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Abstract

Implicit discourse relation recognition aims to understand and annotate the latent relations be-
tween two discourse arguments, such as temporal, comparison, etc. Most previous methods
encode two discourse arguments separately, the ones considering pair specific clues ignore the
bidirectional interactions between two arguments and the sparsity of pair patterns. In this paper,
we propose a novel Neural Tensor Network framework with Interactive Attention and Sparse
Learning (TIASL) for implicit discourse relation recognition. (1) We mine the most correlated
word pairs from two discourse arguments to model pair specific clues, and integrate them as in-
teractive attention into argument representations produced by the bidirectional long short-term
memory network. Meanwhile, (2) the neural tensor network with sparse constraint is proposed
to explore the deeper and the more important pair patterns so as to fully recognize discourse rela-
tions. The experimental results on PDTB show that our proposed TIASL framework is effective.

1 Introduction

Discourse relation describes how two adjacent text units (e.g. clauses, sentences, and larger sentence
groups), called arguments, named Arg1 and Arg2, are connected semantically, such as temporally,
causally, etc. Yet implicit discourse relation recognition without explicit connectives (Pitler et al., 2008),
which needs to infer the relation from specific context, is still a challenging problem. It can be used in
text summarization(Gerani et al., 2014), conversation system (Higashinaka et al., 2014) and so on.

Previous researches mainly include (1) traditional feature-based models and (2) neural network based
models. Most feature-based models adopt various linguistic features (such as polarity, word pairs, and
position information, etc.) and design complicated rules to recognize implicit discourse relations (Pitler
et al., 2009; Zhou et al., 2010; Braud and Denis, 2015). They can not fully use the local and the
global context, and the human cost is huge. Neural network based models get the better argument
representations and more precisely capture discourse relations (Braud and Denis, 2015; Zhang et al.,
2015; Liu et al., 2016). However, they encode two discourse arguments separately, and ignore pair
specific clues. The further researches adopt the different hybrid neural models (Chen et al., 2016; Lei et
al., 2017) and attention mechanism (Cai and Zhao, 2017) to mine the semantic interactions of argument
pairs. Yet, they ignore the bidirectional interactions between two arguments during the representation
stage since there is asymmetry from the perspective of human-like reading strategy. And the sparsity of
word pair patterns indicating discourse relation is neither considered.

Therefore, a novel neural Tensor network model with Interactive Attention and Sparse Learning is
proposed for implicit discourse relation recognition, namely TIASL. We imitate the human-like reading
strategy, and model the relatedness between two discourse arguments as a kind of interactive atten-
tion from bidirectional aspects. It is added into the argument representations with a bidirectional Long
Short-Term Memory network (Bi-LSTM), and then plugged in neural tensor network (NTN) with l1 reg-
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Figure 1: The TIASL framework.

ularization. This helps to mine the different aspects of semantic interactions between two arguments and
select the important and the informative word pair patterns.

Our main contributions are as follows:

• Propose a novel TIASL framework from the perspectives of the human-like bidirectional reading
strategy and the sparsity of word pair patterns;

• Encode the discourse arguments by the Bi-LSTM with interactive attention for implicit discourse
relation recognition;

• Use neural tensor network with sparse constraint to capture the deeper and the more indicative pair
patterns;

• Experimental results on PDTB show that our TIASL model is effective.

2 The Proposed Method

We formalize implicit discourse relation recognition as a classification problem. The proposed TIASL
framework is shown in Figure 1. The main steps include (1) discourse argument representations with in-
teractive attention based on Bi-LSTM and (2) sparse pair pattern selection and implicit discourse relation
recognition.

2.1 Discourse Argument Representations with Interactive Attention
Attention mechanism has achieved great success in image recognition, which is based on the visual
attention principle found in humans. Recently, it is widely adopted in many NLP tasks. Inspired by
(Herzog et al., 2016), we imitate the human-like bidirectional reading strategy, and propose an interactive
attention mechanism to enhance discourse argument representations.

