
Proceedings of the 27th International Conference on Computational Linguistics, pages 1454–1463
Santa Fe, New Mexico, USA, August 20-26, 2018.

1454

Fast and Accurate Reordering with ITG Transition RNN

Hao Zhang
Google

haozhang@google.com

Axel Ng
Google

Richard Sproat
Google

Abstract

Attention-based sequence-to-sequence neural network models learn to jointly align and translate.
The quadratic-time attention mechanism is powerful as it is capable of handling arbitrary long-
distance reordering, but computationally expensive. In this paper, with the goal of making neural
translation both accurate and efficient, we follow the traditional pre-reordering approach to de-
couple reordering from translation. We add a reordering RNN that shares the input encoder with
the decoder. The RNNs are trained jointly with a multi-task loss function and applied sequen-
tially at inference time. The task of the reordering model is to predict the permutation of the input
words following the target language word order. After reordering, the attention in the decoder
becomes more peaked and monotonic. For reordering, we adopt Inversion Transduction Gram-
mars (ITG) and propose a transition system to parse input to trees for reordering. We harness
the ITG transition system with RNN. With the modeling power of RNNs, we achieve superior
reordering accuracy without any feature engineering. In experiments, we apply the model to the
task of text normalization. Compared to a strong baseline of attention-based RNN, our ITG RNN
reordering model can reach the same reordering accuracy with only 1/10 of the training data and
is 2.5x faster in decoding.

1 Introduction

The encoder-decoder neural network architecture for sequence-to-sequence problems has achieved enor-
mous success especially after the introduction of the attention mechanism (Bahdanau et al., 2014). Its
applications in NLP range from machine translation (Bahdanau et al., 2014) and sentence summariza-
tion (Rush et al., 2015) to text normalization (Sproat and Jaitly, 2017). The attention mechanism is
effectively a random memory access mechanism, enabling access to any source sequence position at any
decoding step. In principle, it can handle arbitrary reordering of any input length. But its power comes
with a high computational cost. The time complexity of the attention mechanism is O(N2) if the num-
ber of decoding steps is proportional to the input length N . In addition to the computational concern,
for dominantly-monotonic translation tasks, such as text normalization (Sproat and Jaitly, 2017), soft
attention can be too relaxed and sub-optimal in terms of modeling efficiency. Hence, to reduce compu-
tational complexity as well as to improve model accuracy, recently there has been a surge of research
interest in enforcing monotonic attention (Raffel et al., 2017) and hard attention (Aharoni and Goldberg,
2017) based on the observation that many sequence-to-sequence tasks are monotonic, including speech
recognition and morphological inflection.

In reality, the monotonicity assumption has to be made carefully. Even in the highly monotonic trans-
lation task of text normalization, which is mapping written text to spoken text, there are systematic
reordering patterns like from “2018-10-03” to “October third, two thousand eighteen”, and from “$100”
to “one hundred dollars”. These reordering patterns can involve arbitrarily long chunks of input. Without
handling the infrequent but systematic reordering, monotonic attention models are doomed. We claim
there is hope for efficient and accurate systematic reordering by combining grammars with RNNs. The

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

1455

1 0 0 $

0321

hundred

3210

$ 1 0 0

Decoderone dollars

Reorderer

Encoder

Figure 1: The encoder-reorderer-decoder architecture. The input encoder is shared by the reorderer and
the decoder. The reorderer permutes the RNN states of the encoder.

key to our solution is the Inversion Transduction Grammars (Wu, 1997), a type of synchronous context
free grammar limiting reordering to adjacent source spans. For machine translation across very different
languages, ITGs have been reported to cover most of the alignments observed in parallel data (Zhang et
al., 2006). For text normalization, we have not found a single example of reordering that cannot be cov-
ered by an ITG. This observation motivates us to factorize translation into two steps: an ITG reordering
step followed by a monotonic translation step. The task of the reordering step is to handle systematic
reordering through swapping of adjacent source spans. This step “normalizes” the input in terms of word
order which opens up the capacity for improvement in translation accuracy. It also opens up the oppor-
tunity for more “lightweight” neural translation models such as monotonic attention models of Raffel et
al. (2017) and Aharoni and Goldberg (2017). Of course, the burden of reordering has shifted from the
attention mechanism to the dedicated reordering model. This idea has produced fruitful results in the era
of phrase-based machine translation (Collins et al., 2005; Xu et al., 2009; Neubig et al., 2012; Lerner
and Petrov, 2013; Nakagawa, 2015). In this paper, we revive the old idea with a neural treatment.

