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Abstract

Complex questions in reading comprehension tasks require integrating information from multiple
sentences. In this work, to answer such questions involving temporal and causal relations, we
generate event graphs from text based on dependencies, and rank answers by aligning event
graphs. In particular, the alignments are constrained by graph-based reasoning to ensure temporal
and causal agreement. Our focused approach self-adaptively complements existing solutions; it
is automatically triggered only when applicable. Experiments on RACE and MCTest show that
state-of-the-art methods are notably improved by using our approach as an add-on.

1 Introduction

The task of reading comprehension has received wide attention from the research community. A ma-
chine’s ability to understand natural language is tested by answering multiple-choice questions based on
a given passage (Hirschman et al., 1999), as illustrated in Fig. 1. State-of-the-art methods have achieved
encouraging results on simple factoid questions, but still, it is a challenge to answer a complex ques-
tion that requires extracting information from more than one sentence in the passage. Typical examples
are those involving temporal or causal relations spanning multiple sentences (Sugawara et al., 2017;
Trischler et al., 2016), like Questions 1 and 2 in Fig. 1. They constitute a considerable proportion of the
questions in popular datasets like MCTest (Richardson et al., 2013) and RACE (Lai et al., 2017).

To integrate multiple sentences for answering a complex question, various techniques have emerged,
but many of them ignore the semantic relations between sentences (Wang et al., 2016) or superficially
use a sliding window scanning over the words of the passage without sentence breaks (Smith et al., 2015;
Trischler et al., 2016). To meet the challenge, we explicitly model the event structure of the passage by
a graph representing temporal and causal relations between events extracted from the passage. Rep-
resenting a candidate answer in a similar way, we align the two graphs subject to temporal and causal
agreement which is verified by graph-based reasoning, and rank candidate answers by their degrees of
alignment. Our approach, called Graph-based Temporal-Casual Reasoning (GTCR) which focuses on
temporal and casual questions, can be used as an effective add-on to other methods.

Our research contribution in this paper is threefold.

• To answer complex questions in reading comprehension tasks, we represent the passage and each
candidate answer by an event graph to explicitly model temporal and causal relations, which are
crucial to the understanding and integration of multiple sentences for answering questions. We
generate event graphs from text based on dependencies produced by an off-the-shelf parser, thereby
benefiting from methodological progress and tools on dependency parsing.

• To score a candidate answer, we align it with the passage using their event graphs. In an alignment,
event matching is constrained by temporal and causal agreement, for which graph-based event rea-
soning is performed. The alignment problem is formulated and solved using linear programming.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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Passage: Susan held a birthday party. She made a big cake, and hung up some balloons. Meanwhile, her parents bought chocolate 

ice creams because she enjoyed it. Soon, her friends showed up. Then, Susan hugged her friends. Each friend had a present for 

Susan. Therefore, Susan was happy and sent each friend a thank you card. So, her friends were happy, too.

Question 1: What did Susan do before her friends came out?

(A) Susan bought ice cream. (B) Susan hung up balloons. (C) Susan hugged her friends. (D) Susan sent friends thank you cards.

Question 2: Why did Susan send out thank you cards to her friends?

(A) Her friends love her. (B) Her friends brought her gifts at the party.  (C) Her friends was happy.   (D) Her friends came late. 

Figure 1: A passage and two questions for reading comprehension.
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Figure 2: An event graph for the passage and four event graphs for question-answer combinations.

• By automatically detecting question type and determining confidence in scores, our self-adaptive
approach is triggered only when appropriate, to enhance existing methods as an add-on. A notable
improvement on the state of the art is observed in the experiments on RACE and MCTest.

The paper is structured as follows. Section 2 overviews our approach. Sections 3 and 4 describe event
graph generation and alignment, respectively. Section 5 combines our approach with existing methods.
Section 6 reports experiments. Section 7 compares related work. Section 8 concludes the paper.

2 Overview of the Approach

Our pipelined GTCR approach is outlined in Fig. 3. The passage is transformed into an event graph
called the passage graph. The question and each candidate answer are combined and transformed into an
event graph called a QA graph. The two graphs are aligned, and the degree of alignment is assigned as
the score of the answer.