For the original representations of discourse arguments shown in Figure 1, we first associate each word
w in the vocabulary with a vector representation xw ∈ Rd, where d is the dimension of the embeddings.
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Since each argument is viewed as a sequence of word vectors, let x1
i (x

2
i ) be the i-th word vector in Arg1

(Arg2), thus the arguments in a discourse relation are expressed as,

Arg1 : [x1
1,x

1
2, ...,x

1
n1
], Arg2 : [x2

1,x
2
2, ...,x

2
n2
].

where Arg1 (Arg2) has n1 (n2) words.

2.1.1 The Basic Bi-LSTM
Long Short-Term Memory network (LSTM) (Hochreiter and Schmidhuber, 1997) is a variant of recurrent
neural network. Considering that it can model long-term dependencies and encode context information,
we use it in the basic argument representation. Given the word representations of two arguments as we
just described, the LSTM computes the state sequence for each position t using the following equations:

it = σ(Wi[xt,ht−1] + bi), (1)

ft = σ(Wf [xt,ht−1] + bf ), (2)

ot = σ(Wo[xt,ht−1] + bo), (3)

c̃t = tanh(Wc[xt,ht−1] + bc), (4)

ct = it � c̃t + ft � ct−1, (5)

ht = ot � tanh(ct). (6)

where it, ft, ot, ct, ht denote the input gate, forget gate, output gate, memory cell and hidden state at
position t respectively. Wi, Wf , Wo, Wc, bi, bf , bo, bc are the neural network parameters. [ ] means
the concatenation operation of xt, ht−1. σ denotes the logistic sigmoid function and � denotes the
element-wise multiplication.

Since LSTM only considers the context from the previous, we utilize a bidirectional LSTM (Bi-LSTM)
preserving both history and future information. Therefore, at each position t of the sequence, we can
obtain two representations

−→
ht and

←−
ht. Then we concatenate them to get the intermediate state ht =

[
−→
ht,
←−
ht]. For Arg1 and Arg2, we encode them into the contextual representations by Bi-LSTM. That is,

h1
i = [

−→
h1
i ,
←−
h1
i ] and h2

j = [
−→
h2
j ,
←−
h2
j ] are the intermediate states of i-th word in Arg1 and j-th word in Arg2

respectively, where
−→
h1
i ,
←−
h1
i ,
−→
h2
j ,
←−
h2
j ∈ Rd.

Separately encoding arguments with Bi-LSTM could not reflect the semantic between two discourse
arguments in a discourse relation. In order to fully use their semantic connections, we explore a novel
argument representation.

2.1.2 Model the Asymmetry of Reciprocal Attention on Discourse Arguments
Herzog et al. (2016) proposed the two stage model of visual perception which indicated that people‘s
image recognition includes two stages: collecting information and understanding information. In daily
life, we have a similar feeling intuitively during reading: a more reasonable strategy is that people may
read two discourse arguments back and forth, and find some relevant and informative clues helpful to
judge the discourse relation. Due to the different reading order of two arguments, people may get the
different focused information and thus have the different decisions. Therefore, we model the reciprocal
attention on discourse arguments from two directions.

Firstly, we calculate semantic connections between word pairs in two arguments as a pair-wise matrix
shown in Eq.(7), which indicates the relevant score of i-th Arg1 word and j-th Arg2 word by dot product
of their hidden representations.

S(i, j) = (h1
i )
T · h2

j . (7)

where S ∈ Rn1×n2 , n1 and n2 are the lengths of Arg1 and Arg2, respectively.
Secondly, as the concerns of the forward and the reverse reading order are asymmetric when judging

the relation of two discourse arguments. For each word in Arg2, we apply a column-wise softmax
function on the pair-wise matrix S to get a probability distribution αt over Arg1, shown in Eq.(8).
Similarly, we conduct a row-wise softmax function to get βt over Arg2 when considering one Arg1
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word, shown in Eq.(9). We denote αt ∈ Rn1 as Arg2-to-Arg1 attention, and βt ∈ Rn2 as Arg1-to-Arg2
attention at position t, which are named interactive attention.

αt = softmax(S(1, t), ...,S(n1, t)), (8)

βt = softmax(S(t, 1), ...,S(t, n2)). (9)

where αt = [α1
t ,α

2
t , ...,α

n1
t ], αit means the attention value of i-th word in Arg1 at position t. Likewise,

βt = [β1
t ,β

2
t , ...,β

n2
t ], βjt is the attention value of j-th word in Arg2 at position t.