First of all, we modify the encoder-decoder architecture by adding a reorderer which shares the en-
coder with the decoder. Figure 1 shows the architecture. This change enables multi-task training of the
encoder states and turns the inference into three steps: encoding, reordering, decoding, each of which is
a linear chain RNN. Our main algorithmic contribution is an ITG-transition-based RNN reorderer. What
we feed to the RNN for training are input strings paired with their permutations, for example $100 with
(1, 2, 3, 0) to indicate it should be reordered to 100$ in order to be translated monotonically. Within the
ITG framework, we will show the goal is equivalent to parsing the input into a parse tree annotated with
reordering information, in this case 〈 $ [[1 0] 0] 〉, where 〈 〉 indicates a swapping of two subtrees
and [] indicates no swapping. For efficiency and compatibility with linear chain RNN, we use a tran-
sition system for parsing. The transition system has three actions: SHIFT, REDUCE S, and REDUCE I.
In this example, the transition sequence to learn is SHIFT, SHIFT, SHIFT, REDUCE S, SHIFT, REDUCE

S,REDUCE I. To learn the conditional distributions of the three actions, we rely on the strength of RNN
to condition on the entire transition history without any feature engineering. We report results for both
the intrinsic task of reordering and the end-to-end task of translation.

1456

The paper is organized in the following way. In Section 2, we formally introduce ITG and its transition-
based parsing system. In Section 3, we introduce the ITG-based RNN model. In Section 4, we formally
introduce the end-to-end neural architecture. In Section 5, we discuss related works. In Section 6.1, we
carry out two sets of reordering experiments: one on synthetic sequence permutation data, the other on
money expression reordering data coming from the task of English text normalization (Sproat and Jaitly,
2017). In Section 6.2, we conduct an end-to-end experiment for text normalization and compare the
two-step approach with the baseline approach.

2 ITG Transition System

An Inversion Transduction Grammar is a grammar for generating a pair of languages recursively and
synchronously. In our problem of source language reordering, we essentially pair the source language
with a virtual target language that shares the vocabulary with the source but follows the word order of
the real target language. To be concrete, we use the simplest ITG with just one nonterminal and the
following context free production rules.

X → [X X]

X → 〈X X〉

X → w0/w0

...

X → wn−1/wn−1

The first rule is called the straight rule because it keeps the order of two constituents unchanged on
the target side. The second rule is called the inverted rule because it inverts the order of two constituents
on the target side. For example, a sentence pair (w0, w1, w2 | w0, w2, w1) can be derived with three
pre-terminal rules to link the words with the same subscripts on both sides, plus one inverted rule for
grouping w1 and w2 and one straight rule on the top for grouping w0 and the phrase of w1, w2.

We can also devise a transition system following (Nivre, 2003). The following is the deductive de-
scription of the transition system. Each configuration in the transition system consists of a stack and a
pointer to the next word in the input buffer. At the beginning, we have an empty stack and a pointer to
the first input word. At each time step, we can choose SHIFT if the buffer is not empty and choose to
apply REDUCE S or REDUCE I if the stack has a height of at least two. We use four indices to uniquely
represent each synchronous constituent that is constructed in the parsing process. The first two index into
the source side and the last two index into the target side. The transition system stops when the buffer is
empty and the stack has been reduced to size one.

INITIAL : [φ, 0]

SHIFT :
[S, i]

[S|(i, i, i, i), i+ 1]

REDUCE S :
[S|(i, j, l1, r1)(j + 1, k, l0, r0), k + 1]

[S|(i, k, l1, r0), k + 1]

REDUCE I :
[S|(i, j, l1, r1)(j + 1, k, l0, r0), k + 1]

[S|(i, k, l0, r1), k + 1]

FINAL : [(0, n− 1, ∗, ∗), n]

When training a model, we are given a sequence of words w0, ..., wn−1, along with the permutation P
indicating its corresponding target word order. It has the equivalent information as a pair of bijectively
aligned sequences:

w0, ..., wn−1 wP (0), ...wP (n−1)

Zhang et al. (2006) have shown for any P there exists a greedy shift-reduce algorithm to produce a
canonical parse along with a canonical transition sequence. If we take the $100 example, the canonical

1457

transition sequence is SHIFT, SHIFT, SHIFT, REDUCE S, SHIFT, REDUCE S,REDUCE I, and the cor-
responding cannonical parse is 〈 $ [[1 0] 0] 〉. Therefore, given w0, ..., wn−1 and P , the learning
problem is mapping from w0, ...wn−1 to the canonical transition TRANSITION(P). There are two good
properties of the output space. First, the output sequence is always of length 2n− 1. Second, the output
vocabulary is fixed to {SHIFT, REDUCE S, REDUCE I}.

