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Abstract

This paper presents a grammatical error correction (GEC) system that provides corrective feed-
back for essays. We apply the neural sequence-to-sequence model, which is frequently used
in machine translation and text summarization, to this GEC task. The model is trained on
EF-Cambridge Open Language Database (EFCAMDAT), a large learner corpus annotated with
grammatical errors and corrections. Evaluation shows that our system achieves competitive per-
formance on a number of publicly available testsets.

1 Introduction

The rise of English as a global language has motivated research and development in computer-assisted
language learning systems. However, learning a second or foreign language is not at all easy, especially
in the area of writing. Due to the limited vocabulary and inadequate command of grammar, second
language learners are prone to misspelled words and write ungrammatical sentences. The demand for
grammatical error correction (GEC) has encouraged researchers to develop technology to support the
writing process.

Correcting grammatical errors with statistical machine translation (SMT) techniques has gained great
success (Brockett et al., 2006). Translating an ungrammatical sentence into a correct one can effectively
handle all types of errors simultaneously (Rozovskaya and Roth, 2014). More recently, Rozovskaya and
Roth (2016) compares the strength and the weakness of classifier-based and SMT-based approaches, and
integrates both of them to build a hybrid GEC system.

Recently, Yuan and Briscoe (2016) presents the very first word-based neural machine translation
(NMT) model for GEC and proposes a two-step approach to handle the rare word problem. Xie et
al. (2016) proposes a character-based NMT model, achieving open vocabulary machine translation. Sen-
nrich et al. (2016) purposes a subword-based model with Byte-Pair Encoding (BPE) algorithm, which
only splits rare words and leaves frequent words unsegmented.

The remainder of this paper is structured as follows. In section 2, we describe our system implemen-
tation. Then, we describe the experiment settings in section 3. We report our system performance and
discuss the evaluation results in section 4. Finally, we conclude our paper and explore the future direction
of GEC research in section 5.

2 The GEC System

In this section, we present GEC Cool English, a web-based system where users can write their essays
and get corrective feedback (available at https://nlp-ultron.cs.nthu.edu.tw/gec/). The
correction process is divided into three steps. First, we use spaCy1 to tokenize input sentences (Honnibal
and Johnson, 2015). Second, the tokenized sentences are converted into lowercase and fed into the NMT
model for inference. We then re-capitalize the model predictions using truecaser2. Finally, to give easy-
to-read feedback, we convert the result into an informative visual expression instead of the NMT model

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

1https://spacy.io
2https://github.com/nreimers/truecaser
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output directly. Words to be deleted are marked with strikethrough and colored red, while words to be
inserted are colored green (as shown in Figure1).

Figure 1: The screenshot of the system GEC Cool English

2.1 Model Implementation
We build our NMT model upon the neural sequence-to-sequence (Seq2Seq) framework proposed by
Luong et al. (2015), where both encoder and decoder are recurrent neural networks (RNNs). We further
extend our NMT model by adding residual connections among the recurrent layers, which has suggested
improving the gradient flow during training. To select the best NMT model for our GEC system, we
explore word-based model (WORD) and subword-based model (SUBWORD). Our NMT models are
implemented with OpenNMT (Klein et al., 2017), a comprehensive library for training and deploying
NMT models.

3 Experiments

3.1 Dataset
For training data, we use the EF-Cambridge Open Language Database (EFCAMDAT) (Geertzen et al.,
2013), which is currently the largest publicly available learner corpus. EFCAMDAT contains about 1.2
million essays with over 83 million words written by approximately 174 thousand learners with a variety
of CEFR levels (A1-C2). We extract parallel sentences from those essays, resulting in about 7 million
pairs of parallel sentences and 2.4 million of them contain at least one edit. To the best of our knowledge,
we are the first group to exploit EFCAMDAT corpus for GEC tasks.

To compare our systems with other works, we also use the following frequently used learner corpora:
the Lang-8 Corpus of Learner English (L8) 3, the Cambridge First Certificate English (FCE) exam scripts
(Yannakoudakis et al., 2011), which is a subset of proprietary Cambridge Learner Corpus (CLC), and
the NUS Corpus of Learner English (NUCLE).

For development and test data, we use the JHU FLuency-Extended GUG corpus (JFLEG) (Napoles et
al., 2017), which is designed for evaluating fluency and grammaticality. JFLEG corpus consists of 1,501
pairs of erroneous and corrected sentences, in which 754 pairs are development data and 747 pairs test
data.

