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Abstract

In this paper, we study the problem of question answering over knowledge base. We identify
that the primary bottleneck in this problem is the difficulty in accurately predicting the relations
connecting the subject entity to the object entities. We advocate a new model architecture, APVA,
which includes a verification mechanism responsible for checking the correctness of predicted
relations. The APVA framework naturally supports a well-principled iterative training procedure,
which we call turbo training. We demonstrate via experiments that the APVA-TUBRO approach
drastically improves the question answering performance.

Title and Abstract in Chinese

面向知识库问答的 APVA-TURBO方法

本文主要围绕目前基于知识库的问答方法中的存在的问题展开研究。经过对现有各类问
答方法的调查与分析，我们发现目前知识库问答的瓶颈主要体现在关系预测上，即如何
准确地预测出问题中的实体与答案实体之间的关联，是需要面临的最大挑战。因此本
文在现有问答框架的基础上，加入了负责对预测关系的可靠性进行评价检验的验证机
制，用以增强关系预测效果，并提出了一种新的知识库问答框架“APVA”。另外，文中
为 APVA 设计了一种具有良好理论基础的迭代训练过程，我们称之为“涡轮式(turbo)训
练”。通过实验证明，APVA-TUBRO方法可以在问答数据集上取得优异效果，大大提升
了目前问答方法的准确性。

1 Introduction

Knowledge bases (KBs), such as YAGO, DBPedia, and Freebase contain an enormous volume of facts,
or knowledge, about the real world. Each of these facts is represented as a triple (s, r, o), where s
is a subject entity, r is a relation, and o is an object entity. This representation allows the KB to be
interpreted as a graph in which entities are vertices, triples are edges, and relations are edge labels. Such
a structured representation has enabled the development of query languages, such as RQL(Karvounarakis
et al., 2002), Versa(Ogbuji, 2005) and SPARQL(Prud et al., 2006), for retrieving knowledge stored in
the KB. Despite the usefulness of these languages, it is highly desirable that the query-processing engine
of a KB is capable of processing queries presented in human language directly. This stimulates intense
research in question answering over KB.

Briefly, question answering over KB, or QA-KB, aims at taking as input a question presented in a
natural language and outputs the answer in terms of a fact triple or a collection of fact triples in the
KB. In a general setting, the answer is a set of paths, where each path connects the subject entity of the
question to the object entity via a sequence of relations. We refer to this relation sequence as a path label.

There are two main lines of solutions to QA-KB. The first centres around semantic parsing, which
translates the natural-language question into a logical form and uses it to query the KB. This line of
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solutions includes, for example, (Berant et al., 2013; Dong et al., 2017; Yih et al., 2015; Xu et al., 2016;
Reddy et al., 2017).

The second line of solutions centres around learning with neural network models, which follows what
we call an APA architecture or its variants. Specifically, the APA architecture includes three components:
an entity alignment component, which identifies the subject entity implied in the question, a path label
prediction component, which predicts a path label, and an object answering component, which finds the
object entitie(s). This line of solutions includes, for example, (Dong et al., 2015; Hsiao et al., 2017; Yin
et al., 2016; Yu et al., 2017; Lukovnikov et al., 2017; Jain, 2016; Hao et al., 2017; Bordes et al., 2014).

Despite the success of the existing approaches to QA-KB, particularly that of the APA architecture,
we observe that the primary bottleneck for further improving the model performance lies in the model’s
limited accuracy in label path prediction. Motivated by this observation, this work extends the APA
methodology into an “APVA” framework, which incorporates a verification mechanism in the model.
Such a mechanism is responsible for checking if the predicted relation or path label is correct and hence
improving the answering performance. Unifying APVA’s components in a probabilistic modelling set-
up, we show that such an APVA architecture allows the joint training of its model components. More
specifically, the joint training can exploit coordinate descent in the optimization of the loss function.
This naturally gives rise to an iterative training procedure, which we call turbo training. We develop a
concrete model and its training algorithm based on this APVA-TURBO approach. Experimental study
demonstrates that the proposed APVA-TURBO model outperforms the existing models by a large mar-
gin, thereby establishing itself as a new state of the art in QA-KB.

