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Abstract 

Functional unification (FU) grammar is a general 
linguistic formalism based on the merging of 
feature-sets. An informal outline is given of how 
the definition of derivation within FU grammar can be 
used to represent the satisfiability of an arbitrary 
logical formula in conjunctive normal form. This 
suggests that the generation of a structure from an 
arbitrary FU g~ammar is NP-hard, which is an 
undesirably high level of computational complexity. 

I. Functional Unification Grammar 

There is not space here to give a full 
definition of FU grammar (see Kay (1979, 1984, 1985), 
Ritchie(1984)); the aim is rather to outline how the 
problem of satisfiability of a propositional logic 
expression in conjunctive normal form (CNF) can be 
expressed as a derivation in FU grammar, thereby 
suggesting that the derivation question in FU grammar 
is "NP-hard" (Garey and Johnson (1979)). 0nly those 
aspects of FU grammar which are relevant to the 
sketch of the proof will be outlined. The argument 
here is wholly independent of the generative power 
discussion in Ritchie(1984). 

Functional unification (FU) grammar is a 
grammatical formalism which allows descriptions of 
linguistic structures to be expressed as functional 
descriptions (FDs), which are sets of "features" 
[attribute-value pairs), and grammatical derivation 
is expressed in terms of these structures. Within a 
level of an FD, each feature-name can appear only 
once; i.e. no feature can appear with two different 
values. Constituent structure within FDs is 
indicated as follows. In an FD E, any feature F 
whose feature-name is listed in the value of the 
PATTERN feature at the same level of nesting within E 
is a constituent. Feature-values written in angle- 
brackets (e.g. <DEFINITE>I are not simple data- 
values, but are pointers to other positions within 
the structure. These "paths" indicate a structural 
position that can be found by starting at the 
outermost level of nesting and tracing feature-names 

inward along the path. 

An FD El is said to be an extension of another 
FD E2 if there is a sub-structure of El which is 
isomorphic to EY, including identity of feature-n~nes 
and all feature-values. In determining if El is an 
extension of E2, the comparison process must start at 
the outermost level. 

An FU grammar can be thought of as a set of FDs, each 

one describing a possible shape for a constituent in 
the language. A FD F is well-formed with respect to 
the grammar G if there is an FD E in G such that F is 
an extension of E, and every constituent of F (see 
above) is well-formed with respect to G. An 

arbitrary FD can be used as the initial structure in 
deriving a fuller FD. Suppose G is a FU grammar, FI 
and F2 are PDs. Then FI derives F2 using grammar G if 
F2 is well-formed with respect to G, and F2 is an 
extension of FI. 

In the textual representation of an FU grammar, 
it is normal to represent several similar FDs by 
writing just one FD containing disjunctive lists of 
the possible variations between braces (curly 
brackets). This is an abbreviation for the full set 
of basic FDs, each corresponding to choosing one item 
from each disjunctive list. 

2. Representing CNF expressions 

In representing CNF-satisfiability as FU grammar 
derivation, we will divide the information contained 
in the CNF expression between two structures - an FD 
(which will act as the initial functional description 
for the derivation) and an FU grammar (with respect 
to which the derivation is defined). The former 
encodes, in a very direct way, the structure of the 
CNF expression, whereas the latter is of a very 
general form which varies only in size laccording to 
the number of propositional symbols and number of 
conjuncts in the CNF expression). 

Suppose the CNF expression has n propositional 
symbols PI,..Pn, and k conj uncts. The FU 
representation will involve the feature-nm~es "CAT", 
"PATTERN", "PI ", .... "Pn" , "NOT-PI ", ..... ,"NOT-Pn" , 
"CI", "CY",..."Ck", with the feature-values CNF- 
EXPRESSION, CONJUNCT,TRUE, FALSE, NONE and the k- 
tuple [CI .... Ck). A conjunct of the CNF expression 
which mentions the literals All], AI2 ] .... Aim 1 
explicitly but omits A(m+1] ..... A[Yn) teach A[ ]i 
being either an atomic proposition or a negated 
atomic proposition) will be represented by an FD of 
the general form given in (I]. 

