
Proceedings of the 27th International Conference on Computational Linguistics: System Demonstrations, pages 1–4
Santa Fe, New Mexico, USA, August 20-26, 2018.

1

Abbreviation Expander -
A web-based system for easy reading of technical documents

Manuel R. Ciosici
UNSILO A/S and
Aarhus University
Aarhus, Denmark

manuel@cs.au.dk

Ira Assent
Department of Computer Science

Aarhus University
Aarhus, Denmark
ira@cs.au.dk

Abstract

Abbreviations and acronyms are a part of textual communication in most domains. However,
abbreviations are not necessarily defined in documents that employ them. Understanding all
abbreviations used in a given document often requires extensive knowledge of the target domain
and the ability to disambiguate based on context. This creates considerable entry barriers to
newcomers and difficulties in automated document processing. Existing abbreviation expansion
systems or tools require substantial technical knowledge for set up or make strong assumptions
which limit their use in practice. Here, we present Abbreviation Expander, a system that builds
on state of the art methods for identification of abbreviations, acronyms and their definitions and
a novel disambiguator for abbreviation expansion in an easily accessible web-based solution.

1 Introduction

Abbreviations and acronyms are often used in text documents and denote typically long, often domain-
specific, concepts that authors need to refer to multiple times. However, the use of abbreviations and
acronyms can make reading and understanding difficult for people new to a specific field, can lead to
confusion, and make automated text processing challenging, for example, in indexing text documents.
Unfortunately, expanding abbreviations is a complex task. The meaning of some abbreviations and
acronyms (e.g. DNA meaning deoxyribonucleic acid in biology-related domains) is often considered
well-known, and is rarely defined in documents using them. Other abbreviations and acronyms can de-
note multiple concepts, depending on their context (e.g. PCB can refer to a number of distinct concepts1).

Available abbreviation expansion systems are limited in their usefulness either due to requiring tech-
nical knowledge on the user side or by relying on simple, dictionary-based methods which cannot be
applied to ambiguous abbreviations that have more than one meaning. We present a system that auto-
matically expands abbreviations and acronyms in a user provided document. Our system is a web-based
application that does not require that users have experience setting up pipelines for Natural Language
Processing. We build on state-of-the-art Natural Language Processing techniques and a novel disam-
biguation method based on unsupervised learning.

2 System Architecture

By building a web application, we aim to make users oblivious to the technical complexities of processing
natural language. From a user’s point of view, they upload a text file to the system and immediately see
the file’s content with all abbreviations and acronyms expanded.

Figure 1 shows the architecture of Abbreviation Expander’s back-end. Text is first tokenized and
split into sentences, after which a number of abbreviation expanders are used. Finally, their results are
combined. The biggest part of our system is composed of the processing pipeline. We use the UIMA2

framework as the basis for our system because it provides mature support for construction of processing
1https://en.wikipedia.org/wiki/PCB

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

2https://uima.apache.org

https://en.wikipedia.org/wiki/PCB
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://uima.apache.org

2

Back-endRequest
Processing

UIMA pipeline

Stanford Core NLP
Sentence

Splitter Tokenizer

Pattern
Annotator

Dictionary
Annotator

Unambiguous
Abbreviations

Vector Space
Disambiguator

Vector
Space

Expansion
Combiner

Figure 1: System architecture: input text is split and tokenized, defined abbreviations are extracted and
expanded (Pattern Annotator), a dictionary resolves unambiguous cases (Dictionary Annotator), ambigu-
ous cases are expanded using context (Vector Space Disambiguator); possible conflicts are resolved in
the Expansion Combiner.

pipelines and benefits from a wide-array of external NLP libraries. The wide support for libraries allows
us to employ established tools for pre-processing steps such as tokenization and sentence splitting for
which we use the Stanford Core NLP library (Manning et al., 2014). We separate the abbreviation and
acronym expansion into four different components: three components that perform expansion and one
that combines their outputs in order to achieve consistency.

Before we describe the various components in detail, we establish some definitions. An unambiguous
abbreviation or acronym is one that never expands into more than a single long-form. This corresponds
to a one-to-one mapping. For example, in all of English Wikipedia we could only find one meaning
for the acronym SSRMS, meaning Space Station Remote Manipulator System, popularly referred to as
Canadarm2. An ambiguous abbreviation or acronym is one that can expand to multiple long-forms
and the correct expansion is dependent on the context. However, an unambiguous use of an ambiguous
abbreviation or acronym is one where an ambiguous abbreviation or acronym is used in such a way that
the correct expansion is obvious. One such case is the definition of an abbreviation, such as The Mobile
Servicing System (MSS), is a robotic system on board the International Space Station3. Because of the
definition, it is clear which expansion is intended by the author.