2 Problem Statement

For a given KBK, we will denote its set of entities by E and its set of relations byR. The KBK contains
a set of factual triples F in which each triple is in the form of (s, r, o), with s, o ∈ E and r ∈ R. For
example, (CarlosGomez, baseball.baseballPlayer.position, CenterFielder) is one such triple taken from
Freebase. It specifies the fact that Carlos Gomez plays the Center Fielder position in baseball. It is
customary to interpret the triple set F in K as an edge-labelled graph in which vertices are entities in K,
edges are triples in F , and on each edge (s, r, o), r is the edge label.

Additionally the KB K usually also prescribes a set T of entity types. Specifically, for each entity
e ∈ E , its type t(e) is a token in T . Note that in KBs like Freebase, an entity e may be associated with
multiple types. In this work, for simplicity, we take t(e) as the primary type of e (which is referred to as
the “notable type” of e in Freebase).

We will denote by q the question presented in natural language. Specifically q is a sequence
(w1, w2, . . . , wn) of words, where each wi is a word in a vocabulary V , and n depends on q. The
objective of the question answering over KB, or simply QA-KB, is then to develop an answering algo-
rithm which returns the correct answer triple (s, r, o) for any given question q. For example, when a user
asks a question “What position does Carlos Gomez play”, the answering algorithm is expected to retrieve
the triple (CarlosGomez, baseball.baseballPlayer.position, CenterFielder) from the KB.

The above form of QA-KB is in fact in its most basic form. The problem can be made more general
in at least the following two ways. First, the answer to q may be multiple triples which form a path in
the KB graph. For example, the answer could involve two triples (a, r1, b) and (b, r2, c) concatenated
in tandem. This corresponds to the path (a, r1, b, r2, c) in the KB graph. We will call such an answer
a multi-hop answer, and call the pair (r1, r2) of edge labels the path label. Furthermore, there can be
multiple answers for a given question q. For example, if the question is “what are the provinces of
Canada”, then more than one answer is expected.

This paper in fact deals with a general setting of QA-KB, namely, a question may have multiple
multi-hop answers. We do impose a restriction that we only consider the case in which all answers of
any given question have the same path label. We note that this simplification does not imply that our
proposed framework and model do not extend further. It is solely due to that this restriction sufficiently
well describes the datasets we work with.

Denote by R∗ the set of all finite-length sequences consisting of relations in R. We still denote an
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answer, multi-hop or single-hop, as a triple (s, r, o) while considering r ∈ R∗. For any given question q,
let A(q) be the set of all answers, for q, where each answer is in the form of (s, r, o) with r ∈ R∗.

A machine learning model for QA-KB relies on a training set D consisting of many pairs (q,A(q)).
We will use Dq to denote the set of all questions in D. After the model is trained on D, one expects it to
output the answers A(q) for an arbitrary question q, unseen in Dq.

3 APVA Modelling Framework

3.1 The Conventional APA Architecture

Conventionally, a QA-KB model, if put into a probabilistic framework, can be regarded as learning a
conditional distribution p(s, r, o|q), where for each configuration of (s, r, o, q), the value p(s, r, o|q) is
probability that the triple (s, r, o) is an answer inA(q). Note that in this formulation, we have suppressed
the dependency of (s, r, o) on the given KB K.

By the chain rule of probability,

p(s, r, o|q) = p(s|q)p(r|q, s)p(o|q, s, r).

A QA-KB model factorizing this way essentially assumes three components: an entity alignment compo-
nent p(s|q) to identify the subject entity s in the question q, a path label prediction component p(r|q, s)
to predict the path label r that leads the subject entity to the object entities, and an object answering com-
ponent to provide the list of object entities o’s each forming an answer (s, r, o). We call such a model an
APA model.