2.1 Event Graph Generation

The passage is transformed into an event graph, called the passage graph, representing temporal and
causal relations between events extracted from the passage. The transformation firstly recognizes events
from each sentence and extracts intra-sentence relations, and then merges the results based on inter-
sentence relations. We will define event graph in Section 3.1 and elaborate its generation in Section 3.2.

The question and each candidate answer are combined and transformed in a similar way into an event
graph, called a QA graph. We will elaborate this step in Section 3.3.

Example 1 The passage in Fig. 1 is transformed into the passage graph in Fig. 2. Four out of the eight
candidate answers in Fig. 1 are combined with questions and transformed into four QA graphs in Fig. 2.

2.2 Event Graph Alignment

The passage graph and the QA graph for each candidate answer are aligned. The degree of alignment,
which is the maximum sum of the degrees of match between aligned events, is assigned as the score of
the answer. Alignment is constrained by the agreement in temporal and causal relations between events,
which is verified by graph-based reasoning. We will elaborate this step in Section 4.
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Figure 3: Overview of the GTCR approach.

Example 2 Dashed lines in Fig. 2 represent exact matches between events, where the alignments for
answers 1(C) and 2(C) violate temporal and causal agreement, respectively, thereby being infeasible.
The degrees of other (unshown) possible alignments for these answers are not large. Therefore, they are
likely to be incorrect answers.

3 Event Graph Generation

Event graph is a core concept in our approach. In this section we present its definition and detail its
generation from the passage. We also describe how to generate an event graph in a similar way from the
combination of the question and each candidate answer.

3.1 Event Graph
Definition 1 (Event Graph) An event graph is a directed multi-graph where vertices represent events
which are connected by arcs representing temporal or causal relations between events.

It is a multi-graph which is permitted to have multiple arcs between two vertices, e.g., both a temporal
relation and a causal relation between two events, as illustrated in Fig. 2.

Definition 2 (Event) An event consists of a predicate and its arguments (Jurafsky and Martin, 2009),
and has three attributes (Pustejovsky et al., 2003; Bar-Haim et al., 2015), namely aspect ∈
{perfective, none}, modality ∈ {modal, none}, and polarity ∈ {positive, negative}.

Definition 3 (Relations between Events) We consider three types of relations.
Temporal Relation. An event u can happen before another event v, represented by an arc from u to v

labeled with before, and an arc from v to u labeled with after.
Causal Relation. An event u can cause another event v, represented by an arc from u to v labeled with

result, and an arc from v to u labeled with cause.
Other Relation. We also allow an unspecified relation between two events, represented by a pair of

inverted arcs labeled with other.

3.2 Passage Graph Generation
To generate an event graph from the passage, called the passage graph, we recognize events from sen-
tences, extract intra-sentence relations to form a local event graph for each sentence, and finally extract
inter-sentence relations to merge local event graphs into a global event graph.

3.2.1 Event Recognition
Predicate and Arguments To recognize the predicate and arguments which identify an event, we
extend a dependency-based method (Rudinger and Van Durme, 2014). In particular, we consider embed-
ded events. Given a dependency relation ccomp or xcomp whose head is the predicate of an embedding
event u and whose dependent is the predicate of an embedded event v, we remove v and assign its pred-
icate and arguments to u’s arguments. For example, consider the sentence Hannah’s mother explained
that they were moving to Kenya. The embedded event moving is removed; its predicate and arguments,
namely moving and {they,Kenya}, become the arguments of the embedding event explained.

Attributes To recognize the attributes of an event, we extend a heuristic method (Bar-Haim et al., 2015)
which focuses on the attribute polarity, and define the following heuristics for recognizing aspect and
modality of an event u based on dependencies.
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• Given a dependency relation aux whose head is the predicate of u and is POS-tagged with VBN,
and whose dependent’s lemma is have, we have u.aspect = perfective.

• Given a dependency relation aux whose head is the predicate of u and whose dependent is a modal
verb (e.g., will, should), we have u.modality = modal.

Example 3 Consider the sentence Meanwhile, her parents bought chocolate ice creams because she
enjoyed it. As shown in Fig. 2, two events with predicates bought and enjoyed are recognized. The
arguments of bought consist of her parents and chocolate ice creams. The arguments of enjoyed consist
of she and it. There is no particular attribute to recognize, so all the three attributes of these events take
their default values, i.e., aspect = none, modality = none, and polarity = positive.