The Pattern Annotator component is a re-implementation of the rules presented by Schwartz and
Hearst (2003). It uses linguistic patterns to identify definitions of abbreviations and acronyms. More
specifically, it looks for either the pattern text (<short-form>), or the reverse <short-form>(text). For
each identified instance, it attempts to find a long-form expansion in the text preceding the parenthesis or
contained in the parenthesis, respectively. This component can thus identify abbreviations and acronyms
defined directly in the user-provided text. Our implementation differs from that of BADREX (Gooch,
2011) by the fact that it more closely follows the extraction rules defined in Schwartz and Hearst (2003).
At the same time, we provide added support for various edge cases. For example, the original method
does not support mapping of long-forms to short-forms when the long form contains two words at the
beginning that start with the same letter (for example, OAS meaning Organization of American States is
wrongly mapped to of American States). Our system solves this by a combination of looking ahead and
a small set of stop-words not to be considered for the first word in a long-form (e.g. which, where, at,
on, . . .).

The Dictionary Annotator component uses a dictionary of unambiguous abbreviations and acronyms,
that we automatically extracted from English Wikipedia. We pre-processed English Wikipedia using
only our Pattern Annotator in order to extract all abbreviations and acronyms that are unambiguous.
Unambiguous abbreviations and acronyms have a one-to-one mapping between long-forms and short-
forms. This annotator gives our system the ability to expand abbreviations and acronyms that are not

3https://en.wikipedia.org/wiki/Mobile_Servicing_System

https://en.wikipedia.org/wiki/Mobile_Servicing_System

3

Figure 2: Screenshot of text with highlighted definition and added expansion of short forms to long forms

Figure 3: Screenshot of explanation information on long form source annotation that users can review.

defined in the text, but are known to only ever mean one thing. By focusing exclusively on unambiguous
abbreviations and acronyms, this annotator avoids the pitfalls of dictionary based systems described in
Section 3, i.e., the annotator avoids creating wrong expansions for abbreviations which can mean multiple
things by working exclusively with abbreviations known to be unambiguous.

The third component that performs expansions, the Vector Space Annotator deals exclusively with am-
biguous abbreviations and acronyms. It uses the context surrounding a short-form and a pre-computed
vector space in order to disambiguate the abbreviation. The vector space is based on sentences from En-
glish Wikipedia containing ambiguous abbreviations (meaning abbreviations containing a one-to-many
mapping between short-forms and long-forms) that are used in an unambiguous way (meaning that we
already know which one of the multiple expansions is the correct one). We extracted these sentences
using our Pattern Annotator. The Vector Space Annotator can thus expand abbreviations and acronyms
that can have multiple meanings and whose definitions do not appear in the user provided text.

Finally, the Expansion Combiner uses the annotations from the previous components and combines
them into consistent overall expansions. Please note that it is possible that two annotators expand an ab-
breviation to different long-forms. For example, the user provided text might introduce a new meaning
for an abbreviation that we know as unambiguous and so, the Pattern Annotator and Dictionary Annota-
tor might disagree. Similarly, the Pattern Annotator and Vector Space Annotator might arrive at different
expansions if the author uses a new meaning for a known ambiguous abbreviation, or if the Vector Space
Annotator should output an incorrect expansion. Finally, since the Vector Space Annotator works on one
sentence at a time, it is possible that it disambiguates the same abbreviation to different long-forms in
different sentences, thus leading to inconsistencies. The Expansion Combiner addresses these cases by
implementing a priority system and, for the Vector Space Annotator specifically, a voting system.

Figure 2 shows a screenshot from the Abbreviation Expander system. In the example text, the original
definition given in the text is marked and all subsequent uses of the short-form are preceded by the
abbreviation’s expansion. Users can verify how the system arrived at a specific expansion by clicking
on the inserted expanded form, see Figure 3. The system features a menu where users can input or open
some pre-loaded text files.

3 Related Work

BADREX (Gooch, 2011) is a plugin for the GATE (Cunningham et al., 2013) text analysis framework. It
performs abbreviation expansion using dynamic regular expressions based on linguistic patterns for their
definition (Schwartz and Hearst, 2003). The system requires an installation of GATE and familiarity with
establishing GATE pipelines and loading plugins. It can identify abbreviation and acronym definitions
in text and can then co-reference other instances of the identified short-forms to the found definition.

