
A SYNTAX PARSER BASED ON THE CASE DEPENDENCY

GRAMMAR AND ITS EFFICIENCY

Toru Hitaka and Sho Yoshida

Department of Electronics, Kyushu University, Fukuoka, Japan

S UMMARY

Augumented transition network
grammars (ATNGs) or augumented context-
free grammars are generally used in
natural language processing systems.
The advantages of ATNGs may be summa-
rized as i) efficiency of representa-
tion, 2) perspicuity, 3) generative
power, and the disadvantage of ATNGs is
that it is difficult to get an effi-
cient parsing algorithm becuase of the
flexibility of their complicated
additional functions.

In this paper, the syntax of
Japanese sentences , based on case
dependency relations are stated first,
and then we give an bottom-up and
breadth-first parsing algoritbxnwhich
parses input sentence using time O(n 3)
and memory space O(n2), where n is the
length of input sentence. Moreover,
it is shown that this parser requires
time O(n2), whenever each B-phrase in
input sentence is unambiguous in its
grammatical structure. Therefore, the
efficiency of this parser is nearly
equal to the Earley's parser which is
the most efficient parsing method for
general context-free grammars.

1. FUNDAMENTALS OF JAPANESE SENTENCE
The Japanese sentence is ordinarily

written in kana (phonetic) letters and
kanji (ideographic) characters without
leaving a space between words. From
the viewpoint of machine processing,
however, it is necessary to express
clearly the units composing the
sentence in such a way as to leave a
space between every word as in English.
We have no standard way of spacing the
units though the need for this has
been demanded for a long time.

We give some examples in Figure i.
The first sentence in the figure is
of ordinary written form.

The second indicates a way of
spacing (i.e. putting a space between
every word).

The third indicates another way of
spacing (i.e. putting a space between
every B-phrase).

Nowadays, many other spacing methods
have been tried in several institutes
in Japan.

In this paper, input sentences are
given in colloquial style in which a
spacing symbol is placed between two
successive B-phrases.

In Japanese sentences, BUNSETSUs(B-
phrase) are the minimal morphological
units of case dependency, and the syntax
of Japanese sentences consists of (i)
the syntax of B-phrase as a string of
words, and (2) the syntax of a sentence
as a string of B-phrases.

A B-phrase usually pronounced
without pausing consists of two parts
--main part [or equally an independent
part in the conventional school gramma-
tical term] and an annex part which is
post positioned. We denote the connec-
tion of two parts in a B-phrase by a
dot if necessary. A main part, which is
a conceptual word [or equally an inde-
pendent word] (e.g. noun, verb,
adjective or adverb) provides mainly the
information of the concept. On the
other hand, an annex part, a possibly
null string of suffix words (e.g. auxi-
liary verbs or particles) provides the
information concerning the kakariuke
relation and/or the supplementary
information (e.g. the speaker's attitude
towards the contents of the sentence,
tense, etc.)

A word w has it's spelling W, part
of speech H and inflexion K. We call
(W,H,K) the word structure of w.

Suppose that a string b of length n
be a B-phrase. Then, there exist an
independent word w 0 and suffix words
Wl, w z, ... , w~, and

b=w0w I . • • w~

Cont(Hk,Kk,Hk+1) (0=k<i) ...(i)

Termi (H£,K Z) • • • (2)

where (Wi,Hi,Ki) is the word structure
of w i (0~i~£), Cont(Hk,Kk,Hk+1) means
a word whose part of speech and inflexion
are Hk, K k respectively can be followed
by a word whose part of speech is Hk+lin

-15--

B-phrases and Termi(HQ,Kz) means a word
whose part of speech ~nd inflexion are
H£, KZ respectively can be a right-most
subword of B-phrases.

(i), (2) are called the rules of B-
phrase structure, and

(W0,H0,K 0) (Wi,HI,K ~) "''(Wz,H~,K ~)
• .. (3)

is called B-phrase structure of b. If
(3) satisfies the condition (i), w0wlw
• ..w Z is called to be a left partial 2
B-phrase.