[CAT = CONJUNCT (I) 

AI = 

<A[YJ> 

Ai~)'~ <A(m)> 
Aim+t1 = NONE 
A[m+2) = NONE 

NONE 
] 

The whole CNF expression will be represented by an FD 
of the general form in (2), where each of the feature 
values for the Ci are representations of the 
individual conjuncts as described in (I). 

584 



[ CAT = CNF-EXPRESSION [2) 

CI = • ...... 
C2 = . ...... 

,,o°.,..°. 
Ck = • ...... 

] 

The FU grammar will eontaln two FDs. The first 
of these will be an FD representing the overall form 

of any CNF expression with n symbols and k conjuncts, 
including a set of disjunctive lists representing all 

possible choices of truth-values for the 
propositional variables involved; this will be of the 

general form in [3]. 

[ CAT = CNF-EXPRESSION (3)  
PATTERN = [C1 C2 . . . . . .  Ck] 

[P1 = TRIJE 
NOT-PI = FALSE] 

[PI = FALSE 

NOT-PI ~. TRUE] 

[P2 ~ TRUE 
NOT-P2 = FALSE] 

[P2 ~ FALSE 
NOT-P2., TRUE] 

[Pn : TRUE 
NOT-Pn = FALSE] 

[Pn = FALSE 
NOT-Pn = TRUE] 

} 
] 

The FU grammar also contains a FD which contains a 
disjunction listing all the possible propositional 
literals linked to "TRUE", as in [4]. 

[CAT = CONJUNCT (4)  

TRUEJ 

NOT-P1 = TRUE 1 
NOT-P2 " TRUEJ 

t ] 

The FD that should be the outcome of the derivation 
process is one which has truth-values explicitly 
marked in for some of the literals, in such a way 
that consistent assignments are given to a 
propositional symbol and its negation, and each 
conjunct contains [at least] one literal feature with 
TRUE as its value. For example, the derivation of an 
FD from the initial FD and grammar representing the 

CNF expression 

(PI v~P2] A P3 

could result in an FD as in (5]. 

[ CAT = CNF-EXPRESSION [5)  
PATTERN ~ [CI C2] 

PI = TRUE 

NOT-PI ~ FALSE 
P2 = FALSE 
NOT-P2 ~ TRUE 
P3 = TRUE 
NOT-P3 ~ FALSE 

CI = [ CAT = CONJUNCT 
PI = <PI> 

NOT-PI = NONE 
P2 = NONE 
NOT-P2 = <NOT-P2> 
P3 = NONE 
NOT-P3 = NONE ] 

C2 = [ CAT = CONJUNCT 

PI = NONE 
NOT-PI = NONE 
P2 = NONE 
NOT-P2 = NONE 

P3 = <P3> 
NOT-P3 ~ NONE] 

] 

It is straightforward to check that this is derivable 
from the original CNF FD; i.e. this FD is an 
extension of the FD llke [2]. and this FD is well- 
formed w.r.t, a CNF FU grammar like [3] and (4) 
[since each of its constituents is the extension of 
some FD in that grammar]. 

3. Outline of proof 

In order to prove that FU derivation is NP-hard, 
we have to establish that the problem of whether a 
CNF expression is satisfiable can be reduced by a 
polynomial-tlme algorithm to the problem of whether 
an FD can be the basis of a successful derivation 
with respect to a grammar. (It is not necessary to 
establish the reverse reduction - it is not a 
symmetrical relationship). Thus the following must 
be established: 

I. there is a polynomial time algorithm which 

converts any CNF expression into the 
representation outlined above ([I], (2], [3], 
[4)] 

2. the CNF expression is satisfiable if and only if 
the FD produced by this algorithm leads to a 
successful derivation w.r.t, the grammar 
constructed by the algorithm. 

It should be intuitively plausible that a polynomial 

time algorithm exists for the conversion, as the FU 
representation is so directly related to the CNF 

formula. [The use of disjunctions in the grammar is 
relevant here, since the expanded form of the grammar 
would have an exponential number of entries). 

The central result (satisfiability iff 
derivability) can be proved separately in the two 
directions: 

satlsflabillty ~> derivability. 

If a CNF expression Q is satisfiable, an FD can 
be created as in [6], such that, for all i in the 
range I to n: 
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(a] Xi, Yi are in ITRUE, FALSE} 

(b )  x i  :J=  Yi 

and f o r  e a c h  j i n  t h e  r a n g e  1 t o  k: 

(a) if a literal A appears in the jth conjunct of Q, 
then the feature named A in the FD labelled Cj 
has the value <A>. 