3.2.2 Intra-sentence Relation Extraction
We observe that within a sentence where two or more events are recognized, their relations are usually
explicitly indicated by a few syntactic patterns. We define a mapping from dependency patterns to
relations as shown in Table 1. Note that some polysemous patterns (e.g., those involving so) can give
rise to multiple relations. The result is a local event graph generated from each sentence.

Relation Dependency Pattern

u
before−−−−→ v and u after←−−− v (i) u advcl−−−−→ v(modality=none)

mark|advmod−−−−−−−−→ before|until|till|so|so-that

(ii) v(modality=none)
advcl−−−−→ u

mark|advmod−−−−−−−−→ after|since|because|for|as

(iii) v(modality=none)
conj←−−− u cc−→ so

u
result−−−−→ v and u cause←−−− v (iv) u advcl−−−−→ v

mark|advmod−−−−−−−−→ so|so-that

(v) v advcl−−−−→ u
mark|advmod−−−−−−−−→ because|for|as

(vi) v conj←−−− u cc−→ so

u
other−−−→ v and u other←−−− v other cases

Table 1: Extraction of intra-sentence relations between two events u and v.

Example 4 Consider two events bought and enjoyed recognized in the sentence Meanwhile, her parents
bought chocolate ice creams because she enjoyed it. Here, two dependency patterns (ii) and (v) in Table 1
are matched, and hence both a temporal relation and a causal relation are extracted, as shown in Fig. 2.

Example 5 Consider two events made and hung up recognized in the sentence She made a big cake, and
hung up some balloons. An other relation is extracted here, as shown in Fig. 2.

3.2.3 Inter-sentence Relation Extraction
We extract relations between adjacent sentences, in order to merge local event graphs into a global event
graph. For two adjacent sentences, an exit event u and an entrance event v are selected from the former
sentence and the latter sentence, respectively; then relations between u and v are extracted.

Event Selection In the local event graph representing the former sentence, the exit event is one that has
before or result as an incoming arc but never as an outgoing arc. If none of the events in the sentence
satisfies this condition, the one that involves the root of the dependency tree (called the root event) will
be specified as the exit event. Similarly, in the local event graph representing the latter sentence, the
entrance event is one that has before or result as an outgoing arc but never as an incoming arc.

Relation Extraction Having determined the exit event u in the former sentence and the entrance
event v in the latter sentence, their relations are extracted in the following way.

• We reuse the set of connective adverbs listed by Lin et al. (2014), and identify two (overlapping)
classes: a temporal relation (i.e., u before−−−−→ v and u after←−−− v) is extracted given later, next, etc.; or a
causal relation (i.e., u result−−−−→ v and u cause←−−− v) is extracted given hence, therefore, etc.
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• In particular, when v.aspect = perfective, a temporal relation in the reverse direction (i.e.,
v

before−−−−→ u and v after←−−− u) is heuristically extracted.

• In other cases, an other relation (i.e., u other−−−→ v and u other←−−− v) is extracted.

Example 6 Consider two adjacent sentences Each friend had a present for Susan. Therefore, Susan
was happy and sent each friend a thank you card. The exit event of the former sentence is had, and
the entrance event of the latter sentence is happy. According to the connective adverb therefore, both a
temporal relation and a causal relation between the two events are extracted, as shown in Fig. 2.

3.3 QA Graph Generation
We also generate an event graph from the combination of the question q and each candidate answer ans,
called a QA graph. When q is a fill-in-the-blank question, this QA graph is generated by firstly replacing
the blank in q with ans to form a complete text, and then following the method described in Section 3.2
to generate an event graph from this text.

When q is a wh-question, we firstly generate an event graph Gq from q using the method described in
Section 3.2, and then insert ans into Gq. Here, we differentiate between two types of wh-questions.

• For a why-question, ans is normally a complete sentence, from which an event graph Gans is
generated using the method described in Section 3.2. Gans and Gq are merged by connecting their
root events via a causal and a temporal relation, as illustrated by answers 2(B) and 2(C) in Fig. 2.