The existing neural network models for QA-KB largely fall in the APA architecture, or its variants, in
which instead of having the three components separable, the model may combine some of the compo-
nents or have parameters shared between them. We now summarize these models.

In (Yin et al., 2016; Lukovnikov et al., 2017), a word/character-level encoder is used for question
encoding and to match the subject entity and the relation in a fact candidate with the question. In (Yu et
al., 2017; Hsiao et al., 2017) a bi-directional LSTM is used to score and rank the question and relation
pairs. In (Ture and Jojic, 2017), only simple RNN is used both for entity alignment and for relation
prediction.The approach of (Jain, 2016) extracts candidate triples and finds a path to the object entity
using multi-hop reasoning and refinement. In (Dong et al., 2015; Hao et al., 2017), a multi-column
CNN or a cross-attention mechanism is introduced to match the question with the answer path, the
answer context and the answer type. In (Bordes et al., 2014), questions and their answer subgraphs from
KB are both embedded into a lower dimensional to be matched.

3.2 The APVA Framework

Despite the successes with the APA approaches, we observe that the bottleneck in the existing models
lies primarily in the accuracy of predicting the path labels. In fact our experiments suggest that, if the
correct (s, r) can be obtained, a good object answering accuracy can be easily achieved. For example, on
the WebQuestion dataset(Berant et al., 2013), we see that a simple SVM classifier followed by a search
of the KB (see section 5.2) achieves an answering precision of 89.68% and a recall of 93.20%.

The fact that path label prediction forms the primary bottleneck can be attributed to the enormous
number of entities and the extremely high dimension of the question space. Relative to the space of
(q, s), the dataset D is in fact very sparse. This makes path label prediction prone to error and limits the
performance of a QA-KB model.

To increase the accuracy of path label prediction, this paper augments the APA models with an addi-
tional component, which we call subject-path verification. The basic idea here is to use a verification
mechanism to check if a predicted pair (s, r) is correct. We call this architecture the APVA architecture.

3.2.1 The APVA Architecture
In APVA framework, for each question q, we assume that there is another variable y, taking values
in {0, 1} and indicating whether the obtained (s, r) is correct (1 for correct). The overall objective of
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Figure 1: The p(s, r, y|q) part of APVA

learning is then to learn a distribution p(s, r, o, y|q), which factors as

p(s, r, o, y|q) = p(s, r, y|q)p(o|q, s, r, y). (1)

The term p(o|q, s, r, y) in (1) essentially characterizes the object answering component (where we are
only interested in the case of y = 1). The term p(s, r, y|q) further factors as

p(s, r, y|q) = p(s|q)p(r|q, s)p(y|q, s, r) (2)

In (2), the terms p(s|q) and p(r|q, s) respectively correspond to an entity alignment component and a path
label prediction component. The term p(y|q, s, r) on the other hand is the new subject-path verification
component.

For the path label prediction component, APVA further expresses p(r|q, s) by

u := f(q, s) (3)

p(r|q, s) := p(r|u) (4)

where f is an appropriate encoder (ENC) function, and (4) is referred to as the decoder (DEC). Here f
serves to compress the high-dimensional representation of (q, s) to a low dimensional space so as to deal
with the sparsity of (q, s).

Furthermore APVA expresses p(y|q, s, r) as

p(y|q, s, r) := p(y|u, r). (5)

Since (5) essentially defines a binary classifier, we call it the verification classifier (CLS).
In summary, the APVA framework consists of the following components: entity alignment, path label

prediction (ENC-DEC), subject-path verification (CLS) and object answering. Figure 1 shows the overall
model architecture of APVA, with the object answering component excluded.