4

BADREX cannot perform abbreviation disambiguation, i.e., it cannot handle ambiguous cases as it relies
exclusively on the definitions present in the document.

Web browser-based systems, like ABBREX (ABBREX, 2018), can be installed in a browser and ex-
pand abbreviations found on web pages. The expansion is based on stored dictionaries of abbreviations
and lists of web pages they apply to. Thus, they cannot pick up definitions in text, or perform dis-
ambiguation. Being a dictionary-based expander, ABBREX assumes a one-to-one mapping between
abbreviations and their long-forms, which means that in the case of ambiguous abbreviations, it has no
other alternative, but to expand to whichever long-form is stored in the dictionary.

Another type of system, found e.g. in commercial software (Bartels Media, 2018; SmileOnMyMac,
2018), tries to expand user-defined abbreviations at writing time. This kind of software targets a different
use case and cannot be applied to already written text.

The problem of matching abbreviations and acronyms with their long-forms has also been studied
in research such as (Wu et al., 2015; Moon et al., 2015). However, they assume supervised learning
settings, where a large amount of human effort has to go into providing ground truth examples. Also,
they generally focus on methods, and do not provide (online) systems that users can easily use.

Abbreviation Expander presents a working web-based solution that does not require supervised ground
truth information, and that can handle both unambiguous and ambiguous cases.

4 Conclusion

We present Abbreviation Expander, a web-based system that allows users to expand abbreviations and
acronyms in text documents. Our system builds on state of the art methods for identification of abbre-
viations, acronyms and their definitions and our novel disambiguator based on word vector spaces. The
Vector Space Annotator is still under active research and will be described in detail in a research paper in
the near future. Abbreviation Expander requires no technical knowledge on part of its users and reliably
expands both unambiguous and ambiguous abbreviations, improving text understanding and access in
practice. In the future we plan to include feedback features into the system so that users can reject wrong
expansions.

References
[ABBREX2018] ABBREX. 2018. ABBREX - The Abbreviation Expander. http://abbrex.com.

[Bartels Media2018] GmbH Bartels Media. 2018. WordExpander. http://www.wordexpander.net.

[Cunningham et al.2013] Hamish Cunningham, Valentin Tablan, Angus Roberts, and Kalina Bontcheva. 2013.
Getting more out of biomedical documents with gate’s full lifecycle open source text analytics. PLoS computa-
tional biology.

[Gooch2011] Phil Gooch. 2011. BADREX: In situ expansion and coreference of biomedical ab-
breviations using dynamic regular expressions. https://github.s3.amazonaws.com/
downloads/philgooch/BADREX-Biomedical-Abbreviation-Expander/Gooch_BADREX_
biomedical_abbreviation_expansion_2012.pdf".

[Manning et al.2014] Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J. Bethard, and
David McClosky. 2014. The Stanford CoreNLP natural language processing toolkit. In Association for Com-
putational Linguistics (ACL) System Demonstrations, pages 55–60.

[Moon et al.2015] Sungrim Moon, Bridget McInnes, and Genevieve B Melton. 2015. Challenges and practical
approaches with word sense disambiguation of acronyms and abbreviations in the clinical domain. Healthcare
inform. research, 21(1):35–42.

[Schwartz and Hearst2003] A Schwartz and M Hearst. 2003. A simple algorithm for identifying abbreviation
definitions in biomedical text. Pacific Symp. Biocomp., 8.

[SmileOnMyMac2018] LLC SmileOnMyMac. 2018. TextExpander. https://textexpander.com/.

[Wu et al.2015] Yonghui Wu, Jun Xu, Yaoyun Zhang, and Hua Xu. 2015. Clinical abbreviation disambiguation
using neural word embeddings. In Proceedings of the 2015 Workshop on Biomedical Natural Language Pro-
cessing (BioNLP), pages 171–176.

http://abbrex.com
http://www.wordexpander.net
https://github.s3.amazonaws.com/downloads/philgooch/BADREX-Biomedical-Abbreviation-Expander/Gooch_BADREX_biomedical_abbreviation_expansion_2012.pdf"
https://github.s3.amazonaws.com/downloads/philgooch/BADREX-Biomedical-Abbreviation-Expander/Gooch_BADREX_biomedical_abbreviation_expansion_2012.pdf"
https://github.s3.amazonaws.com/downloads/philgooch/BADREX-Biomedical-Abbreviation-Expander/Gooch_BADREX_biomedical_abbreviation_expansion_2012.pdf"
https://textexpander.com/

	Introduction
	System Architecture
	Related Work
	Conclusion