• For a non-why-question, the argument inGq that contains the interrogative word is replaced by ans.
For an exceptional case where ans is a complete sentence and the predicate of the root event in Gq
is a general verb like do or happen, we generate an event graph Gans from ans using the method
described in Section 3.2, and then merge Gans and Gq by replacing the event involving the inter-
rogative word in Gq with the root event in Gans, as illustrated by answers 1(B) and 1(C) in Fig. 2.

4 Event Graph Alignment

The degree of alignment between the passage graph Gp and the QA graph Gqa for each candidate an-
swer ans is assigned as the score of ans. In this section we formulate and solve the alignment problem,
which maximizes event matching and is constrained by graph-based event reasoning.

4.1 Problem Formulation
We define the degree of alignment between Gp and Gqa as the maximum sum of the degrees of match
between aligned events in Gp and Gqa, which is formulated as a variant of the maximum weighted
bipartite matching problem, which in turn is a special case of a 0-1 linear program.

Specifically, let Vp and Vqa be the events in Gp and Gqa, respectively. For u ∈ Vp and v ∈ Vqa, let
dom(u, v) be the degree of match between u and v, which will be detailed in Section 4.2. The score
of ans, i.e., the degree of alignment between Gp and Gqa, is given by

maximizing
∑

u∈Vp,v∈Vqa

dom(u, v)xuv

subject to
∑
v∈Vqa

xuv ≤ 1 for u ∈ Vp ,
∑
u∈Vp

xuv ≤ 1 for v ∈ Vqa ,

xuv + xkm ≤ 1 for u, k ∈ Vp, v,m ∈ Vqa, conflict(u, v, k,m) = 1 ,

xuv ∈ {0, 1} for u ∈ Vp, v ∈ Vqa ,

(1)

where xu,v is a binary variable representing the alignment between u and v, taking value 1 if they are
aligned, and conflict(u, v, k,m) indicates whether two matches u-v and k-m lead to a conflict in
terms of temporal or causal relations between events, which will be detailed in Section 4.3. We further
normalize the score of ans by dividing it by the number of events in Gqa.

Note that as a special case, we will define the degree of alignment as one minus the above result if the
polarity of the root event in the question is negative.
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4.2 Event Matching

The degree of match between two events u and v, denoted by dom(u, v), measures to what extent u and v
refer to the same event. For example, each dashed line in Fig. 2 represents an exact match between two
coreferential events. Our measure is a combination of element-level matching and word-level matching:

dom(u, v) =

{
α · domelem(u, v) + β · domword(u, v) if u.polarity = v.polarity,
0 if u.polarity 6= v.polarity,

(2)

where α, β are weights to be empirically tuned. Note that for two events having opposite values of
polarity, their degree of match is simply fixed to 0.

Element-level Matching Let Elem(u) be the set of elements of event u, consisting of the predicate
and arguments of u. For two elements ei ∈ Elem(u) and ej ∈ Elem(v), we extend the method used
by Li and Srikumar (2016) and define 16 features that calculate the similarity between ei and ej . Each
feature φ returns a similarity value in the range of [0, 1]. Inspired by Yih et al. (2013), we calculate the
overall similarity between ei and ej as follows:

sim(ei, ej) = max
φ

wφ · φ(ei, ej) , (3)

where φ is weighted by wφ. The following features and weights are used.

• w = 1.0: exact string match, exact string match between roots of dependency trees, existence of
trigram overlap, coreference, apposition, sharing synonyms in Wiktionary, sharing synonyms in
WordNet, sharing derivations in WordNet, VerbOcean-based similarity;

• w = 0.5: Jaccard similarity of words, partial string match, existence of bigram overlap, cosine sim-
ilarity of Word2vec embeddings, cosine similarity of GloVe embeddings, light-verb-to-verb match;

• w = 0.1: existence of unigram overlap.

With sim values for all ei-ej pairs in Elem(u)×Elem(v), we find a maximum weighted bipartite match-
ing between Elem(u) and Elem(v), and assign the squared mean weight of this matching to domelem(u, v).

Word-level Matching Complementary to element-level matching which relies on dependency-based
argument recognition, we measure the degree of word-level match between u and v using a bag-of-words
method (Sultan et al., 2016), and assign the result to domword(u, v).

4.3 Event Reasoning

For events u, k ∈ Vp and v,m ∈ Vqa, conflict(u, v, k,m) = 1 means if two matches u-v and k-m
appear in the same alignment, a conflict in terms of temporal or causal relations will emerge; such an
alignment is not allowed. We consider two types of conflicts by extending the idea in Berant et al. (2014).