The kakariuke relation is the depen-
dency relation between two B-phrases in
a sentence. A B-phrase has the syn-
tactic functions of governor and
dependent. The function of governor is
mainly represented by the independent
word of B-phrase. The function of
dependent is mainly represented by the
string of particles which is the right-
most substring of B-phrase and by the
word in front of it (right-most non-
particle word).

Every particle has the syntactic and
partially semantic dependent function
with its own degree of power. The
particle whose power of dependent
function is strongest of all particles
appearing in the string of particles is
called the representative particle.
Therefore, the syntactic function of
dependent of a B-phrase is mainly
represented by the representative
particle and by the right-most non-
particle word.

Let (W0,H0,K0) , (Wi,Hi,Ki) , (W~,H~,K~)
be the word structures of independent J
word, right-most non-particle word and
representative particle of a B-phrase,
respectively. Then, <W^,H^>_, <W..,Hi,

u u ~ &

Hj> d are called the inrormatlon or
governor and the information of depen-
dent of the B-phrase respectively, and
the pair (<W0,H0>~,<Wi,Hi,Hj>d) is
called dependency~informati6n of the
B-phrase.

There are many types of dependency
relation such as agent, patient,
instrument, location, time, etc. Let
C be the set of all types of dependency
relation. The set of all possible
dependency relations from a B-phrase b l
to a B-phrase b 2 is founded on the
information of dependent of b I and the
information of governor of b 2. There-
fore, there is a function 6 which com-
putes the set of all possible dependen-
cy relations ~(a,8) between a B-phrase
of dependency information ~ and another
B-phrase of dependency information 8.
The function ~ is realized by the
dependency dictionary retrieved with
the key of two dependency informations.

The order of B-phrase is relatively
free in a simple sentence, except for
one constraint that the predicative
B-phrase governing the whole sentence
must be in the sentence's final posi-
tion. Japanese is a post positional
in this sense.

The pattern of the dependency
relations in a sentence has some
structural property which is called the
rules of dependency structure, and the
dependency relations in a sentence are
called the dependency structure of a
sentence. The dependency structure
of a sentence is shown in figure 2,
where arrows indicate dependency rela-
tions of various types. The rules of
dependency structure consist of follow-
ing three conditions.

i Each B-phrase except one at the
sentence final is a dependent of
exactly one B-phrase appearing
after it.

ii A dependency relation between any
two B-phrases does not cross with
another dependency relations in a
sentence.

iii No two dependency relations
depending on the same governor
are the same.

Let N be the number of B-phrases in
a input sentence, and all B-phrases are
numbered descendingly from right to
left (see figure 2). We shall fix an
input sentence, throughout this chapter.
Let DI(i) be the set of all dependency
informations of i-th B-phrase.

Definition: A dependency file DF of
a sentence is a finite set of 5-tuples.

(i,j,ai,ej,c) 6 DF

.... _~ { N=i>j=l, a i E DI (i),
cde . ~j 6 DI(j) and c E~(ai,aj).

Definition: If a subset of DF
satisfies following conditions i) to
5), it is called a dependency structure
from the Z-th B-phrase to the m-th B-
phrase (N~Z>m~i) and denoted by DS(£,m)
or DS' (i,m).

i) If (i,J,ei,~j,c) 6 DS(£,m), then
£~i>jAm.

2) For arbitrary i(ZAi>m), there
exists unique j,ai,ej,c such that
(i,j,ai,ej,c) ~ DS(Z,m).

(Uniqueness of Dependent)
3) If (i,j,a~,a~,c) 6 DS(£,m) and

, , ~ o
(j,k,~j,~k,C) % DS(Z,m), then ~ = ~

~, O J"
(Uniqueness of B-phrase structure)

, 4) If (i,J,~i,~j,c) ~ DS(£,m),
(i ,j,~f ,~j, ,c) E DS(£,m) and i>i'>j,
then j,hj.