Once a model is learned, at testing time, only the input sequence is given, the task is to predict a
transition sequence which in turn corresponds to a permutation.

3 ITG RNN

A recurrent neural network computes the representation of a new state based on the representation of its
previous state and input at the current step. Formally, this is

ht = RNN(f(t), ht−1)

where h is the hidden state representation and f is the input function, andRNN can be a LSTM or GRU
cell for instance.

A transition system also has a timeline recurrence. The recurrence of the ITG transition system is the
following.

st = ITG(a(t), st−1)

where s is the configuration and a is the action.
To make an ITG controlled by an RNN, we need to unroll an ITG transition system along with an

RNN. Figure 2 shows an example of completely unrolled computation graph of ITG-RNN. For input f ,
we want this to be a function of s. The information in s is a stack along with an input buffer pointer. In
Section 2, we specified each stack element as a tuple of (i, j, l, r) that indexes into the source sequence
and the reordered target sequence. It is clear that the deduction rules involve at most top two stack
elements. Therefore, we extract the indices stored at the top of the stack which are potentially directly
involved in any next action: l1, r1, l0, r0, and the buffer pointer i. With these input indices, we can create
a concatenated embedding vector of the input sequence. This will be what the ITG feeds into the RNN
as input.

The task of the RNN is to predict the possible next actions. As the ITG transition system constrains
the valid next actions at st, ht should only emit action labels allowed by st. This will be what ITG places
as constraints in the RNN output and will indirectly influence the training of the underlying RNN cells
by moving probability mass away from invalid actions. The output constraints are implemented as masks
over invalid output actions before applying softmax.

What RNN feeds back to ITG is the predicted actions after softmax. That is how the RNN controls
the ITG at inference time. At training time, the action sequence is known.

4 Encoder-Reorderer-Decoder Architecture

As we discussed in Section 1 and demonstrated with Figure 1, a reorderer is designed to solve translation
into two steps: reordering and monotonic decoding. In this section, we define the training and decoding
objectives mathematically.

Given an input sequence (x1, . . . , xTx), a BiRNN, i.e., a pair of forward RNN
−→
f and backward RNN

←−
f is used to encode it into a pair of forward hidden states and backward hidden states (

−→
h 1, . . . ,

−→
h Tx)

and (
←−
h 1, . . . ,

←−
h Tx), where

−→
h t =

−→
f (xt,

−→
h t−1) and

←−
h t =

←−
f (xt,

←−
h t+1). The forward and backward

states are concatenated to summarize contexts in both directions: ht = [
−→
h T

t ;
−→
h T

t]
T. This is how the

encoder works.
Here we depart from the attention-based encoder-decoder architecture. The reorderer defines a proba-

bility of the ITG transition sequence z1, . . . , z2Tx−1 as a product of conditionals.

p(z1, . . . , z2Tx−1|x1, . . . , xTx) =

2Tx−1∏
t=1

p(zt|z1, . . . , zt−1, h1, . . . , hTx) (1)

1458

h0 h1 h2 h3 h4 h5 h6 h7

s0 s1 s2 s3 s4 s5 s6 s7

Sh Sh Sh RS Sh RS RI

[∅, $100] [$, 100] [$1, 00] [$10, 0] [$10, 0] [$100, ∅] [$100, ∅] [100$, ∅]f:

a:

ITG

RNN

Figure 2: An unrolled computation graph of ITG-RNN. s is for the states of the ITG. h is for the states
of the RNN. f is for the input function to the RNN. a is for actions of the ITG and softmax over output
of the RNN. For conciseness, we use SH for SHIFT, RS for REDUCE S, and RI for REDUCE I. We use
boldface to indicate function f as input focus over the stack and the buffer.