3.2.2 Loss Functions and Training
For each of the components, we can derive an appropriate loss function: the (entity) alignment loss `al,
the (path label) prediction loss `pr, the (subject-path) verification loss `ve, and the (object) answering
loss `an. It is worth noting that to properly define the verification loss `ve, we need to introduce “negative
examples” for CLS.To that end, denote

Dqsr := {(q, s, r) : q ∈ Dq, (s, r, o) ∈ A(q)}

That is, Dqsr is the set of all training examples for path label prediction (ENC-DEC). It is also the set
of all positive training examples for the verification classifier CLS.

For each positive example (q, s, r) ∈ Dqsr, we can create several negative examples by replacing the
path label r in (q, s, r) with a random wrong path label r′. This gives rise to a negative training set D−qsr.

If the four loss functions do not share parameters, then one can separately minimize each loss and
learn its parameters. If there is a sharing of parameters among some of these losses , one can take a
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joint approach to minimize the (possibly weighted) sum of these losses. A generic approach for this joint
minimization is coordinate descent, namely, we hold some parameter fixed and optimize the sum loss
over other parameters, and keep iterating this process. We will give a concrete example of this training
method in a later section.

Although APVA is derived from probabilistic modelling, its overall methodology extends to non-
probabilistic models. Indeed, all we need are those well-defined losses, whether or not they result from
probabilistic modelling.

4 The APVA-TURBO Model

We now describe a concrete model in the proposed APVA framework, which we refer to as the APVA-
TURBO model. The model can be divided into three models which are trained separately. They are the
Entity Alignment Model, the Prediction-Verification Model, and the Object Answering Model. Note that
the Prediction-Verification Model is a joint model containing both path label prediction and subject-path
verification.

The key innovation in this model architecture is the Prediction-Verification Model, where the Entity
Alignment Model is a modest extension of a previous model and the Object Answering Model is a
standard application of SVM on a selected choice of feature. To stay focused, details of the Entity
Alignment Model and Object Answering Model are presented in section 5.2.

We now present the central piece of APVA-TURBO, the Prediction-Verification Model. It decomposes
further into an encoder-decoder (or ENC-DEC) model for path label prediction and a classifier model
(CLS) for subject-path verification.

4.1 ENC-DEC Model

GRUGRUGRUGRU

GRUGRUGRUGRU

rs,1 rs,2 rs,3 rs,4

ts GRUGRUGRUGRU

vq,1 vq,2 vq,3 vq,4

+

GRU GRU GRU

GO

r1 r2 EOS

u

uKB

uQ

Figure 2: ENC-DEC Model

Recall that in APVA, the ENC component, Equation (3), encodes (q, s) into a vector u and the DEC
component, Equation (4), maps u to a desired distribution on the path labels in R∗. The structure of
ENC-DEC in APVA-TURBO is shown in Figure 2, which we describe below.

For the identified subject entity s, letR(s) := (rs,1, rs,2, . . . , rs,L) be the list of all relations inR that
are labels of at least one edge in the KB graph connecting to entity s. Let R(s) := (rs,1, rs,2, . . . rs,L)
be the embeddings of R(s) and ts be the embedding of the type t(s) of s , both of which are obtained
from a KB schema embedding model, called KSE. KSE is an separately pre-trained model to embed
the relations and types in KB in an Euclidean space, by using an adaptation of the TransH (Wang et al.,
2014) to the “schema graph”, which is a graphical representation of the KB schema set S of all “schema
triples” (t, r, t′) ∈ T × R × T for which knowledge triples (s, r, o) with t(s) = t and t(o) = t′ are
allowed. We take ts as the initial state of a GRU network, and take R(s) as the input sequence to the
network. We denote the final state of the GRU network by uKB. We note that uKB encodes the subject
entity s and its relative position in K. We refer to uKB as the KB-based encoding. In this encoding step,
although order of the elements inR(s) is irrelevant, we still feed them to the GRU network sequentially
due to its superiority in processing variable-length input and automatically selecting relevant feature.