(Nest Structure of Dependency)

16 ¸

5) If (i,j,@i,~,c) e DS(£,m)
(i',j,a i, ,~j,c') ~ D~(£,m) and ~i',
then c ~ c'.
(Inhibition of Duplication of a Case)

The set of all dependency structur~
from i-th B-phrase to m-th B-phrase is
denoted by ~(~,m). Any DS(N,i)~ ~(N,i)
is called a dependency structure of the
input sentence. The dependency infor-
mation of j-th B-phrase is unique in
DS(i,m), since 2) and 3) hold. Let
JDiDS(Z,m) and jGDS(Z,m) be the depen-
dency information of the j-th B-phrase
inD~£,m) and~set of all the depen-
dency relations that the j-th B-phrase
governs in DS(£,m), respectively.

def ~i,~,C)
JGDS(i,m) u__. {c I (i,J~Ds(~m) }

Definition: If the k-th B-phrase
(i~k~_m) in DS(£,m) has the following
property, k(the k-th B-phrase) is
called a joint of DS(£,m):

For any (i,j,ai,~j,c)~ DS(~,m) ,
k~i or J~k.

Let j~(=£) > j, > Jl > "'" > j (=m) be
u ,

the descendlng sequence of ale the
joints of DS(i,m) (see figure &).
Then, the Jk-th B-phrase is called the
k-th joint of DS(£,m). There is a
dependency relation from k-th joint
(dependent) to k+i-th joint(governor)
in DS(£,m). Let J.DS(£,m) be a set of
all the joints of DS(£,m). DS(£,m/i,j)
a subset of DS(Z,m), is defined as
follows:

DS(£,m/i,j)-~{ (p,q,av,~o,c) I
(p,q,ap,aq,C) ~ DS(~,my, i~p>q~j}.

Lemma i. For any positive integer
£, i, j, m (N~£~i>j~m), the following
propositions hold.
(i) DS(i,m/i,j)6 ~(i,j), if j is a

joint of DS(i,m).
(ii) DS(I,j) U DS(j,m)~ ~(£,m), if and

only if JDiDS(Z,j) = JDiDS(j,m) .
(iii) { (Z+i,j ,~, ~,c) }uDS (~,~) 6 ~(Z+i,

m) if and only if (i+l,j,e,8,c)
E DF,8=JDiDS(Z,m), j E J.DS(£,m)
and c~ jGDS(Z,m).

(iv) If (jk,Jk+1,ak,ek+1,c) ~ DS(j ,m)
(k=0,1,2,-..), then Jk is the k-
th joint of DS(J0,m).

Syntax analysis of a Japanese
sentence is defined as giving B-phrase
structures and dependency structure of
the sentence.

2. THE PARSING ALGORITHM
AND ITS EFFICIENCY

In this chapter, we shall give a
parsing method which will parse an
input sentence using time O(n ~) and

space O(n~), where n is the length of
input sentence. Moreover, if the
dependency information of each B-phrase
is unambiguous, the time variation is
quadratic.

The essence of the parsing algorithm
is theconstruction of B-phrase parse
list BL and dependency parse list DL
which are constructed essentially by a
"dynamic programming" method. The
parsing algorithm consists of four
minor algorithms that are the construc-
tion of BL, the obtaining of B-phrase
structure, the construction of DL and
the obtaining of dependency structure.

13-PHRASE PARSE LIST
Let b be a string of n length and

b(i) denote the i-th character from
the left end of it.

b=b(1) (2) ... b(n).

The B-phrase parse list of b
consists of n minor lists BL(1), BL(2),
• .. , BL(n).

[]Form of items in BL(j)
(i, WS, DI)

where, IL_i < j~n, WS is a word
structure and DI is a dependency
information.

[] Semantics (i, WS, DI)EBL(j) of
(i, WS, DI)E BL(j), if and

only if there exists a sequence of
words w o, w l, ... , w£ satisfying
following two conditions:
i) b(1)b(2) ... b(i)=w0w I .. • w~_ I,

b(i+l)b(i+2) ... b(j)=w£, and
WS is the word structure of w£.

2) The string of word w_w I ... w Z is
• D

a left parclal B-phrase of depen-
dency information DI.

ALGORITHM FOR THE CONSTRUCTION OF BL
Input. An input string b=b(1)(2)

• • .b(n) .

Output. The B-phrase parse list
BL(1), BL(2), ... , BL(n).

