its  uncer ta in ty  languages,  but  of course different 
s t r ing choices resul t  in different sat isfying models for the description. 
An infinite number of s t r ings  can be chosen from even a very s imple 
functional uncer ta inty  such as (f COMP* SUBJ)  : V, and thus there  are 
an infinite nunlber of dis t inct  possible models. This is reminiscent  of 
the infinite nmnber  of models for descriptions with no uncer ta int ies  a t  
a l l  (just ( f sunJ)=v) ,  but in this  case the models are sys temat ica l ly  
re la ted in the na tura l  subsumption ordering on the f~structure lattice. 
There is one smal les t  s t ructure;  the others include the information it  
contains and thus satisfy the description. But they also include 
a rb i t ra ry  amounts of addit ional  information that  the descript ion does 
not call for. This is discussed by /Kap lan  and Bresnan 1982/, where the 
subsumpt ion-minimal  s t ructure  is defined to be the g rammat ica l ly  
re levant  one. 

The models corresponding to the choice of different s t r ings  
from an infinite uncer ta inty  are also sys temat ica l ly  re la ted to each 
other but on an metrle tha t  is orthogonal to the subsumption ordering. 
Again  appeal ing to the Pumping Lemma for regular  sets, s t r ings  tha t  
are  longer than  the number  of s ta tes  in an uncer ta inty 's  minimal -s ta te  
f ini te-state accepter include a subs t r ing  tha t  is accepted by some 
repeat ing  sequence of t ransi t ions.  Repl icat ing this  subs t r ing  
a rb i t r a r i ly  st i l l  yields a s t r ing  in the uncertainty,  so in a cer ta in  sense 
these replications contribute no new grammat ica l ly  in teres t ing  



information. Since all the intbrmatim~ is esseut ial ly contained in tile 
shorter st,rinh~ that  has no oeeurreuce of this imrt ieular  subs(ring, we 
define this t .  be the g rammat ica l ly  relevant  representa t ive  fin" the 
whole class. Thus a description with uncertaint ies  has only a finite 
number of lir~guistically signif icant  models, those that  resul t  h'mn the 
5ni te  disjunci:ions that  are introduced in converting the description to 
flee form and fl'om choosing among the finite nmnber  of Short s t r ings 
in the residual  uncertainties.  

5. Pek'farmmice C o n s i d e r a t i o n s  

We have outlined a general,  abs t ract  procedure fro' solving uncertainty 
descriptions, making the smal les t  number of assumptions about the 
detai ls  of its operatiml, '['he efficiency of any i ,nphmmntation will 
depend in huge nleasure in jus t  how details  of data str(u:ture and 
explicit  COlnp~ttational control are fixed. 

There are a nuruber of obvious optimizations tbat can be made. 
First,  a l though not required by the abst ract  procedure, perfornmnce 
will clearly be bet ter  if determinist ic,  minimal-s ta te  finite-state 
nmchines are used to represent  the uncertainties.  This reduces the 
size of the :;late eross-prodnets, which is the leading term in the 
number of disiunctions tha t  nnlst  be processed. Second, the cases in 
the Free operatm' are not mutua l ly  distinct: if identical s t r ings behmg 
to the two um-ertainty languages,  those wonld full into both cases (at 
and (b) and hence be processed twice with exactly equivalent  results. 
The solution to this  redundancy is to restr ict  one of tile cases (say (at) 
so that  it only handles proper prefixes, consigning the identical  s tr ings 
to the otber case. Third, when pairs of symbols are enumera ted  in the 
(el case, there is obviously no point in even considering symbols that  
are in the alphabet  bnt are not First  symbols of the suff'ix 
uncertainties.  This optimization is applied automat ical ly  if only the 
t ransi t ions  leaving the s tar t  s tates  are enmnera ted  and the 
finite-state machines tire represented with part ial  t ransi t ion functions 
pruned of t ransi t ions  to failure states. 

Four(b, a der ivat ive  uncer ta inty  produced by the Free opm'ator 
will sometimes be empty. Since equations with empty nncertaint ies  
are imsatisfiable by definition, tiffs case should be detected and tha t  
disjunctive brt, nch immedia te ly  discarded. Fifth, the same der ivat ive 
suffix and prefix languages  of a par t icular  s tate may appear in 
pursuing diffecent branches of the disjunction er processing different 
combinations af equations. Some conq)utaUonal advantage may be 
gained by saving the der ivat ive  finite-state machines in a cache 
associated with the s ta tes  they are based on. Finally,  successive 
i terat ions of the Free procedure may lead to t ransparent  
inconsistencies; (an asser t ion of equali ty between two dist inct  symbols; 
m" equat ing a synlbol to a var iable  that  is also nsed as a functimi). It is 
important  to detect these inconsistencies when they first appear and 
again discard the corresponding disjunctive branch. In fact, if' this is 
done systemaUcally,  i terated application of the Free operator by i tself  
s imulates  the effect of t radi t ional  unification algori thms,  with 
variables  corresponding to f-structures or nodes of a directed graph. 