[b) if a literal A does not appear in the jth 
conjunct of Q, then the feature named A in the 
jth FD has the value NONE. 

(c) there is at least one feature value Z(j,i) or 
W(j,i) which is of the form <A> where the 
feature-value labelled A at the outer level is 
TRUE. (i.e. either Z[j,i) is <Pi> and Xi is 
TRUE, or W[j,i) is <NOT-Pi> and Yi is TRUE. 

[ CAT = CNF-EXPRESSION [6)  
PATTERN = [C1 . .  Ck] 
PI = XI 
NOT-PI = YI 

~ X n  
NOT-Pn = Yn 

CI = [ CAT = CONJUNCT 
P1 = Z ( 1 , 1 )  
NOT-PI - W[1,1) 
P2 : z ( 1 , ~ )  
NOT-P2 = w ( 1 , 2 )  

• . . . . . . .  ° . , ,  

Ck = [ CAT : CONJUNCT 
P~ - ZIk,1) 
NOT-P1 = W(k ,1 )  

p n ' i  Z ( k , n )  
NOT-Pn - W ( k , n ) ]  

] 

This is an extension of the original CNF FD 
(cf.(I),(2)), and is well-formed w.r.t, the FU 
grammar for CNF expressions I[3),(4)). Hence there 
is a derivation from the CNF FD and CNF grammar as in 
[I), [2), (3) and (4). 

derivability => satisflability 

If the FD as in (2) above can lead to a 
successful derivation w.r.t, the grammar containing 
[3) and [4) above, there must be an FD F such that F 
is an extension of both (2) and some FD in the 
grammar. Since [2) contains the feature [CAT = CNF- 
EXPRESSION], the only grammar FD of which F could 
also be an extension is one of those represented in 
(3), containing [CAT = CNF-EXPRESSION] together with 
features denoting a consistent assignment of truth- 
values to the Pi (i.e. an FD formed by selecting 
features from the disjunctive representation in (3)) 
Thus F must contain sub-structures llke (2) and (3) 
at its outermost level, including the PATTERN = 
[CI...Ck] feature. Since F is well-formed w.r.t, the 
grammar, each constituent of F must be well-formed 
w.r.t, the grammar. F's constituents are exactly the 
values of the features Ci (as in (I)), so for each of 
these FDs there must be an FD in the grammar of which 
the constituent FD is an extension. Since the 
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constituent FDs all include the feature CAT 
CONJUNCT, the only grammar FDs pertinent are those 
which contain CAT CONJUNCT and a single feature 
representing an assignment of TRUE to a particular 
literal (i.e. FDs from (4)). The constituent can be 
an extension of such a grammar FD only if it also 
contains the same feature with the feature-value TRUE 
(since all llterals appear in (I), either with NONE 
or TRUE I. This will be possible only if la) the 
corresponding literal appeared in that conjunct in 
the CNF expression [b) the path given in (I) links 
the feature to a TRUE value at the outer-level. 
Since the outer level's features represent a 
consistent truth-value assignment, it follows that 
the structure of F imposed by the derivation demands 
that there exist a truth-assignment which satisfies 
each conjunct. 

4. Some consequences of this demonstration 

Berwick[1982) provides a similarly semi-formal 
proof of the NP-hardness of parsing with respect to 
lexical-functional grammar, a formalism with many 
similarities to FU grammar, although his proof is 
radically different from the scheme presented here 
for FU grammar. Berwick gives an explanation of why 
computational complexity is relevant to linguistic 
theory, and why NP-hardness is an undesirable 
property for a linguistic computation. The fact that 
derivation in FU grammar is computationally complex 
is particularly worrying, since it suggests that the 
obvious generation algorithm outlined in Kay's papers 
is also NP-hard, even though FU grammar was intended 
as a computationally useful formalism. The idea that 
sentence generation (production) is NP-hard is 
perhaps surprising parsing has always been viewed 
as a non-determlnistic search process, which might 
well have exponential complexity for certain types of 
grammar, but computational linguists have probably 
viewed sentence generation as a slightly more 
deterministic process. 
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