On the other hand, for the question q = (w1, w2, . . . , wn), its subsequence µ :=
(wm, wm+1, . . . , wm+k) of words that corresponds to the subject entity s in the KB K is referred to
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as the subject mention. we remove the subject mention µ from the word sequence and replace it with a
placeholder token “〈e〉” representing the subject entity s. Let v := (vq,1, vq,2, . . . , vq,n′) denote the mod-
ified word sequence from q, and let v := (vq,1, vq,2, . . . , vq,n′) be its word2vec(Mikolov et al., 2013)
embeddings. We simply create a random embedding for “〈e〉” and include it in the dictionary.

The sequence v is then entered to a Bi-GRU network and the sum of the two final states from the
network is denoted by uQ. We then set the output u of the ENC model as the concatenation of uQ and
uKB. This completes the ENC block.

The DEC block is a simple GRU network following the usual Seq2Seq(Sutskever et al., 2014) decoder
structure. The network takes vector u as its initial state. The input to the network at t = 1 is the
embedding of a contrived special relation label “GO”, signalling the beginning of the input. The input at
any other time t > 1 is the embedding of the (t− 1)th relation rt−1 in the path label r. The embedding
dictionary of the relations here is a learnable parameter. Each output of the GRU network at time t is
passed to a soft-max function (with learnable parameters) to generate the predictive distribution for the
tth relation rt in r.

Under the maximum-likelihood principle, the loss function `pr(q, s, r) of ENC-DEC is the sum of
cross-entropy losses, each between a generated distribution at t and a observed relation rt in r. We note
that, as is standard, a special “EOS” token is included in r to indicate the termination of r.

4.2 CLS Model
The verification classifier CLS is constructed as a Multilayer Perceptron (MLP). The input of the MLP
is the concatenation of u with the KSE embedding of a relation r. The MLP outputs the predictive
distribution of y. Its loss function `ve(q, s, r, y) for training CLS is defined as the cross entropy between
the predictive distribution and the observed class label y.

4.3 Turbo Training of ENC-DEC and CLS
Let θenc, θdec, and θcls denote respectively all parameters in ENC, in DEC and in CLS. The total predic-
tion loss is then

Lpr(θenc, θdec) :=
∑

(q,s,r)∈DQSR

`pr(q, s, r; θenc, θdec) (6)

and the total verification loss is

Lve(θenc, θcls) :=
∑

(q,s,r)∈DQSR

`ve(q, s, r, 1; θenc, θcls)

+
∑

(q,s,r)∈D−QSR

`ve(q, s, r, 0; θenc, θcls)
(7)

It is worth noting that the loss `ve does not depend on θdec, since r is observed in the CLS model. It
however depends on θenc through u.

We define the overall loss for training the Prediction-Verification Model as

L := Lpr(θenc, θdec) + λLve(θenc, θcls). (8)

Here λ is chosen larger than 1 by a decent margin. This is because when using the trained model for
answering questions, we will primarily rely on CLS rather than ENC-DEC.

We now present a training algorithm, which we call “turbo training”, to minimize the loss function L.
Turbo training consists of two phases.
Base Phase.Train ENC-DEC, namely minimizing Lpr over (θenc, θdec).
Turbo Phase. In this phase, we iterate over the following three steps in order.
A.Train CLS, namely, minimizing Lve over θcls for the current setting of (θenc, θdec).
B.Train ENC, namely, minimizing Lpr + λLve over θenc for the current setting of (θdec, θcls).
C.Train DEC, namely, minimizing Lpr over θdec for the current setting of (θenc, θcls).

A diagram showing the turbo training algorithm is given in Figure 3. It can be proved that the three
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Figure 3: Turbo training

steps in the turbo phase correspond precisely to coordinate-descent minimization of L. Therefore itera-
tions in the turbo phase provably decreases the loss L monotonically and are guaranteed to converge.

