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Abstract

Scientific papers from all disciplines contain many abbreviations and acronyms. In many
cases these acronyms are ambiguous. We present a method to choose the contextual correct
definition of an acronym that does not require training for each acronym and thus can be
applied to a large number of different acronyms with only few instances. We constructed
a set of 19,954 examples of 4,365 ambiguous acronyms from image captions in scientific
papers along with their contextually correct definition from different domains. We learn
word embeddings for all words in the corpus and compare the averaged context vector of
the words in the expansion of an acronym with the weighted average vector of the words
in the context of the acronym. We show that this method clearly outperforms (classical)
cosine similarity. Furthermore, we show that word embeddings learned from a 1 billion
word corpus of scientific texts outperform word embeddings learned from much larger
general corpora.

1 Motivation

Scientific papers usually contain a high number abbreviations and acronyms that might be very general or
very specific for a certain domain and that might be very common in that domain or that are constructed
ad hoc. For various tasks, like retrieval or information extraction we need the expanded form of the
acronyms.1

In most cases we can find the definition for an acronym in the paper. Finding this definition automatically
is not as trivial as it might sound and there is a lot of literature on this topic. However, a lot of cases
remain where we cannot find such a definition, because the extraction method fails or because there is
no definition in the paper. In these cases we can use a definition found elsewhere. As already noted by
Chang et al. (2002) in these cases acronyms often turn out to be ambiguous and the correct definition
has to be chosen by considering the context of the acronym. Exactly this task is the topic of the present
paper. Thus, although the goal of our work is acronym expansion, the work is more related to word sense
disambiguation (WSD) than to typical work on acronym resolution. The main difference with WSD is
that we do not have dictionaries with description of possible senses. Instead the possible expansions of
the acronym directly represent the different senses.

In the Project NOA (Reuse of Open Access Images, http://noa.wp-hs-hannover.de) we
analyze captions from images in scientific papers to collect appropriate metadata for those images
(Charbonnier et al., 2018). In order to get maximal information from the usually short image captions we
need to expand the acronyms. Moreover, the acronyms are often very specific technical terms that give
a lot of information on the displayed image. Since the focus of the project is on image captions, in the
present paper we consider only acronyms from image captions, but this is not relevant to our method that
can be used to disambiguate any acronym in a scientific paper. Since the image captions in some cases are
very short, we also use the text from the sentences referring to the image to disambiguate the acronyms in
the caption.

1This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

http://noa.wp-hs-hannover.de
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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2 Related Work

Typically definitions for acronyms are found using a number of patterns to find candidates in the context
of the acronyms and a number of rules to select the most likely candidate. Patterns and rules are defined
manually or learned in a supervised (Nadeau and Turney, 2005) or unsupervised (Kirchhoff and Turner,
2016) way. The work of Schwartz and Hearst (2011) focuses on finding and extracting abbreviations from
medical publications by identifying <"short form", "long form"> pairs and was used in a majority of the
work discussed here. They argue that many abbreviations in the biomedical domain follow a predictable
pattern where the first letter of each word is a letter of its short form, but that there are cases where this is
not true. Therefore they describe a simple and fast algorithm with a high recall and precision to find those
pairs using string operations to verify that the acronym letters appear in the right order in the long form.

Much research on acronym resolution and disambiguation was done in the biomedical domain (Okazaki
and Ananiadou, 2006; Finley et al., 2016; Vo et al., 2016; Wu et al., 2017). The most reliable approach
for disambiguation is to train a classifier that chooses the right definition based on features representing
the context of the acronym (Wu et al., 2015; Wang et al., 2016; Finley et al., 2016; Antunes and Matos,
2017). Typical features are the word frequencies but also morphemes and position features. Wu et al.
(2015) and Antunes and Matos (2017) also include features from word embeddings. Kirchhoff and Turner
(2016) learn the similarity between a possible expansion and the context in a neural network using word
embedding features. Wu et al. (2015) use the sum of all pmi (pointwise mutual information) values
between a definition and a context as a measure of their similarity. Thus they also use a more advanced
similarity measure than just word overlap based on word co-occurrence in a large corpus.

Stevenson et al. (2009) created a biomedical evaluation corpus consisting of overall 55,655 documents
using MEDLINE and MEDSTRACT. They counted the occurrence of 21 three letter abbreviations and of
their expansions in the abstracts of those documents. The occurrence of these hand selected abbreviations
range from 71− 14, 871 times in the corpus. Jimeno-Yepes et al. (2011) created the widely used MSH-
WSD dataset consisting of 203 ambiguous entities, where 106 are abbreviations. Each of those has a
maximum of 100 instances from MEDLINE where they occur.