Temporal Conflict There is a (directed simple) u-k path in Gp and a v-m path in Gqa such that before
appears in one of them and after appears in the other.

Causal Conflict There is a u-k path in Gp and a v-m path in Gqa such that result appears in one of
them and cause appears in the other.

For efficiency reasons, our implementation only checks paths that contain not more than 10 arcs.

Example 7 The alignment represented by the dashed lines between the passage graph and the QA graph
for answer 1(C) in Fig. 2 is not feasible due to the temporal conflict induced by the two matches. The
alignment for answer 1(B) is feasible. Similarly, the alignment for answer 2(C) is not feasible due to a
causal conflict, whereas the alignment for answer 2(B) is feasible.
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5 Combination with Other Methods

Our GTCR approach is specifically developed for temporal and causal questions. Reading comprehen-
sion tasks also involve other questions. Therefore, GTCR is to be combined with other methods.

We propose to let GTCR self-adaptively enhance existing methods as an add-on. Specifically, GTCR
will answer a question only if it accepts the type of the question and is confident in the scores it generates.
Otherwise, it will not answer the question, which in turn will be answered by an existing method. In this
section we describe how to automatically detect question type and determine confidence in scores.

5.1 Question Type

Our current implementation of GTCR can process wh-questions and fill-in-the-blank questions. How-
ever, it only accepts temporal and causal questions. A temporal question, e.g., Question 1 in Fig. 1, is one
that matches dependency patterns (i) or (ii) in Table 1, or in case there are errors in dependency parsing,
matches the following POS-level regular expression: .*VB.+(when|after|before|since).+VB.*. A causal
question, e.g., Question 2 in Fig. 1, is one that begins with why, or contains an adverbial clause fronted
by because (which is common for fill-in-the-blank questions).

5.2 Confidence in Scores

As GTCR relies on the results of dependency parsing, it will not be confident in the scores it generates
if it finds errors in the dependency tree of the question. Specifically, inspired by Petrov et al. (2010), our
implementation detects five common types of errors in dependency parsing:

• nsubj: missing a subject in a question or clause,

• aux: placing an auxiliary verb as the root of the dependency tree,

• dep: associating dep with a subject,

• acl:relcl: accompanying acl:relcl which indicates a relative clause with a conjunction
commonly fronting an adverbial clause (e.g., when), and

• advcl: missing core arguments (e.g., nsubj, obj) in an adverbial clause.

When dependency parsing seems correct, GTCR will still reject the question if the score of the answer
it selects is below a threshold τ , which will be tuned in the experiments.

6 Experiments

6.1 Datasets

Experiments are performed on two standard datasets for reading comprehension: RACE and MCTest.
RACE (Lai et al., 2017) consists of nearly 28,000 passages and 100,000 questions collected from En-

glish exams for middle and high school Chinese students. In particular, 25.8% of these questions require
multi-sentence reasoning, though not necessarily temporal or causal reasoning. For our experiments we
use middle school data, denoted by RACE-M.

MCTest (Richardson et al., 2013) consists of 660 fictional stories as passages and 2,640 questions that
a seven-year-old can understand. It is divided into MC160 where 160 stories have been manually curated
for quality, and MC500 where 500 stories may have grammatical or other errors.

6.2 Competing/Collaborating Methods

For RACE we consider two state-of-the-art methods. Stanford Attentive-Reader (Stanford AR) (Chen
et al., 2016) is a neural network system based on the Attentive-Reader model. Gated-Attention (GA)
Reader (Dhingra et al., 2017) integrates a multi-hop architecture with an attention mechanism.

For MCTest we consider three state-of-the-art methods. Smith et al. (2015) propose a lexical match-
ing method that takes into account multiple context windows, question types, and coreference resolution.
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Narasimhan and Barzilay (2015) incorporate discourse information. Trischler et al. (2016) harness sim-
ple neural networks arranged in a parallel hierarchy.

Some other methods are not considered in our experiments because their codes or detailed results are
not available at the time of experiment so that we could not test the combination of GTCR with them.

