
Morphology with Two-Level Rules
and

Negative Rule Features

J o h n B e a r

Ar t i f i c i a l I n t e l l i g e n c e C e n t e r a n d

C e n t e r for t h e S t u d y of L a n g u a g e a n d I n f o r m a t i o n

S R I I n t e r n a t i o n a l

Abstract

Two-level phonology, as currently practiced, has two severe lim-
itations. One is that phonological generalizations are generally
expressed in terms of transition tables of finite-state automata,
and these tables are cumbersome to develop and refine. The other
is that lexical idiosyncrasy is encoded by introducing arbitrary
diacritics into the spelling of a morpheme. This paper explains
how phonological rules may be employed instead of transition
tables and describes a more elegant way of expressing phono-
logical irregularity than with arbitrary diacritics, making use of
the fact that generalizations are expressed with rules instead of
automata.

1 Introduct ion

The theme of this paper is how to deal with the phonological
or orthographic half of the problem of computational morphol-
ogy, i.e., how to handle the various problems associated with the
spellings of morphemes. The examples in this paper have been
drawn from English orthography but it is easy to find examples
from other languages where these techniques would be applicable
as well.

In an earlier paper [2], I presented a formalism for two-level
phonological (or orthographic) rules very similar to Kosken-
neimi's [8] and described how rules in that formalism could be
interpreted in a computational system. There were problems
with both my formalism and Koskenniemi's that could have been
solved with the device of negative rule features. In this paper I
discuss these problems and their solutions.

2 Historical Note

The formalism described here was developed with the goal of al-
lowing the linguist to write rules with similar or even identical
contexts and still have a way of processing them. This stands in
contrast to Koskenniemi's formMism, which, in its initial formu-
lation, seemed to rule out pairs of such rules.

For instance, in Koskenniemi's formalism, as originally stated,
the two rules below,

a:b¢==a__~
a : c ¢:==== o~__~,

Would clash. Together they assert that a lexical character /a / ,
preceded by a sequence of character pairs c~ and followed by a
sequence of character pairs fl, must correspond to both/b/and
/ c / o n the surface.

The orthographic rules described here are used in a morpholog-
ical analysis system that is based on the work of Koskenniemi,
Karttunen, and Wittenburg [8,5]. Its morphosyntactic compo-
nent uses, instead of continuation classes, an extension of PATR

28

type rules including a device described by Karttunen [4] for han-
dling disjunction. One version of this system also uses a definite-
clause grammar in addition to the PATP~-type unification, and
disjunction. It has been implemented in Prolog and runs on a
Sun.

3 Summary of Al ternat ive Rule For-
mal ism

The basic idea behind the notion of two-level rule (due to Kosken-
niemi [8]) is that there are two levels of linguistic information to
which a rule may refer. One has to do with how a morpheme
is spelled in the lexicon. That is called the lexical level. The
other has to do with how a morpheme appears in text, i.e., the
surface representation. There is no way for rules to apply one
after the other, creating and referring to intermediate levels of
representation. Instead, rules are viewed as constraints On map-
pings between surface and underlying forms of morphemes. They
stipulate how to get from underlying to surface form, and vice
versa.

Two-level rules in the alternative to Koskenniemi's formalism
that I proposed in an earlier paper [2], take one of three forms:

1) a - - , b/,~__
2) a/b allowed/a__
3) a/b disallowed/a__ fl

The a and ~ in the contexts of these rules represent strings of
character pairs where one character of the pair refers to the lexical
level of representation and the other refers to the surface.

P~ule (1) is very similar to a standard phonological rule. It
means roughly that lexica l /a / must correspond to sur face /b /
in the context given. A more accurate and detailed description is
as follows: if lexieal /a /occurs in tile given context, then it may
not correspond to what it normally would correspond to, but it
may correspond to surface/b/ .

tLule (2) means that lexical / a / is allowed to correspond to
surface/b/ in the context given, but not elsewhere. More pre-
cisely, the rule allows the pair /a :b/ (lexical / a / corresponding
to surface /b /) to occur in the context given and, unless there
are other rules licensing the pair in other contexts, the context
given is the only place where that correspondence is allowed.