In the implementation of turbo training, for each phase and the each step within, the minimization can
be carried out via mini-batched SGD over a number of mini-batches. Additionally, when the learning
rate of SGD is small, the updates of θenc in the turbo phase (step B) are primarily dominated by gradient
signal of Lve, due to the large value of λ. Thus step B of the turbo phase can be simplified to minimizing
only the loss Lve.

4.4 Question Answering with APVA-TURBO
At this end, we have completed explaining APVA-TURBO and the training of each component within.
After it is trained, APVA-TURBO can be used to solve a QA-KB task according to the following steps.

To answer a question q, the Entity Alignment model is first applied to q and the KB K. A list of Ms

subject entities are generated as candidates according to their ranking under the model.
Each candidate entity is used as a hypothetic subject entity s, and passed to ENC-DEC together with

q and K. In this step, a list of Mr candidate path labels are generated. Specifically these candidate path
labels are the highest ranked Mr path labels among all path labels r for which there is a path with label
r in the KB that leaves from s. The ranking of the path labels is according to the learned prediction loss
`pr. At the end of this step, a total of MsMr (s, r) pairs are generated for question q.

Each of these subject-path pairs (s, r) is then passed to CLS, and the highest ranked (s, r) pair is
declared as the correct subject-path pair. Here the ranking is according to the verification loss `ve.

Finally, submitting the declared (s, r) (together with q if needed) to the Object Answering model gives
a list Â(q) of answer paths, which APVA-TURBO declares as the answers to question q.

5 Experiments

5.1 Datasets and Pre-Processing
Two popular datasets, SimpleQuestions (Bordes et al., 2015) and WebQuestions (Berant et al., 2013) are
used in our experiments.

SimpleQuestions (SQ) consists of 108,442 questions written by human English-speaking annotators.
The dataset is partitioned randomly into 75,910 training questions, 10,845 validation questions and
21,687 test questions. The questions in SQ are all single-hop single-answer.

WebQuestions (WQ) consists of 5,810 questions. The dataset is partitioned randomly into 3000 train-
ing questions, 778 validation questions and 2032 test questions. The questions in WQ can be multi-hop
multi-answer.

The answer triples or paths in SQ and WQ are all in Freebase. A subset of Freebase, FB2M (Bordes
et al., 2015), is also used in our study. It includes 2,150,604 entities, 6701 relations and 14,180,937
triples. Since FB2M does not contain the entity type information, we retrieve this information from
Freebase to annotate the type for each entity. Specifically, Freebase contains two kinds of types, “com-
mon.topic.notable types” (or “notable type”) and “type.object.type”. Each entity in Freebase is designed
to have a unique notable type while allowed to have many object types. We use notable types as the
entity types. For an entity with the notable type missing in Freebase, we annotate it as “NO TYPE”.

The answer triples in SQ can all be found in FB2M, whereas not all answer paths in WQ are within
FB2M. Thus, for the QA-KB tasks, the KB associated with SQ is chosen as FB2M, and that with WQ is
chosen as the entire Freebase.
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For both SQ and WQ, the subject mention µ in each question q is also annotated by matching the
surface name of the subject entity with the words in q. Each answer triple (s, r, o) in SQ is presented
directly in terms of the unique ID’s specifying the involved entities and the unique string specifying the
relation r. In WQ, however, for each answer path, the path label r is not given, and the entities s and o are
only given in terms of their names. We therefore perform a simple search and screening to reconstruct
each answer path in its unique (s, r, o) representation.

5.2 Implementations

Given the subject mention µ, the subject entity s in K can be found easily, as long as the question
is well formed and the subject entity s exists in K unambiguously. Determining the subject entity s
from subject mention µ usually only involves matching the words in u with the surface name string of
the entities in K. So the problem of entity alignment reduces to determining the subject mention µ in
q. Conventionally, such a problem is treated as sequence labelling problem. In this work, our entity
alignment model combines the recent BiGRU-CRF model (Dai et al., 2016) with joint character-level
word encoding (Zhang et al., 2015). The entity alignment model is trained separately. In the model, the
state/output dimension of the GRU network, the dimension of word embeddings and that of character
encoding vectors are all set to 50.