6.3 Our Approach

For our implementation of GTCR, we use Stanford CoreNLP (Manning et al., 2014) for dependency
parsing and coreference resolution, and use Gurobi (www.gurobi.com) for solving linear programs.

Some parameters are tuned based on the development set in each dataset, which is separate from the
test set. Specifically, for Eq. (2) we set α = β = 0.5 for all the datasets. The confidence threshold τ used
for combination with other methods is set to 0.00 for RACE, 0.71 for MC160, and 0.78 for MC500.

Our implementation is open source1.

RACE-M
Stanford AR 58/133
GA Reader 50/133
GTCR 63/133
GTCR w/o elem. matching 63/133
GTCR w/o word matching 59/133
GTCR w/o reasoning 61/133

Table 2: Accuracy of competition on RACE-M.

MC160 MC500
Smith et al. (2015) 8/13 9/16
Narasimhan et al. (2015) 7/13 8/16
Trischler et al. (2016) — 10/16
GTCR 9/13 12/16
GTCR w/o elem. matching 7/13 9/16
GTCR w/o word matching 10/13 11/16
GTCR w/o reasoning 9/13 10/16

Table 3: Accuracy of competition on MCTest.

RACE-M
+GTCR

Stanford AR 44.15 44.50
GA Reader 43.73 44.64

Table 4: Accuracy (%) of collabora-
tion on RACE-M.

MC160 MC500
+GTCR +GTCR

Smith et al. (2015) 74.27 74.68 65.79 66.29
Narasimhan et al. (2015) 71.45 72.29 63.71 64.38
Trischler et al. (2016) 74.58 — 70.41 70.75

Table 5: Accuracy (%) of collaboration on MCTest.

6.4 Results

We carry out two experiments. In the first experiment, GTCR competes with state-of-the-art methods
on complex questions that require temporal or causal reasoning. In the second experiment, GTCR self-
adaptively collaborates with those methods as an add-on, in order to advance the state of the art.

We measure the accuracy of each method, namely the proportion of correctly answered questions.

Competition On RACE-M, among the 1,436 test questions, 133 are recognized as temporal or causal
questions according to question type detection in GTCR. Table 2 shows the accuracy of each method
on these questions. Compared with competing methods, GTCR correctly answers 4–10% more of those
questions.

On MCTest, among the 240 and 600 test questions in MC160 and MC500, 51 and 99 respectively
are recognized as temporal or causal questions. After excluding 10 and 17 questions respectively having
dependency errors and those on which GTCR is not confident, Table 3 shows the results on the remaining
questions. GTCR notably outperforms competing methods on these questions.

Ablation To evaluate the effectiveness of our event matching and reasoning, we conduct an ablation
study. As shown in Tables 2 and 3, the accuracy of our approach decreases by up to 19% and 6% when
element-level and word-level event matching are disabled, respectively, showing that the two techniques

1http://ws.nju.edu.cn/qa/coling2018
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are generally useful; only for one question in MC160, word-level matching has a negative effect. Without
performing event reasoning, the accuracy decreases by 2% on RACE-M and by 13% on MC500, showing
its usefulness. However, reasoning is not helpful on MC160.

Collaboration By self-adaptively collaborating with existing methods as an add-on, GTCR consis-
tently enhances all the methods and improves the state of the art on both datasets. As shown in Table 4,
the overall accuracy is increased by 0.35–0.91% on RACE-M. For MCTest in Table 5, the improvement
is in the range of 0.41–0.84% on MC160, and 0.34–0.67% on MC500. On MC160 we do not add GTCR
to Trischler et al. (2016) because at the time of experiment we did not obtain its details results.

6.5 Error Analysis and Discussion

In GTCR, errors may occur in event graph generation and event matching. We analyze the 78 questions
in Tables 2 and 3 for which GTCR produces incorrect answers.

Event Graph Generation Although GTCR can automatically detect a few common types of errors in
dependency parsing, other POS or dependency errors are still observed in the experiments, which lead to
imprecise recognition of events and extraction of relations (18%). These errors are propagated along the
pipeline framework of GTCR, which has the potential to be significantly improved by benefiting from
future advances in dependency parsing.

Another drawback to GTCR is the use of syntactical methods for extracting explicit relations between
events. Some temporal and causal relations are implicit, and hence are missing in our generated event
graphs (31%). To identify those relations, commonsense knowledge is to be exploited.