Rule (3) says that lex ica l /a / may not correspond to surface
/ b / i n the context given. Both rules (1)and (2) mention a char-
acter's default. A normal alphabetic character in this system
defaults to itself. This means that a pair of alphabetic charac-
ters /a :a / does not need to be licensed by a rule. In contrast
to alphabetic characters (a through z)~ there are diacritic char-
acters such as the plus sign (+) for morpheme boundaries. In
Karttunen and Wittenburg's system, [5] there is also a back-
quote (') for representing stress; Koskenniemi uses several others
as well, [8]. The default for lexical-level diacritics, at least in the

system described here, is that they correspond to the null surface
character, which is frequently written with a zero.

. N ¢ , , a t l v e : ~ , u i e Fea tu re s

There is a 9roblem with previous accounts of English that have
been done in terms of two-level rules. There is no easy way to let
the phonoh@cal rules know about individual idiosyncrasy in the
lexical items. In the. work of Koskcnnicmi [8] and Karttunen and
Wittenburg [5], diacritics are put into the lexical representation
of a word in order to allow the linguist to write a phonological
rule that applies in some words and not others according to the
presence or absence of the diacritic. The diacritic is mentioned
in the rule. The words that do not contain the diacritic do not
undergo the rule.

In oldofa~;hioned generative phonology, there was the notion
of a negative rule feature to handle such cases. One could say
of certMn :,norphemes ~hat appeared to be exceptions to cer-
tain phonological rules that such morphemes possessed a feature
specifying that some partictflar phonological rule did not apply
to themL

The ide;~ of negative rule featmes has an adwmtage over the
use of diacritics mentioned above in that it allows simplification
of the photmlogicM rules and the lexicon. It seems to me more
straightforward to have a lexical item that says miuus such and
such a rule than to have the lexical item contain a colon or quo-
tation marl< whose function is to assert that some rule does not
apply. The complexity of the lexical items is the same, but in
the first case, at least, t'he phonological rule can be made simpler
by omission of the arbitrary diacritic.

There ar~, three examples from English orthography that will
be used to help demonstrate how negative rule features may be
employed.

The anMysis of consonant gemination in Karttunen and Wit-
tenburg's paper, [5], relies on the use of diacritics of just the sort
mentioned above. A simplified versieiJ of the rule is given below.

Gemin~ction:
+ : c l , Z ~ > ~ C * V - : e l __V;
where cl is in
{ b,d,f,g,l,m,n,p,r,s,t }.

This rule uses a plus sign (+) for morpheme boundaries, and a
backquote (') for accent where accent is important. It correctly
describes the following data:

questiouing versus *questionning,
debiting versus *debitting,
eating versus *catting.

The rule also correctly describes the following data, provided the
lexicM entr> contains a backquote in the right place.

referred versus. *refered (spellings in lexicon are
"re'let" + "ed') .

In order to get the facts right for monosyllabic words, Kart tunen
and Wittenburg's rule also mentions that, instead of a backquote,
a word boundary (#) will do.

The only point of contention here is that their system requires
the the lexicM entry to contain a diacritic (and furthermore the
diacritic must be correctly located within the word). That the
diacritic is reminiscent of an accent mark is no accident. Stress is
clearly a fac,~or in English consonant gemination, q'helr solution
is to find a way to represent stress in the orthography. The
Mternative l:,roposed here is to express it in the form of a negative
rule feature on the following sample iexical items. The rule is
again simplified.

1For instance, see Schane [11], pp. 108-109

Gemination rule:
+ - - ~ c l / C V c l _ V ;
where cl is in {b,d,f,g,l,m,n,p,r,s,t}
Words:
refer (default is that it is consistent with all rules)
bother
-gemination (means that the gemination rule does not

apply to this word)

There are other sets of data for which this technique is usefnl.
The case that. comes to mind most readily deals with combining
a noun o," verb stem ending i n / o / w i t h a n / s / m o r p h e m e repre-
senting, respectively, plural for nouns and third person singular
for verbs. The following rules do well at describing these facts
about English orthography.

EPENTHESIS RULES:
epenthesisl:
-I c / o .._ s .
epenthesis2:
-I-/c a l l o w e d in c o n t e x t o __ s.