Disambiguation of acronyms is a special case of the more general problem of word sense disambiguation
(Navigli, 2009; Yarowsky, 2010; Mihalcea, 2011). Word sense disambiguation is typically done by
comparing the possible senses of an ambiguous word, expressed e.g. by their glosses in a dictionary, with
the senses of the surrounding words (Lesk, 1986; Patwardhan et al., 2003). The gloss overlap can be
improved, when the glosses are extended with related words (Banerjee and Pedersen, 2003). We will
follow this idea below, but the extension of the glosses is done implicitly using distributional similarity, as
also was done by Aga et al. (2016) and Oele and Noord (2017).

Henry et al. (2017) and Tulkens et al. (2016) specifically worked on disambiguation of acronyms. They
used the MSH-WSD dataset and UMLS to disambiguate words/concepts in the domain of biomedicine.
Tulkens et al. (2016) combined word representations and definitions from UMLS to create concept
representations. Those concepts are then used to disambiguate terms using cosine similarity and the
context of the unambiguous term. As features they used word embeddings as described by Mikolov et al.
(2013) learned with MEDLINE abstracts and the MIMIC-III corpus. Henry et al. (2017) evaluate different
feature extraction methods using 2-MRD (2nd Order Co-occurrence Machine Readable Dictionary) to
disambiguate biomedical word senses. Among these were Singular Value Decomposition, Principal
Component Analysis and Neural Word Embeddings trained with Bag of Words and Skip Gram. They used
extended definitions like parent/children, narrow/broader relations and associated synonymous terms from
UMLS to create those vectors. Pakhomov et al. (2016) evaluated the effect of domain specific corpora for
disambiguating medical terms while using word embeddings. They showed that biomedical articles can
be used to a degree to represent the semantics of clinical reports.

3 Data

Most available data sets with acronyms are quite small, or focus specifically on the biomedical domain, or
do not contain ambiguous acronyms, or only ambiguous acronyms with a few very frequent resolutions.
To develop a disambiguation method that is suited for our practical problem, we need a set of ambiguous
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Figure 1: Number of definitions (after clustering) per acronym in the NOA corpus.

acronyms from different disciplines with possibly very infrequent and unusual definitions. In absence of
such a test set, we created our own set of ambiguous acronyms.

3.1 Acronyms in the NOA Corpus

Our database contained 712,438 papers from open access journals by the end of 2017. The collection
contains journals from almost all scientific disciplines with a focus on technical and biomedical research
areas. We refer to Sohmen et al. (2018) for more details.

In this collection we found 2,838,713 occurrences of words written in all capitals of at least 3 letters
that thus are likely to be acronyms. For 25,336 acronyms with a total of 628,470 occurrences we found a
definition in the paper using a simple regular expression. For 379,509 additional acronyms we could find
an unambiguous definition in another paper from the same journal. In total about 36% of all potential
acronyms could be expanded. For 67 % of the remaining acronyms we have multiple possible expansions
from other papers.

Since authors sometimes seem to be uncertain about the exact definition of acronyms we build clusters
of definitions, such that for each pair (a, b) in a cluster either a is a permutation of b (like annual average
daily traffic and average annual daily traffic for AADT) or if the Levenshtein Distance of a and b is
smaller than 5 (like anterior acetabular sector angle and Anterior acetabular section angle for AASA.)
Finally, we take the most frequent definition as the correct one. The average cluster size is 1.36. The
average number of definitions was reduced from 3.6 to 2.7. Since we used simple heuristics for cluster
building, we have a few cases in which two different definitions are put into one cluster and many cases
of equivalent definitions that are still treated as different definitions: the overwhelming majority of the
clusters only contain spelling variants, different capitalization and typos. The distribution of the number
of definitions per acronym for all acronyms in image captions in the NOA corpus is given in Figure 1.

The acronym with the highest number of definitions is SSC with 52 definitions that is used for concepts
like Surgical Safety Checklist, symmetric similarity coefficients, secondary sclerosing cholangitis and
Swedish Space Cooperation.

3.2 Test Set

From our database we collected a set acronyms that have at least two and at most five definitions that are
not too similar. As a criterion for similarity we used trigram overlap and we required that the Jaccard-Index
of the sets of trigrams was smaller than 0.4. This gave us 4,365 acronyms. In this set we still have 140
acronyms with at least two definitions that only differ in one word, like DNA Damage Induced Sumoylation
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Figure 2: Number of acronyms for each degree of ambiguity in the test set. E.g. we see that there are
1000 acronyms with 3 possible expansions in the test set.

Table 1: Example of the data set. The contextual right definition is typeset in bold.
Acronym Definitions DOI of Source Context/Caption
EBG Electro-burnt Graphene

Electromagnetic Band Gap
10.1155/2008/790358 The EBG leaky wave antenna is fed with a

patch array. It must radiate in the direction
[Θ = 30o;φ = 0o] .

and DNA Damage Induced Senescence or very low calorie diet and very low carbohydrate diet. The
numbers of acronyms for each degree of ambiguity is given in Figure 2.