The KSE model is also trained separately. In this model, FB2M is used to construct the schema graph
for both SQ and WQ datasets, and the dimension of the embedding space is chosen as 100.

For ENC-DEC, the state dimension for the GRU network encoding uKB and the input dimension are
both chosen as 100. The state dimension for each of the two GRU networks for encoding uQ is set to
200. Each input to these networks is a 200-dimensional word2vec vector (pre-trained on a large corpus
WikiAnswers (Fader et al., 2013)) concatenated with a 10-dimensional position vector indicating the
relative location of the word in the question. The state dimension for the GRU network in DEC is set to
300.

In CLS, the MLP has two ReLU activated latent layers, with dimensions 200 and 100 respectively.
Turbo training with mini-batch SGD is used to jointly train ENC-DEC and CLS. The batch size is set

to 128. In the BASE phase, the ENC-DEC model is trained for 8000 batches on SQ, and 1500 batches
on WQ. In the first round of TURBO phase, the number of batches in Steps A, B, and C are respectively
2000, 1000, 100 on SQ, and 1000, 500, 50 on WQ. In the remaining rounds, every step uses 100 batches
on SQ, and 50 batches on WQ.

For the given question q, we denote the set of entities by O(s, r), such that there is a path in the KB
graph that connect entity s to entity o via a path with label r. For a multiple-answer question q, not
necessarily all entities in O(s, r) give rise to a correct answer. A usual approach to deal with this is to
learn a separate binary classifier to screen the entities in O(s, r). In this work, we use a simple SVM
classifier as the object answering model. The input feature vector for the SVM is the concatenation of
three vectors: the average word2vec vectors of all words in q, the KSE embedding vector rT of the final
relation rT in the path label r (assuming the path is T -hop), and the KSE embedding of to is the type
t(o) of the candidate object entity o ∈ O(s, r).

5.3 Question Answering Performance

Extensive experiments are performed to evaluate the proposed APVA-TURBO model in QA-KB tasks,
relative to other existing models and various reductions of APVA-TURBO.

In experiments on SQ, the single answer triple (s, r, o) in Â(q) produced by a model is regarded
as correct, if it matches the unique correct answer triple. The accuracy of a model is defined as the
percentage of test questions for which the model produces the correct answer. On SQ, we use this
accuracy to measure model performance.

On WQ, a given question q may have multiple answer paths (s, r, o) in the ground-truth answer set
A(q). The model’s precision for answering a question q is defined as the fraction of answers in Â(q) that
are in A(q), and the model’s recall for answering q is the fraction of answers in A(q) that are in Â(q).
In such a setting, the overall performance is usually measured by the harmonic mean of precision and
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recall, namely, F1. We then use the average F1 value of a model over all test questions to measure the
model’s performance on WQ.
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Figure 4: The performance of APVA-TURBO over TURBO iterations. Ms = 20, Mr = 10.

Analysis of APVA-TURBO The performance of APVA-TURBO over turbo iterations is shown in Fig-
ure 4. It can be seen that the performance increases with turbo iterations until 25 to 30 rounds. This
demonstrates the effectiveness of turbo training. The performance starts to take a slight decreasing trend
at around 30 to 40 rounds, due to overfitting, a phenomenon commonly arising when a model is over-
trained. In the rest of the experiments, the number of Turbo rounds is taken as 30 for SQ and 25 for
WQ.
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Figure 5: Performances of APVA-TURBO and its reductions vs Ms. Mr = 10.
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Figure 6: Performances of APVA-TURBO and its reductions vs Mr. Ms = 20.