Method. Step i: Find all the
independent word which are the left-
most subwords of b, using independent
word dictionary and for each indepen-
dent word w=b(1)b(2) ''. b(j), add
(0, (W,H,K),a) to BL(j) where, (W,H,K)
is the word structure of w and ~=
(<W,H>K, <W,H,-> d) . Then, set the
controI word i to 1 and repeat Step 2
until ~ = n •

Step 2: Obtain all the suffix
words which are the left-most subwords
of B(i+l)B(i+2) ... b(n) and for each
suffix word w=b(i+l)b(i+2) ... b(k)
of word structure (W' ,H' ,K') , and for
each item (j, <W,H,K>,a) # BL(i), add
(i,(W',H',K'), (W',H')oe) to BL(k) if

--17

C(H,K,K'). (W',H')0a is a dependency
information defined as follows.

i If H' is a auxiliary verb• then

(W',H')o~ def (<~>g,<W,,H,,_>d)

where• <a>g is the information of
governor or a.

ii Let <W",H",H"' > be the informa-
tion of dependent of ~. When H'
is a particle,

(W,,H,)o a def
. . . . (<a>g,<W",H",H'>d)

if the power of dependency
function of H' is stronger than
that of H"' , and else

(W,,H,)o ~ def ~.

There exists upper limit in the
length of words and there exists upper
limit in the number of dependency
informations of all left partial B-
phrase of a(1)a(2) ... a(i). Therefore,
there exists upper limit for the
necessary size of memory space of BL(i)
and the theorem 1 follows.

Theorem i.
Algorithm for the construction of

BL requires O(n) memory space and
O(n) elementary operations.

We shall now describe how to find a
B-phrase structure of specified depen-
dency information from BL. The method
is given as follows.

ALGORITHM FOR OBTAINING A B-PHRASE
STRUCTURE OF AN INPUT STRING
Input. The specified dependency

information ~ and BL.
Output. A B-phrase structure of

dependency information a or the error
signal "error".

Method. STEP i: Search any item
(i,(W,H,K),a) in BL(n) such as Termi
(H,H). If there is no such item, then
emit "error" and halt. Otherwise,
output the word structure (W,H,K), set
the register R to (i,(W,H,K),a) and
repeat the step 2 until i = 0.

STEp 2: Let R be (i,(W,H,K),e).
Search any item (i',(W',H',K'),a') in
BL(i) such as C(H',K',H) and (W,H) o~=a.
There exist at least one element which
satisfies above conditions. "Output
the word structure (W',H',K') and
R÷ (i',(W',H',K'),a').

It is easy to know theorem 2 holds.
Theorem 2.
A B-phrase structure of specified

dependency information is output by
the above algorithm, if and only if the
input string has at least one B-phrase
structure of specified dependency
information and it takes constant
memory space and O(n) elementary
operations to operate the above

algorithm.

The set of all the dependency
informations DI of input string b is
obtained from BL(n), since

DI={a I (i, (W,H,K) ,a)£SL(n) , C(H,K) }.

DEPENDENCY PARSE LIST DL
Let s be a input sentence of N B-

phrases. The set of all the depen-
dency informations DI(i) of the i-th
B-phrase is obtained by operating the
algorithm of construction of BL on
the string of the i-th B-phrase.

The dependency parse list DL of s
consists of N-i minor lists DL(2),
DL(3) , ''- ,DL(N) .

[] of items in Form DL(i).

(ai,J,aj,~,P) I
(ai•J,aj, ,P)

where, N~i > j~l, aie DI(i), ajE DI(j),
ce ~, P~ and $ is a specially intro-
duced symbol.

I~ Semantics of (ai,J,aj,c,P)6DL(i).
(ai,J,aj,c,P) ~ DL]i) • if and

only if there is a dependency struc-
ture DS(i,i) of s, where

(i,J,ai,a~,c) ~ DS(i,i),
jGDS (i,l) < P.