For the ITG RNN, the conditional probability is based on softmax over the output at each step t. As we
mentioned in Section 2, for each transition sequence, there exists a functional mapping to a permutation
P . Therefore, the probability of reordering is derived in the following way.

p(xP (1), . . . , xP (Tx)|x1, . . . , xTx) = p(z1, . . . , z2Tx−1|x1, . . . , xTx)

The key change following reordering is that the probability of the output sequence (y1, . . . , yTy) is
based on the permuted sequence (xP (1), . . . , xP (Tx)) and we make an independence assumption with
respect to the original input sequence.

p(y1, . . . , yTy |x1, . . . , xTx) = p(y1, . . . , yTy |xP (1), . . . , xP (Tx)) · p(xP (1), . . . , xP (Tx)|x1, . . . , xTx)

where

p(y1, . . . , yTy |xP (1), . . . , xP (Tx)) =

Ty∏
t=1

p(yt|y1, . . . , yt−1, hP (1), . . . , hP (Tx))

Usually, a soft attention is applied to attend enough context from h. But since the sequence of hidden
states is reordered, the attention can be made monotonic.

Let’s use S = (x1, . . . , xTx), P (S) = (xP (1), . . . , xP (Tx)), and T = (y1, . . . , yTy).
The training objective is

1/S
∑

(T,S)∈S

log p(P |S) + log p(T |P (S)) (2)

and the decoding objective is

T̂ = arg max
T,P

p(P |S)·p(T |P (S)) (3)

The term − log p(P |S) is the reordering loss and the term − log p(T |P (S)) is the translation loss.
Both share the input S. In a computation graph, they share the BiRNN component. The hidden states
(h1, . . . , hTx) are trained for both tasks. At decoding time, we approximate the decoding objective with
a beam search over P , followed by another beam search over T .

1459

5 Related Work

There are three papers that are most relevant to ours that relate to ITG pre-ordering. DeNero and Uszkor-
eit (2011) induce binary source trees first and learn pre-reordering rules for these binary trees from paral-
lel data. Neubig et al. (2012) discriminatively train an ITG parser with CYK parsing for pre-reordering,
essentially combining the two steps in DeNero and Uszkoreit (2011) into one. Nakagawa (2015) improve
upon Neubig et al. (2012) with a linear time top-down ITG parsing algorithm. They all rely on feature
engineering as they use linear models for training. None of them does transition-based parsing for ITG.

There are two papers most relevant to ours that relate to combining transition systems with RNNs.
Dyer et al. (2015) propose a stack-LSTM for transition-based parsing. The difference with our approach
to modeling is that we do not encode the entire stack explicitly. At each time step, we only feed the
context indexed by the current stack and buffer configuration. We do not have an stack RNN, which
can be expensive. Our transition RNN can be viewed as a special case of DRAGNN (Kong et al., 2017)
which combines fixed features as input with recurrence links at each time step. Our recurrence link is
only to the previous time step.

For the approach of incorporating syntactic constraints into neural translation, the following papers are
most relevant. Eriguchi et al. (2016) and Chen et al. (2017) assume the existence of source parse trees and
enhance the encoder and the attention mechanism to attend to both words and syntactic phrases. We do
not rely on external parsers. Stahlberg et al. (2016) let a hierarchical phrase-based decoder guide neural
machine translation decoding. Reordering decisions can only be indirectly influenced by the hierarchical
decoder. In contrast, we have an explicit hierarchical reordering model applied pre-translation. Eriguchi
et al. (2017) train a joint parsing and translation model to maximize the log likelihood of output sequence
and input parsing action sequence. This is similar to our multi-task training setup. The key difference is
our subtask is ITG parsing for reordering instead of linguistically-motivated parsing.

The idea of adding a reordering layer into neural MT models has also been studied by Huang et al.
(2018). They use a simple feed-forward soft and local reordering layer similar to the soft attention
mechanism. A fixed window size is used for local reordering. Our RNN reordering layer can handle
long distance reordering. Another important difference is that we use discrete variables (permutations)
for reordering while the soft reordering mechanism has no latent variables. We leave it as future work to
train the end-to-end system by treating ITG transitions and permutations as latent variables.

6 Experiments

6.1 Reordering Experiments

In this part, we analyze the effectiveness of the ITG RNN reordering model. We first create a baseline
system using a standard attention-based RNN. This basically implements the right-hand-side conditional
in Equation 1 with an attention-based RNN instead of an ITG-RNN. The encoder is a bidirectional GRU
cell RNN with one layer in each direction. The input embedding size is 32. The number of GRU cells
is 32. The decoder is again a one-layer GRU RNN with 32 cells. The output embedding size is also 32.
To make side-by-side comparison fair, we duplicate the network specification in ITG RNN. The only
difference is that Equation 1 is implemented with ITG RNN.