Figure 5 plots the performances of APVA-TURBO and its various reductions as functions of the num-
ber Ms of candidate subject entities. APVA-BASE is the APVA-TURBO model without full turbo train-
ing. Specifically, after training in the Base Phase, it only enters the Turbo Phase once and stops right
after the training of CLS. APA-BASE is a reduction of APVA-BASE by completely ignoring CLS. In-
cluding the verification classifier CLS appears to give a much significant boost of the performance (seen
in APVA-BASE vs APA-BASE). Yet another leap in performance is achieved by including turbo training
(seen in APVA-TURBO vs APVA-BASE).

It is also seen in Figure 5 that as Ms increases, the performances of the compared models all improve
and eventually saturate after Ms = 20. This performance improvement is expected since when more
candidate subject entities are included, it increases the chance that the correct (s, r) pairs are selected.
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In addition, although a high value of Ms also increases the chance of selecting a spurious (s, r) pair,
we see no drop in performance. This is because the training of ENC-DEC has always been using only
the correct subject entities. When a wrong entity is submitted to ENC-DEC, the path labels output from
ENC-DEC tend to be a random draw, which are not competitive against the correct ones.

Figure 6 plots the performances of APVA-BASE and APVA-TURBO models against the number Mr

of candidate path labels. Comparing the performance gap between the two models, it is apparent that
turbo training brings in significantly benefit.

Figure 6 also shows that as Mr increases, the performances of the compared models all first increase
and then gradually drop. This is because increasingMr has two effects. The first is increasing the chance
of selecting the correct path labels. The second is increasing the number of spurious path labels. It is
sensible that a small increment of Mr makes the first effect dominate while a large increment makes the
second dominate. The curves in the figure also show that the stronger a model is, at a higher Mr the
performance trend reverts.

Table 1: Performance comparison on WQ
Model F1(%)
(Yih et al., 2015) 52.5
(Xu et al., 2016) 53.3
(Yavuz et al., 2016) 52.6
(Jain, 2016) 55.7
(Reddy et al., 2017) 49.5
(Hao et al., 2017) 42.9
(Dong et al., 2017) 50.7
(Yue et al., 2017) 53.9
(Cheng et al., 2017) 50.1
APVA-BASE 59.7
APVA-TURBO 63.4

Table 2: Performance comparison on SQ
Model Accuracy (%)
(Yin et al., 2016) 76.4
(Lukovnikov et al., 2017) 71.2
(Hsiao et al., 2017) 76.7
(Yu et al., 2017) 78.7
(Ture and Jojic, 2017) 88.3
APVA-BASE 79.5
APVA-TURBO 81.5

Performance Comparison with Existing Models The performance of APVA-TURBO is compared with
the published performances of the existing models in Tables 1 and 2.

On WQ, the best known previous performance achieves an F1 value of 55.7%, due to (Jain, 2016). But
this state of the art has been surpassed by APVA-BASE, with a F1 score 59.7%. This demonstrates the
effectiveness of augmenting a model with a verification mechanism. With turbo training, APVA-TURBO
further boosts its performance and presents a new F1 record of 63.4%. This performance, exceeding the
current art by a stunning margin of nearly 8%, demonstrates the power of the APVA-TURBO approach
developed in this paper.

On SQ, the best performance except that of (Ture and Jojic, 2017) achieves an accuracy of 78.7%.
This performance has been surpassed by APVA-BASE, and further exceeded by APVA-TURBO at an
accuracy of 81.5%. However that the current reported state of art is still that of (Ture and Jojic, 2017),
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which achieves an accuracy of 88.3%. But that paper did not report sufficient details for us to understand
in what respect APVA-TURBO under-performs. Neither does it contain all necessary details for us to
implement the model and reproduce its reported performance.

6 Conclusion

This work demonstrates that incorporating a verification mechanism in a QA-KB model can be a power-
ful means of improving the model. Built on such a mechanism, the proposed APVA framework is also
naturally facilitated with an iterative learning procedure, which we call turbo training. Turbo training is
shown capable of significantly boosting the model performance. This makes APVA-TURBO a new state
of art in QA-KB.
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