For each sense of an acronym we selected at least 1 and at most 5 image captions, in which that acronym
was used, from papers in which it was unambiguously defined. This resulted in a set of 19,954 instances
of acronyms in a specific context that have to be disambiguated. The data set is provided as supplementary
material to this paper. A typical example of a such an instance is given in Table 1. The average length of
the captions is 531.3 characters (105.7 tokens), the median is 385 characters (77 tokens). Figure 3 shows
the number of expansions with one, two, etc. examples in the test set. Given the low number of examples,
training a classifier for each ambiguous acronym is not possible.

3.3 Wordembeddings

We use the full text of all 672,157 papers in our database with a total of 1.662× 109 tokens to compute
word embeddings for all words in the definitions of the acronyms and in the image captions. For training
of the word embeddings we only use the body texts and excluded the captions. The 12,002 definitions in
our test set consist of 116,603 different tokens. For 92 of those tokens we do not have a word embedding.
These are mainly stop words, typos and single letters (as in Downstream of Kinases (DOK) and Vitamin K
Antagonist (VKA), resp.). In the Google and GloVe dictionaries 821 and 189 tokens, respectively, are not
captured. In theses dictionaries in addition many technical terms are missing.

The best results were achieved with a window size of 5 using CBOW, an embedding size of 300. We
removed all tokens from our data that are in the NLTK stopword list, that have less than 2 characters or
that occur less than 5 times in the corpus.

For comparison we also used two well known pre-trained general models: GoogleNews (Mikolov et al.,
2013) and GloVe (Pennington et al., 2014).

http://dx.doi.org/10.1155/2008/790358
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Figure 3: Frequency of each number of examples per definition: For the majority of the possible definitions
of an acronym the test set only contains one example; there are about 1200 definitions for which there are
2 examples in the test set, etc.

4 Method

The general idea to decide which sense of an acronym is the contextual correct one, is to compare each
definition of the acronym with its context. Now we can vary both the context and the method to compare
the definition and context. As the context we take either the image caption from which the acronym was
taken, or we expand the caption with sentences referring to the image.

4.1 Baselines
As a baseline we use an unsupervised classifier based on the cosine similarity between tf-idf-vectors of
the definition and the context.

As a further baseline we use a majority classifier, that always assigns the definition that was found most
frequently in the whole database.

4.2 Prediction
Since the simple cosine similarity used as a baseline captures only literal word overlap and not semantic
similarities we also use word embeddings to represent the word in the texts and compare the average word
embedding vector for both texts.

To decide which of the given candidates for a solution should be selected, we construct a representing
vector for the example text. This vector is the weighted average of all word-embeddings found in the
text. We simply discard any token that is not in our dictionary during the average vector calculation. We
also calculate an average weighted vector representing the alternative definitions. In both cases we use
idf-values as weights for the components. We calculate the cosine similarity and select the candidate with
the higher similarity as the right solution.

Formally, let t = s0, s1, . . . , sn be any sequence of tokens. Now we define the context vector of t as

cv(t) =
1

N

n∑
i=0

idf(si) · cv(si) (1)

where cv(si) is the word embedding or context vector of si. Now, for some acronym a let D =
{D0, D1, . . . Dn} be the set of definitions for a, with Di = di0 . . . d

i
ki

the sequence of tokens from the
definitions for each 0 ≤ i ≤ n and C = c0 . . . cl the tokens in the context. Now the predicted definition
pred(a,C) of a in context C is:

pred(a,C) = max
∀D∈D

cos (cv(D), cv(C)) (2)
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Table 2: Accuracy of acronym disambiguation
Method small larger

Context Context
Majority Classifier 0.44
Vector Space Model (Cosine) 0.74 0.77
Distr. Sim. – GloVe 0.70 0.71
Distr. Sim. – Google News 0.71 0.73
Distr. Sim. – Own vectors 0.84 0.86

Table 3: Acronyms incorrectly resolved by our method. The contextual right definition is typeset in bold.
Acronym Definitions DOI of Source Context/Caption
DOW Day of Week

Deep Ocean Water
10.3390/md15060168 . . . . . . DOW: TAA-induced mice fed with DOW

(0.603 mL/kg/day), AS: TAA-induced mice
fed with adenosine (0.329 mg/kg/day), CC:
TAA-induced mice fed with cordycepin (0.615
mg/kg/day).

AIHT Adaptive Inverse
Hyperbolic Tangent
Analysis Iterative Hard
Thresholding

10.1155/2014/825169 AIHT function image enhancement algorithm pro-
cedures.