6.1.1 Synthetic Reordering Data
The first set of experiments uses synthetic reordering data. We generated all permutations that have valid
ITG transition action sequences up to permutation length 10. There are 258,563 such permutations. Then
we scrambled letters “A” through “J” using these permutations and paired them up. So, the task is to sort
letter sequences. But the models have no prior knowledge of the alphabet. We shuffled the examples and
trained on 80% of the data, validated on 10% of the data, and tested on the rest 10%. Figure 3 shows
the contrast between ITG RNN and attention-based RNN as we varied the training data size. ITG RNN
is much more efficient in utilizing training examples. It only needs roughly 10% of the training data to
get the same accuracy as the attention-based system. The attention-based model never reached zero error
rate even after training 2 million steps with batch size 32 using the entire training set.

1460

 0.1

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70 80 90 100

n
u
m

b
e
r

o
f
te

s
ti
n
g
 e

rr
o
rs

percentage of training data

number of testing errors as a function of training data size

itg
attention

Figure 3: The ITG RNN model reaches zero error rate much faster than the attention-based RNN on the
synthetic data set.

attention-based RNN ITG RNN
all 8× 10−5 6× 10−6

non-identity 8× 10−3 2× 10−3

Table 1: Text normalization reordering error rates.

6.1.2 Text Normalization Reordering
For text normalization, interesting reordering patterns include ISO dates such as 1990-09-01, which
should be verbalized as September first, nineteen ninety, which indicates a reordering of the last two
date components. In measure expressions, interesting cases include 5 km2, which should be read as five
square kilometers. There are many more money expressions in real data such as $100, USD100, RMB 2
million, but also cases where no reordering is necessary, like 2 million dollars. These cases make for a
good mixture of reordering patterns.

Focusing on money expressions have a total of 615,642 such reordering examples. We did the same
80-10-10 split for train/validate/test. We use the same network configurations as in section 6.1.1. Figure 4
shows the accuracy comparison. We have a similar trend as with the synthetic data, namely that the ITG
RNN is much more effective. We also measured the CPU decoding speed of the two models. Using
a single core, the ITG RNN is 2.5x the speed of attention-based RNN. It is worth noting that the two
models have encoder and decoder RNNs with the same network dimensions. The reduction of attention
accounts for most of the saving.

6.2 End-to-end Text Normalization

For end-to-end translation, we annotated reordering information on 10,561,377 tokens of training data
used by Sproat and Jaitly (2017). There are 349,537 DATE/MONEY expressions, and 14,795 non-
identity reordering examples. This is a realistic data set because it reflects that only a tiny portion of
all tokens require reordering. Table 1 shows the sequence error rate of the reordering model alone. It
can reach 99.8% accuracy on the non-identity reordering subset, while an attention-based reordering
component can only give 99.2%.

Table 2 summarizes the end-to-end text normalization results, comparing ITG RNN pre-reordering
followed by hard monotonic attention (Raffel et al., 2017) against soft (unordered) attention (Bahdanau

1461

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70 80 90 100

n
u
m

b
e
r

o
f
te

s
ti
n
g
 e

rr
o
rs

percentage of training data

number of testing errors as a function of training data size

itg
attention

Figure 4: The ITG RNN model reaches zero error rate much faster than the attention-based RNN on the
money expression text normalization data set.

attention-based reorderer-based
Semiotic Class Correct Accuracy Correct Accuracy
ALL 143797 99.73% 143778 99.72%
DATE 10438 99.94% 10437 99.93%
MONEY 5838 97.07% 5815 96.69%

Table 2: Text normalization results.

et al., 2014). The details of the baseline normalization model can be found in Sproat and Jaitly (2017).
The new system differs only in the attention mechanism. Essentially, the two systems have the same
overall accuracy and DATE accuracy. But unfortunately the reorderer-based one is worse in MONEY
accuracy.

The overall result indicates that for neural text normalization pre-reordering is feasible with compara-
ble accuracy and has the potential for higher computational efficiency as shown by Raffel et al. (2017).
But why do we not observe improvements in accuracy on this data set even though the intrinsic reorder-
ing accuracy has reached 99.8%? We suspect that interesting reordering is too rare on this data set and
over time, the soft-attention model is fully capable of learning the reordering. We also suspect that the
beam search for the reorderer-based system is more prune to search errors because it has two passes: one
for the permutation and the other for the actual output based on the permutation produced by the first
pass.