~ Semantics of (ai•j•~,S,P)6DL(i).
(ai•J,?j ,$,P) e Dn(1), if and

only if there is a dependency structure
DS(i,i) of s, where

ai=iDiDS(i i) a. :JDiDS(i,i), • r J

j is a joint of DS(i,i) except
O-th or 1st joint,

jGDS(i,i) =P.

ALGORITHM FOR THE CONSTRUCTION OF DL
Input. The sequence of the sets of

all dependency informations DI(1) ,
DI(2) , ''" •DI(N) .

Output. Dependency list DL(2),
DL(3) , ''" ,DL(N).

Method. STEP 1 (Construction of
DL(2))~ For each a e DI(2)• a16 DI(1)
and cE ~ such that ~ e6(c~2,c~i) , add
(a2,l,al,c,{c}) to DL(2)• set i to 2
and repeat the STEP 2 and the STEP 3
until i = N.

STEP 2 (Registration of items of
the form (ai+l,j,aA,c,P)) : For any
(ai,J,aj•c,P) ~ DL(i) and ~i+16 DI(i+l) ,
compute 6 (ai+ I,~i) and add every
(ai+l,i,ai,c',{c'}) to DL(i+i) such
that c'6 6(ei+1,~i). And, for any
(c~i,J,aj,A,P) 6 DL(i) where A~ ~ ~'{$}
and ai+1£ DI(i+l), compute ~(c~i+1,aA)
and add every (ai+l,j,c~j,c',PU {c'}~
to DL(i+i) such that c'6 ~(ai+1,a j)
and c'} P. Go to Step 3.

18

STEP 3 (Registration of items of
the form (ai+1,j,ej,$,P)): For any
(ai+1,j,al,c,P) ~ DL(i+i) and (al,k,ek,
A,P') # DL~j), add (ei+1,k,ak,$,~') to
DL(i+i). Then, set i to i+; and go
to STEP 2.

Theorem 3.
If there exist no ambiguity in the

dependency information of B-phrases of
input sentence, then the step 3 in
the above algorithm can be replaced to
the following step 3'.

STEP 3': For each (~Ki+!,j,~A,A,P)
6 DL(Ki+~), add (~i+~,j,aj,~,P) £o
DL(i+i), where

de----~ max{k I (ai+l k ~k,C,P) Ki+l , ,
DL (i+l)}.

Then, set i to i+l and go to STEP 2.

The efficiency of each step of
above algorithm is as follows.

The memory size of DL(i) is O(N).
The step i, the step 2 and the step

3 take constant, O(N) and O(N ~)
elementary operations, respectively.

The step 3' takes O(N) elementary
operations since it takes O(N)
elementary operations to compute Ki+ ~ .
Therefore, the theorem 4 holds.

Theorem 4.
The algorithm for the construction

of DL requires O(N ~) memory space and
O(N ~) elementary operations. Moreover,
if there exist no ambiguity in the
dependency information of each B-
phrases, the algorithm requires O(N ~)
elementary operations by replacing the
step 3 with the step 3'

We shall now describe how to find a
dependency structure of input sentence
from DL. To begin with, we shall
explain items of partial dependency
structure list PDSL.

Form of items in PDSL
(i,j,a~,a~,P#)

where, Nhi ~j ~i a# ~ DI(i) ~ {#},
~ % DI(j) U {~, P~ i~ a subset of C or
#Oand# is specially introduced symbol.

~ Semantics of (i,j,~#,e#.p#)
.~ i j-

The item (i,j,a~,e~,P#) % PDSL
means to be a dependenceS- structure
DS(i,j)~ ~(i,j) such that following
conditions i),2) and 3) hold.

i) If a~=~i(%#), then iDiDS (i,j) =e i •

2) If e#=aj(~#!,~ then JDiDS(i,j)=aj.

3) If P~=P(~#). then JGDS(i,j)=P.

Therefore, (N,i,#,#,#) means to be a
dependency structure of the input
sentence.

ALGORITHM FOR OBTAINING A DEPENDENCY
STRUCTURE FROM DL

Input. DL.
Output. A dependency structure of

input sentence or the signal "error".
Method. STEP i: If DL(N) is empty,

emit the message "error", else,
initialize PDSL to {(N,i,#,#,#)} and
repeat step 2 until PDSL becomes empty.