DATA:
potato+s ==ee potatoes, *potatos (need a n / e /)
do+s --m~ does, *dos (need a n / e /)
piano+s "--::4, pianos, *l)ianocs (can't have a n / e /)
piccolo+s ==> piccolos, *piccoloes (can't haw'. a n / e /)
banjo+s ==> banjos or banjoes (both are acceptable)
cargo+s =-~e- cargos or cargoes (both arc acceptable)

The first of the epenthesis rules descr ibes /pota to+s / ==> [pota-
toes] a n d / d o + s / = = > [does] correctly, but incorrectly states that
the plural o f / p i a n o / is */pianoes/. The second rule is weaker,
generating all of the correct forms - but all of the wrong ones too,
so that it achieves the right results f o r / b a n j o + s / ==# [banjoes[
or [banjos] and likewise fo r /ca rgo+s / , but yields both the right
and the wrong results for the others.

The way to get the facts right is to put negative rule features
on the lexicM items in question, as shown here:

LEXICON
piano
- [epenthesisl epenthesis2]
piccolo
- [epenthesisl epenthesis2]
banjo

- epenthesisl
cargo

- epenthesisl
potato
do

The alternatives are either to list some forms as being irregular
or to insert diacritics into some of the words so that the rule(s)
will apply only to the correct lexical items. To list some of the
forms as irregular is to miss the generalization that they are all
irregular in exactly the same way. To use a diacritic (or possibly
two) to describe the facts correctly may lead to making other,
unrelated rules more complicated. Furthermore, it seems to be
an attempt at expressing historical information, such as a word's
provenance, in terms of abstract phonological segments.

In general, the device of negative rule features seems to be well
suited to tile task of passing information between a lexical entry
and the phonology component. This is a useful capability. It
is perhaps analogou,s to employing augmented phrase-structure
rules in syntax when, at least in theory, pure context-free rules
would do.

The mMn idea here is that there is a way to let phonological
(or orthographic) rules refer to features of a nmrpheme that may

29

not be easily represented as phonemic segements. As regards the
gemination rule mentioned earlier, the right procedure might be
to let the rule mention stress and store values for that feature in
the lexical entries.

5 Computer Interpretat ion of the
Rules

What makes these rules interesting is that there is a way to apply
them in a morphological parser or generator. What follows is a
description of the algorithm used by the code that I have imple-
mented in Quintus Prolog on a Sun. When the rule epenthesisl
is read in, it is decomposed into two rules. This rule,

epenthesisl:
+--->e/O__s,

yields these rules:

epenthesis]:
+/e allowed in context o __ s
epenthesis]:
+/0 disallowed in context o _ s.

These rules are then stored as lists of character pairs:

epenthesisl:
allowed : o/o . + / e .s/.s
epenthesisl:
disallowed: o/o + / O s /s .

7 Algori thm W i t h Negat ive Rule
Features

Thus far, nothing has been said about how negative rule features
enter into the picture. When a morpheme boundary is encoun-
tered, a morpheme has just been looked up in the lexicon. At
that point, if it has some negative rule features on it, it is a sim-
ple matter to sort through the list of rules that have partially
matched the input and discard those that the morpheme says do
not apply. If that entails eliminating the last rule in some set of
allowed-type rules that have all already matched past the main
pair of the rule, then the input being scanned is not allowable
as a possible mapping between lexical and surface forms. Oth-
erwise one should just go on as before, comparing the rules with
the input being scanned.

8 Conclusion

A general procedure for using phonological or orthographic two-
level rules has been presented. These rules are much easier to
refine and develop than automata transition tables. In addition,
a method has been presented for listing which morphemes are
exceptions to which [orthographic] rules, and an algorithm has
been described that makes it possible to use this information in
a straightforward way.

Furthermore, these are two-level rules. As Koskenniemi has
noted, [8], since these rules simply state correspondences between
surface strings and underlying strings, they may be used either
for doing generation or recognitio n. The device of negative rule
features proposed here has the same power as Koskeniemi's de-
vice of putting arbitrary diacritics into selected classes of mor-
pheines and rules, but is argued to be simpler.