3.2 Preprocessing
First, noisy sentences are excluded: sentences with URLs, E-mail, XML-like tags, etc., sentences less
than 3 words or more than 50 tokens, and sentences that start with a non alphabetic character or do
not end with a punctuation mark. Next, name entities are recognized with spaCy and correct spelling
errors on non-name-entity tokens with Enchant. 4 We then re-capitalize sentences with truecaser and
correct wrongly tokenized contractions and remove consecutive punctuation marks and convert tokens

3http://cl.naist.jp/nldata/lang-8
4https://github.com/AbiWord/enchant
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System Training data Data size GLEU(dev) GLEU(test)
Previous systems
Chollampatt et al. (2016) L8 + NUCLE 2.7M 46.3 50.1
Yuan and Briscoe (2016) CLC 1.9M 47.2 52.1
Ji et al. (2017) L8 + CLC + NUCLE 2.6M 49.0 53.4
Sakaguchi et al. (2017) L8 + FCE + NUCLE 720K 49.9 54.0
Our system
WORD L8 + FCE + NUCLE 720K 46.3 53.8
WORD EFCAMDAT 2M 44.2 51.6
SUBWORD L8 + FCE + NUCLE 720K 46.1 53.6
SUBWORD EFCAMDAT 2M 44.9 52.1

Table 1: Evaluation on JFLEG test set

into lowercase. Finally, we exclude the parallel sentences in which the token edit distance more than 50%
of the length of the source sentence. Through our text cleaning pipeline, 2 million parallel sentences from
EFCAMDAT and 720K parallel sentences from L8 + FCE + NUCLE are left for training.

3.3 Hyperparameters and Training Details

The vocabulary size are 50K and 35K respectively for the models trained on EFCAMDAT and L8 +
FCE + NUCLE. The sequence length is limited to 50 words for both source and target sentences. The
diemension of word embedding is set to 300. The encoder is a 2-layer bi-directional Long Short Term
Memory networks (LSTM) and the decoder is a 2-layer LSTM. The hidden layer size of both encoder
and decoder is set to 512. We perform UNK replacement by copying the source token with the high-
est attention score. We train our models by scheduled sampling (Bengio et al., 2015) and follow the
curriculum learning strategy using linear decay scheduling. The schedule sampling rate is set to 0.5.
We optimize our model using ADAM optimizer with learning rate 0.001 without learning rate decay.
The maximum gradient norm is set to 1. The batch size is set to 64. We apply dropout on both input
tokens and embeddings, and train our models with variational dropout (Gal and Ghahramani, 2016). All
dropout probabilities are set to 0.3. Finally, beam search is used to optimize hypotheses with beam size
set to 5 and maximum sequence length set to 50. Each model is trained for 20 epochs on NVIDIA 1080
Ti GPU within one day.

4 Evaluation and Discussions

Table 1 shows our systems achieves competitive performance comparing to the previous state-of-the-art
systems.

It is worth mentioning that our text cleaning pipeline significantly improves the performance of models
trained on the EFCAMDAT corpus (WORD: 49.08 → 51.63; SUBWORD: 50.37 → 52.05). Especially
spelling error correction and converting tokens into lowercase alleviate the rare word problem and reduce
the vocabulary size of NMT for faster training.

The results show that the models trained on the L8 + FCE + NUCLE outperform the ones trained on
EFCAMDAT. One possible reason may due to the large vocabulary size and inconsistent annotations
in EFCAMDAT. For example, “discuss about N.” should be always corrected to “discuss N.”, but only
162 out of 849 are corrected. One interesting insight is that subword-based model generally performs
better than word-based model, simply because it handles the rare word problem more effectively. But
in our experiments, we found that, in EFCAMDAT, the subword-based model performs better than the
word-based model, but in L8 + FCE + NUCLE, the word-based model achieves similar performance
as the subword-based model does. The reason might be that, the vocabulary size of 35K is sufficient
enough for a word-based model to cover all the vocabularies in L8 + FCE + NUCLE, thus less effected
by the rare word problem. In contrast, the word-based model with the vocabulary size of 50K is still
insufficient to cover the diverse vocabulary of EFCAMDAT, thus perform worse than the subword-based
model. We believe that pre-processing and selecting training data through active learning could reduce
the vocabulary size and cope with the rare word problem, thus further improving a word-based model.
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5 Conclusions

We have presented a GEC system that gives corrective feedback for the erroneous sentence. Our sys-
tem achieves competitive performance on the JFLEG test set with publicly available learner corpora
comparing to the previous state-of-the-art NMT based systems.

Many avenues for future research exists. For example, we could remove or correct inconsistent anno-
tations based on statistical and grammatical analysis. As an effect to reduce vocabulary size, we could
perform contextual spelling error correction as a first and separate step before the NMT process.
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