4.3 Adding more Context

For very short captions we can extend the context of the acronym with text from paragraphs referring to
the image. To be precise, if there are less then 15 tokens in the caption, we add the referring sentence to
the context and keep adding left and right neighbor sentences until we have 35 tokens.

5 Results

The results are shown in Table 2. We see that all methods using the context of an acronym outperform the
majority classifier. In all cases adding more context for short captions results in a small improvement.
The results of the conditions using the pre-trained vectors are slightly worse than those obtained by
simple word overlap. The similarity based classifier using the corpus specific word embeddings clearly
outperforms all other variants.

6 Discussion

One would expect that using word embeddings to compare the acronym definition with the context of
the abbreviation always has a big advantage over a simple word overlap measure, like cosine similarity.
Surprisingly, this is not the case if we use pre-trained vectors. When we train a model on the same corpus
from which we have collected our examples (excluding the parts, however, used for the examples), we get
much better results indeed. This shows in the first place, that unsupervised disambiguation of acronyms is
feasible, if we use word embeddings to represent the alternative definitions and the context. In the second
place we have shown that training word embeddings on a specialized corpus with text comparable to those
in the task to be carried out, has a big advantage over using available embeddings trained on a general
corpus, even if the used corpus is much smaller than the general corpus.

6.1 Error analysis

Our data set is generated automatically and not manually corrected. Therefore, we have some errors in
our data set that cause misclassifications. E.g., there are two definitions for DJF: December January
February and Dec Jan Feb. Obviously, the first one is the correct one, but the classifier might find either.
In some cases different but equivalent definitions are found for an acronym, like Gap Junction Channel
and Gap Junctional Communication for GJC, or the same acronym is used for slightly different, but not

http://www.doi.org/10.3390/md15060168
http://dx.doi.org/10.1155/2014/825169
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Table 4: Accuracy of acronym disambiguation using small context for complete models and models with
restricted set of word embeddings.

Model all words intersection
Distr. Sim. – Google News 0.71 0.64
Distr. Sim. – Own vectors 0.84 0.83

identical concepts, like IPSO for Improved Particle Swarm Optimization and Iteration Particle Swarm
Optimization.

Table 3 gives two typical examples of errors. The first example has a very misleading context. While
words like water and ocean are not very typical for cell experiments, at the same time the word day, that
is part of the alternative definition, occurs several times in the context. The second example is a typical
case for acronyms from related disciplines and a context that is too short and general to find the correct
definition.

Our impression is, that about 2% to 5% of the examples are erroneous, problematic or simply do not
have enough information to disambiguate the acronym. Thus the upper bound for the accuracy would be
around 0.95. Our result of 0.86 is already very close to this.

6.2 Quality of embeddings vs. number of embeddings

Finally we wanted to see whether we get better results because we have word embeddings for more
(corpus specific) words, or because the word embeddings trained on the specialized corpus are better
suited for our purpose. To get more insight in this question, we repeated the tests in Table 2 using only
words that have an embedding in our model and in the Google News model. There are only 60,940 tokens
that are shared among both models. The huge drop in the amount of words in our model (originally
embeddings for 1,367,648 tokens) can be explained by the fact that we computed embeddings for many
number, symbols, etc. The results for the repeated experiment using only words common to both models
are given in Table 4. We see, that there is hardly any change in the results for our model. Surprisingly, the
Google News Model seems to loose a number of important words. Thus we can conclude that the better
results can be explained by the fact that the word embeddings in the specialized model better reflect the
meaning of the words in our corpus of scientific papers.

6.3 Results with high confidence

Figure 4 suggests that we can achieve an accuracy of over 0.95 if we only consider cases in which the
difference between the cosine similarities is at least 0.1. (Of course the exact value should be determined
using an independent data set). This way we can still classify over 76% of all examples. Thus we can
resolve a large number of acronyms in our database. However, we have to keep in mind that for most
definitions just one example could be found. Thus, the most likely definition of any unresolved acronym
is a definition that we have not seen up to now.

7 Conclusion and Future Work

We started our experiment with a very simple method to find definitions of acronyms in scientific papers.
Using definitions from other papers we can resolve many unresolved definitions. Nevertheless, an obvious
way to improve the overall results of acronym expansion would be to improve the methods to find
definitions.

From our point of view the presented method has two aspects that should be improved in future work.
While we use advanced methods to compute word representations, for a text we simply take the (weighted)
average of the word representations. We will learn text representations with neural nets in future as well.
A consequent next step then would be to learn text similarity as well.

The present result encourages us to follow this way, since we have shown (1) that training word
embeddings on our own corpus gives much better results than using standard word vectors and that
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Figure 4: Fraction of classified pairs and accuracy when only examples with a difference between the
cosine values above a given threshold are considered.

(2) we can obtain very good results for domain independent acronym disambiguation using these word
embeddings.
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