6 Basic A l g o r i t h m

The rules are sequences of character pairs. A mapping between a
string of lexical characters and a string of surface characters may
also be considered to be a list of character pairs. No disallowed-
type rule may be a substring of a mapping between a lexical
string and a surface string.

The rule checker proceeds down the list of character pairs, look-
ing for any substring that is the same as one of the disallowed-
type rules. If it finds one, the string of character pairs it was
considering is not a valid mapping from a lexical form (word) to
a surface form.

The other type of rule, the allowed-type rule, is somewhat
different. A dot is put into the rule right after the end of the left
context to mark the next character pair as being the main pair of
the rule. Any character pair that is the main pair for one of these
allowed-type rules needs to be surrounded by the right and left
contexts of one of these rules. The way that is checked for in this
system is as follows. The string of charcter pairs is scanned from
left to right. Each time a pair is encountered that is the same as
the first pair of some allowed-type rules, the rules are put into
a set. As more character pairs are scanned, they are compared
with the sets of rules already encountered. Rules that do not
continue to match the scanned input are ejected from the set.
When the main pair of a rule in one of these sets is scanned, it is
removed from the set it was in and put into a new one. The rules
in this set are compared with scanned input in the same manner
as before except that, if the last pair of some rule matches a pair
that is being scanned, the whole set is discarded as no longer of
interest. Conversely, if there is not at least one rule in the set
that matches the scanned input all the way to the end, then the
input being scanned is not an allowable mapping between lexical
and surface forms.

Acknowledgments

I would like to thank Meg Withgott for helpful comments on
this topic. I have also benefited greatly from conversations with
Lauri Karttunen and Kimmo Koskenniemi regarding the general
problem of two-level phonology. This research was funded by
the Defense Advanced Research Projects Agency under Office of
Naval Research Contract N00014-85-C-0013.

References

[1] Bear, John (1985) "Interpreting Two-level Rules Directly,"
presented at a Stanford workshop on finite-state morphology.

[2] Bear, John (1986) "A Morphological Recognizer with Syn-
tactic and Phonological Rules," COLING 86.

r3] Karttunen, Lauri (1983) "Kimmo: A General Morphologi-
cM Processor," in Texas Linguistic Forum #2P, Dalrymple et
al., eds., Linguistics Department, University of Texas, Austin,
'~Xa8.

[4] Karttunen, Lauri (1984) "Features and Values," in COLING

84.
[5] Karttunen, Lauri and Kent Wittenburg (1983) "A Two-level

Morphological Analysis Of English," in Texas Linguistic Fo-
rum #22, Dalrymple et al., eds., Linguistics Department, Uni-
versity of Texas, Austin, TexaS.

[6] Kay, Martin (1983) "When Meta-rules are not Meta-rules,"
in K. Sparck-Jones, and Y. Wilks, eds. Automatic Natural Lano
guage Processing, John Wiley and Sons, New York, New York.

30

[7] Kay, Martin (1987) "Nonconcatenative Finite-State Morphol-
ogy," paper presented at a workshop on Arabic Morphology,
Stanford University, Stanford, California.

[8] Koskenniemi, Kimlr)o (1983) Two-level Morphology: A Gen-
eral Computational Model for Word-form Recognition and Pro-
duction. Publication No. 11 of the University of ttelsinki De-
partment of GenerM Linguistics, Helsinki, Finland.

[9] Koskcnniemi, Kimmo (1983) "Two-level Model for Morpho-
logical Analysis," IJCAI 83, pp. 683-685.

[1Of Koskenniemi, Kimmo (1984) "A General Computational
Model for Word-form Recognition and Production," COLING
84, pp. 171~-181.

[11] Schane, Sanford (1973) Generative Phonology, Prentice
Hall, Englewood Cliffs, New Jersey.

[12] Selkirk, Elizabeth (1982) The Syntax of Words, MIT Press,
Cambridge, Massachussetts.

[13] Shieber, Stuart (1986) An Introduction to Unification-Based
Approache:~ to Grammar, CSLI Lecture Notes Series, Stanford
University, Stanford, California.

31