There are also some less obvious but also quite important  
peribrmance considerations. What  we have described is an equational  
rewri t ing system tha t  is quite different fl'om the usual reeursive 
unification a lgor i thm tha t  operates on directed graptl representat ions.  
Directed graph data s t ructures  index the information in the equations 
so tha t  related s t ructures  are quickly accessible through the reem'sive 
control structure.  Since our procedure does not depend for its 
correctness o~, (he order in which interact ing equations arc chosen for 
i:recessing, it ought to be easy to embed Free as a s imple extension of a 
t radi t ional  algori thm. However, t radi t ional  unification a lgor i thms do 
not deal with disjnnetion gracefully. In part icular ,  they typically do 
net expect new disjunctive branches to arise (luring the course of a 
reeursive invocation; this would require inser t ing a fork in the 
reeursive control s t ruc ture  or saving a emnplete 'copy of the enrrent  
computat ional  context for each new disjunction. We avoid this  
~wkwar(tness by postponing tile processing of the functional 
uncertainty nat i l  al l  s imple unifications are  complete. Before 
performing a s imple unification step, we remove from the data 
s truetures all  uncer t s in t ies  tha t  need to be resolved and store them 

with a pointer to their  contahdng s t ructures  on a qmme or agenda of 
peuding t.mificaLions. Uncertainty proceasing can be resumed at a 
later, more convenient time, after tile sinlpler unil 'lcations have hecIl 
completed. (Indeed, if mm of tile s impler  unifications fails, the 
mlcer ta inty may never be processed at  all.) Wai t ing until  sinipler 
nnifications are done means that  no computational  state has to be 
preserved; only data  s t ructures  have to be copied to [wmre the 
independence of the various disjunctive paths. 

We also note tha t  as l<lng as the machinery [br postponing 
thnctiona[ uncertainty 6~r some anmunt  of t ime is needed, it is often 
advantagemm to postpoue it even hinter  than is absohltely necessary  
In i)artieuhu', we fonnd I:lalL il' uncertaint ies  are postl)nned until 
predicates (seulantic form values lilt' PIU'tD at tr ibutes)  at'(! assigned to 
the I' s t ructures  they belong to, the nuluber of cases that  must be 
explored is dramat ica l ly  reduced. This is heeause of the coherence 
cm~dition that I,FG imposes on t \s truetures with In'edicates: an 
['-structure with a predicate can only contain (.hose govvrnable 
functions that  are explicit ly mentioned by the predicate. Any other 
governable ['unctions are considered unacceptable. Thus, if we wail 
until  the predicate is klentified, we need only consider the small 
number of governable a t t r ibutes  that  any par t icular  predicate allows, 
even though the ini t ial  a t t r ibutes  in an uncertainty may include the 
entire  set of governab[e functions (SUB J, oBJ, and various kinds of 
obliques and eonlplmnents), and this may be quite large. The effect is 
to make tim processing of hmg distance dependencies sensit ive to the 
subeategorization fralne of the predicate: we haw=" ahserved eUOFInOUS 
ow, 'a l l  performance ilnprovemetm; from applying this delay s t r a t egy  
Note that  m a left.to-right parsing model, the processing h)ad therefore 
increases iu relat ive clauses just  after the predicate is seen, and this 
might  bare  a variety of in teres t ing psycholinguistic implications. 

Finally, we observe that  there is a specialization of the Free 
operator tha t  applies when an uncertainty interacts  with several 
non uncertainty equations (equations whose a t t r ibute  expressions 
have singleton Firs t  set:;), instead of separa t ing  one interaction flxun 
the uncertainty with each application of Fl'eo, the Itncertainty is 
divided in a single step into u min imum nmuber  of disjunctive 
possibili t ies e a c i l e f  which interacts  with jus t  one of the. other 
equations. The disjunction contains one branch for each symbol in the 
uneertainty 's  Fi rs t  set that  is an ini t ial  a t t r ibute  in one of the other 
equations, ohm a single branch tbr all  of the residual  ini thd symbols: 