Event Matching Event matching is closely related to paraphrasing. Our element-level and word-level
matching in GTCR, though utilizing many linguistic resources, still fail to identify some coreferential
events that are expressed differently (19%). It inspires us to integrate or develop more effective tech-
niques for paraphrasing and textual entailment in future work.

Another disadvantage of GTCR is its limited expressivity of event alignment. We assume one-to-one
event matching between event graphs, but in practice it is sometimes one-to-many (6%).

6.6 Running Time

On an Intel E3-1225v3 (3.2GHz), our approach uses 7.8 seconds, 6.5 seconds, and 7.0 seconds to process
a question in RACE-M, MC160, and MC500, respectively, being reasonably fast. Most time is used for:
retrieving external resources in element-level event matching, and identifying conflicting event matches
in event graph alignment.

7 Related Work

7.1 Reading Comprehension

Many solutions to reading comprehension are learning-based. They either manually define and extract
features for learning a model to predict the correct answer (Sachan et al., 2015; Smith et al., 2015; Wang
et al., 2015; Sachan and Xing, 2016), or use deep learning with attention mechanisms (Hermann et al.,
2015; Trischler et al., 2016; Wang et al., 2016; Chen et al., 2016; Chen et al., 2017; Cui et al., 2017;
Dhingra et al., 2017; Samothrakis et al., 2017). These methods have achieved encouraging results on
simple factoid questions, but are not optimized for complex questions that require integrating information
from multiple sentences. By comparison, our approach is distinguished by the explicit representation
and reasoning over temporal and causal relations between events which can span multiple sentences,
therefore exactly targeting complex questions and featuring an explainable problem solving process.
Due to its unsupervised nature, our approach can be rapidly deployed for a new domain or application.

We are not the first to address complex questions. Sachan and Xing (2016) leverage Abstract Meaning
Representation (AMR) to construct graph representations and solve a graph containment problem, but
they report that their method suffers from the lack of complex reasoning support (e.g., temporal, causal),
which are provided in our approach. Narasimhan and Barzilay (2015) incorporate discourse information
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into a discriminative framework with hidden variables that capture relevant sentences and their relations,
which is different from our explicit representation of events and their relations extracted from text, and is
inferior to our approach in the experiments. Berant et al. (2014) model the relations between events in a
biological process using a graph representation, which is similar to our approach. However, to generate
a graph, they train dedicated classifiers whereas we use dependencies produced by off-the-shelf parsers.
Besides, for question answering, they simply use a few hand-crafted regular expressions over graphs
whereas we more thoughtfully formulate and solve a maximum weighted bipartite matching problem.

7.2 Event Extraction
Event extraction has attracted considerable research attention (Pustejovsky et al., 2003; Ahn, 2006;
Rudinger and Van Durme, 2014; Mostafazadeh et al., 2016; Mirza and Tonelli, 2016; Judea and Strube,
2016). We extend some of those existing methods (Rudinger and Van Durme, 2014) for event recogni-
tion. As to relation extraction, our rule-based method uses dependencies, whereas there are also learning-
based solutions (Ahn, 2006; Chambers et al., 2007; Mirza and Tonelli, 2016). Although our focus is on
the reading comprehension task, event extraction is at the core of our approach. Advances in this research
area will be beneficial to the performance of our approach.

8 Conclusion

To answer complex questions in reading comprehension tasks, we generate event graphs from text for
modeling temporal and causal relations spanning multiple sentences. With graph-based reasoning, our
self-adaptive GTCR approach helps advance the state of the art on two standard datasets, showing the
effectiveness and generalizability of the proposed technical contribution. Furthermore, this graph-based
event representation and reasoning complies with human cognition, thereby being capable of not only
answering a question but also providing a human-readable explanation. This will expand the scope of
application, ranging from explainable question answering to interactive computer-aided education.

Many components of GTCR build upon the results of dependency parsing. Featuring an unsupervised
framework, our proposed approach can be conveniently transferred to different domains and applications
without the necessity of preparing dedicated training data. Besides, its performance will progress along
with the improvement in off-the-shelf dependency parsers. However, as revealed by our post-experiment
error analysis, there are still several other directions for improving and extending our approach, to turn
it into a more effective add-on to other methods or even a powerful stand-alone solution.
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