STEP 2: Take an item freely out of
PDSL and delete it from PDSL. Accord-
ing to the form of the item, execute
i) or 2) or 3).

i) If the item is (N,i,#,#,#) of
the form and (aN,J,ej,c,P) ~ DL(N) ,
then output (N,J,eN,ej,c), add (N-i,j,
#,aj,P/{c}) to PDSL i~ N-i ~ j and add
(j,l,aj,#,#) to PDSL if j ~ i.

2) If the item is (i,l,ei,#,#) of
the form and (j,~i,ej,c,P)E DL(i),
then output (i,J,ei,e~,c), add (i-l,j,
#,aj,P/{c}) to PDSL i~ i-i @ j and add
(j,l,a~,#,#) to PDSL if j @ 1

3) aIf the item is (i,j,~,e~,P) of
the form, where ~#=~= or #, anda(ai,j,
~,c,P) E DL(i), then±output (i,J,~i,
e~,c) and add (i-l,j,#,~j,P/{c}) to
PDSL if i-i % j. When there is not
such item in DL(i), searcha pair of
items (ei,k,ak,C,P') E DL(i) and (ak,J,
ej,A,P) ~ DL(k), then output (i,k,ei,ak,
cy , add (i-l,k,#,~k,P'/{c}) to PDSL
if i-i @k and add (k,j,~k,ej,P) to PDSL.

PDSL needs O(N) memory space and
STEP i, STEP 2 take constant, O(N)
elementary operations, respectively.

Theorem 5.
A-igorithm for obtaining a dependency

structure from DL requires O(N) memory
space and O(N 2) elementary operations.

PARSING ALGORITHM
Input. A Japanese sentence in collo-

quial style.
Output. A dependency structure DS(N,

i) of the input sentence and a B-phrase
structure of the j-th B-phrase, whose
dependency information is JDiDS(N,i),
for every j(j=l,2, "'" ,N).

Method. STEP i: Construct N B-phrase
parse lists of all B-phrases of the
input sentence and get the sets of
dependency informations DI(1), DI(2),
• ." , DI(N).

STEP 2: Construct dependency parse
list DPL from DI(1), DI(2), ... ,DI(N).

STEP 3: Obtain a dependency
structure DS(N,i) of the input sentence
from DL.

STEP 4: Obtain a B-phrase structure
of the j-th B-phrase, whose dependency
information is JDiDS(N,i), for every
j (j=l,2, ... ,N) and stop.

-19--

Let n~ be the length of j-th B-
phrase (~=i,2, •-- ,N), and N,n denote
the number of B-phrases and the length
of input sentence, respectively. Then,

n1+n2+ ... +n N =n
N Ln

By theorem i, theorem 2, theorem 4
and theorem 5, next theorem holds.

Theorem 6.
The parsing algorithm requires

O(n 2) memory space and O(n 3) elementary
operations. Moreover, if the dependen-
cy information of each B-phrase is
unambiguous, it requires O(n 2) elemen-
tary operations.

3. CONCLUSION
Syntax of Japanese sentences is

stated and a efficient parsing
algorithm is given. A Japanese sen-
tence in colloquial style is parsed b Y
the parsing algorithm, using time O(n ~)
and memory space O(n2), where n is the
length of input sentence. Moreover,
it is parsed using time O(n 2) whenever
dependency information of every B-
phrase is unambiguous.

REFERENCES
i. Aho, Ullman : "The Theory of

Parsing, Translation, and Compil-
ing", Prentice Hall vol. 1 (1975).

2. Woods : "Transition Network
Grammars for Natural Language
Analysis", Communication of the
ACM, 13 (1970).

3. Pratt : "LINGOL -- A Progress
Report", Proc. IJCAI 4 (1975).

(~) (~s) (s) (2) 0-)

J0 =5) Jl (=4) J2 (=3) J3 (=i)

: main part a: agent

--: annex part p: patient

J0,Jl,J~,J3 : the sequence of joint

Figure 2. Dependency Structure

Example: Taro read the composition
written by Hanako.

Figure i. Ways of Spacing

20