(12) ( f a ) = u  iff (fslSuffix(a,S(qa,st)))-:v ...v(fsnSuffix(u,5(q(,,st~)))::::v 
V (l'n--{s b...s,d~:*) = v 

The s ta tement  of the generic Free a/gm'ithm (10) is simplified by 
considering specific a t t r ibu tes  as t r ivial  regular  languages, buL this 
suggests  that  COlnplex finite-state machinery would be roquh'ed to 
process them. This a l ternat ive  works in the opposite direction: it 
reduces leading ternls  in an uncertainty to simph. ~ a t t r ihutes  boil)re 
pursuing their  interactions,  so that  efficient a t t r ibute  lnatehing 
routines of a normal unification procedm'e can be applied. This 
a l te rna t ive  has  a second computational  advantage.  The generic 
a lgor i thm unwinds the uncertainty one a t t r ibute  at a time, 
construct ing a residual  regular  set at  each step, which is then 
processed agains t  the other nml-uncertain equations. The a l ternat ive  
pr(leesses them all at once, avoiding the construction of these 
in termediate  residual  languages. This is a very i lnportanl 
optimization, since we lbund it to be the most colnmon case when we 
embedded uncer ta inty  resohltion in our reeursive unification 

algori thm. 

Unem'tainty sl/ecificatlons are at colnI)act way of expressing a 
large number of disjunctive possibil i t ies that  are uncovered one by one 
as our procedure operates. I t  might  seem tha t  this  is an extremely 
expensive descriptive device, one which should lie avoided in tltvor of 
apparent ly  s impler  'mechanisms. Bul; the disjunctions that  emerge 
fl'om processing uncer ta int ies  arc real: they represent  independent 
g rammat ica l  possibil i t ies tha t  would require addit ional  computat ional  
resources no matter how they were expressed. In theories in which 
long-distance dependencies are based ou empty phase~strueture nodes 
and implemented, for example,  by gap..threading machinery,  a'rN 
tIol,I) lists, and the like, the exact h)cation of these empty nodes is not 
s ignaled by any in(urination directly visible in the sentence. This 
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increases the number of phrase.structure rules that can he applied. 
What we see as the computational cost of functional uncertainty shows 
up in these systems as additional resources needed for 
phrase-structure analysis and for functional evaluation of the larger 
number of trees that the phrase-structure component produces. 
Unlike phrasally-based specifications, fnnctional uncertainties in LFG 
are defined on the same level of representation as the 
subcategorization restrictions that constrain how they can he resolved, 
which our coherence-delay strategy easily takes advantage of. But the 
thct remains that functional uncertainties do generate dlsjueetions, 
and thus strongly highlight the already perceived need for efficient 
disjunction-processing techniques if acceptable performance is to be 
achieved with I,FG and related grammatical formalisms. Recent 
disjunction proposals by/Kasper 1987/and/Eisele and D0rre 1988/are 
important steps in the development of the necessary computational 
technology. 

6. Conclusion 

The notion of regular functional uncertainty thus has very nice 
mathematical properties. Our state-decomposition algorithm provides 
a very attractive method for resolving functional uncertainties as 
other phrasal and functional constraints are computed during the 
parse of a sentence. This algorithm expands the uncertainties 
incrementally, introducing at each point only as much disjunction as is 
necessary to avoid interactions with other functional information that 
has already been taken into account. We bare recently added this 
algorithm and the functional uncertainty notation to our LFG 
Grammar Writer's Workbench, and we can now rigorously but easily 
test a wide range of linguistic hypotheses. We have also begun to 
investigate a number of other computational heuristics for the 
efficient, controlled expansion of uncertainty. 

Kaplan and Zaenen (in press) first proposed the idea of 
functional uncertainty as sketched in this paper to account for the 
properties of long-distance dependencies within the LFG h'amework. 
In this fi'amework, it has already shed new light on long-standing 
problems like island constraints (see, e.g., /Saiki 1985/ for an 
application to Japanese). But the notion is potentially of much wider 
use: first, it can be adapted to other unification grammar formalisms 
to handle facts of a similar nature; and second, it can be used to handle 
phenomena that are traditionally not thought of as falling into the 
same class as long-distance dependencies but that nevertheless seem 
to involve nonlocal uncertainty. A discussion of its application in the 
LFG framework to infinitival complements can be found in/Johnson 
1986/for Dutch and/Netter 1986/for German;/Karttunen (in press)/ 
discusses how similar extensions to Categorial Unification Grammar 
(CUG) can account in a simple way for related facts in Finnish that 
would otherwise require type-raising. Halvorsen has suggested that 
scope ambiguities in semantic structures might also be characterized 
by this device. 
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