7 Conclusion

We propose a neural pre-reordering approach. It reorders the encoder output of the input sequence before
feeding it to the decoder RNN. As a result, the burden of modeling reordering is shifted from the attention
network to a dedicated reordering model. In particular, we find that combining an Inversion Transduction
Grammar based transition system with a RNN results a reordering model that is both fast and accurate. It
requires only 1/10 of samples to get to the same reordering sequence accuracy compared to an attention-
based RNN reorderer. This demonstrates that reordering can be done more efficiently and accurately

1462

with proper structural constraints.
Our future work has two directions. First, we will apply the model to machine translation data, us-

ing automatically aligned data like pre-reordering models for phrase-based machine translation models.
Second, we will treat the reordering decisions as latent variables and train the model without alignment
annotation and decode without an additional beam search.

Acknowledgements

We thank Shankar Kumar, Xiaochang Peng, and Michael Riley for discussions and comments on this
work.

References
Roee Aharoni and Yoav Goldberg. 2017. Morphological inflection generation with hard monotonic attention. In

ACL.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine translation by jointly learning to
align and translate. arXiv preprint arXiv:1409.0473.

Huadong Chen, Shujian Huang, David Chiang, and Jiajun Chen. 2017. Improved neural machine translation with
a syntax-aware encoder and decoder. In ACL.

Michael Collins, Philipp Koehn, and Ivona Kučerová. 2005. Clause restructuring for statistical machine transla-
tion. In ACL.

John DeNero and Jakob Uszkoreit. 2011. Inducing sentence structure from parallel corpora for reordering. In
EMNLP.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin Matthews, and Noah A. Smith. 2015. Transition-based
dependency parsing with stack long short-term memory. In ACL.

Akiko Eriguchi, Kazuma Hashimoto, and Yoshimasa Tsuruoka. 2016. Tree-to-sequence attentional neural ma-
chine translation. In ACL.

Akiko Eriguchi, Yoshimasa Tsuruoka, and Kyunghyun Cho. 2017. Learning to parse and translate improves
neural machine translation. In ACL.

Po-Sen Huang, Chong Wang, Dengyong Zhou, and Li Deng. 2018. Neural phrase-based machine translation. In
ICLR.

Lingpeng Kong, Chris Alberti, Daniel Andor, Ivan Bogatyy, and David Weiss. 2017. DRAGNN: A transition-
based framework for dynamically connected neural networks. arXiv preprint arXiv:1703.04474.

Uri Lerner and Slav Petrov. 2013. Source-side classifier preordering for machine translation. In EMNLP.

Tetsuji Nakagawa. 2015. Efficient top-down btg parsing for machine translation preordering. In ACL.

Graham Neubig, Taro Watanabe, and Shinsuke Mori. 2012. Inducing a discriminative parser to optimize machine
translation reordering. In EMNLP-CoNLL.

Joakim Nivre. 2003. An efficient algorithm for projective dependency parsing. In IWPT.

Colin Raffel, Thang Luong, Peter J. Liu, Ron J. Weiss, and Douglas Eck. 2017. Online and linear-time attention
by enforcing monotonic alignments. arXiv preprint arXiv:1704.00784.

Alexander M. Rush, Sumit Chopra, and Jason Weston. 2015. A neural attention model for abstractive sentence
summarization. arXiv preprint arXiv:1509.00685.

Richard Sproat and Navdeep Jaitly. 2017. An RNN model of text normalization. In Interspeech.

Felix Stahlberg, Eva Hasler, Aurelien Waite, and Bill Byrne. 2016. Syntactically guided neural machine transla-
tion. In ACL.

Dekai Wu. 1997. Stochastic inversion transduction grammars and bilingual parsing of parallel corpora. Computa-
tional. Linguistics, 23(3).

1463

Peng Xu, Jaeho Kang, Michael Ringgaard, and Franz Och. 2009. Using a dependency parser to improve smt for
subject-object-verb languages. In NAACL.

Hao Zhang, Liang Huang, Daniel Gildea, and Kevin Knight. 2006. Synchronous binarization for machine transla-
tion. In HLT-NAACL.