In order to exploit the overall influence information to represent semantic connection of two discourse
arguments, we average all the αt, βt to get the final attention of Arg1 and Arg2.

α =
1

n2

n2∑
t=1

αt, β =
1

n1

n1∑
t=1

βt. (10)

The new argument representations integrating argument context and interactive attention are shown as
Eq.(11), which reflect the human-like bidirectional reading strategy to some extent.

hArg1 = h
1α, hArg2 = h

2β. (11)

2.2 Sparse Pair Pattern Selection and Discourse Relation Recognition
Observations show that there are some pair patterns in a discourse relation. Once we detect these inter-
actions expressing pair patterns, discriminating discourse relation is obvious. However, how to represent
and select this kind of interaction is a problem.

2.2.1 Neural Tensor Network
Conventional methods to measure the relevance between two arguments includes bilinear model (Jenat-
ton et al., 2012), and single layer neural networks (Collobert and Weston, 2008), etc. These methods
could hardly model the complex and informative interactions. Success in knowledge graph (Socher et
al., 2013a) shows that tensor can model multiple interactions in data. Therefore, we further employ a
tensor layer to mine the deeper semantic interactions based on the new argument representations so as to
recognize implicit discourse relations.

Tensor is a geometric object that describes relations between vectors, scalars, and others. It can be
represented as a multi-dimensional array of numerical values. Following the NTN (Socher et al., 2013a;
Pei et al., 2014), we utilize a 3-way tensor M [1:k] ∈ Rdh×dh×k to model the interactions shown in
Eq.(12).

g(hArg1,hArg2) = u
T f

(
(hArg1)

TM [1:k]hArg2 + V

[
hArg1
hArg2

]
+ b

)
. (12)

where f is a standard nonlinearity applied element-wise,M [1:k] ∈ Rdh×dh×k is a tensor and the bilinear
tensor product (hArg1)TM [1:k]hArg2 results in a vector m ∈ Rk, where each entry is computed by
one slice i = 1, 2, ..., k of the tensor: mi = (hArg1)

TM [i]hArg2. The other parameters V ∈ Rk×2dh ,
u ∈ Rk, b ∈ Rk are the standard form of a neural network. Here, each tensor slice can be seen as a
“feature extractor”, which extracts the features expressing the Arg1-Arg2 interactions.

Through the tensor layer, we can obtain the semantic interactions between two arguments as features,
which are further reshaped to a vector and fed to a full connection hidden layer. Then we apply a softmax
function in the output layer to compute the probabilities of different relations and recognize them.

2.2.2 Model Training with Sparse Constraint
Given a training corpus which contains n instances {(x,y)}nr=1, (x,y) denotes an argument pair and
its label. We employ the cross-entropy error to assess how well the predicted relation represents the real
relation, defined as:

L(ŷ,y) = −
C∑
j=1

yj log(Pr(ŷj)). (13)
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where Pr(ŷj) is the predicted probabilities of labels, C is the class number.
Based on argument representations with interactive attention, tensor embodies the different aspects of

semantic interactions between two arguments. However, not all the interactions are useful. There could
exist some redundant and noisy interactions influencing the system performance. In order to remove
the irrelevant interactions and select the indicative pair patterns, the large portion of M [i] should be
zero. Therefore, we introduce the 1-norm regularizer to promote the feature sparsity. This element-wise
sparsity can be helpful when most of the features are irrelevant to the learning objective. Furthermore, we
also add l2 regularization to avoid over-fitting issue. And the training objective function is transformed
as:

J(θ) =
1

n

n∑
r=1

L(ŷ(r),y(r)) +R(θ), (14)

R(θ) = λM‖θM‖1 +
λO
2
‖θO‖2. (15)

whereR(θ) is the regularization term with respect to θ. We divide θ into two parts: θM is the tensor term
weights, and θO is the other parameters of our model. Especially, ‖θM‖1 in Eq.(15) is l1 regularization
for the tensor slices, which is used to filter the important values.

To minimize the objective, we employ the proximal gradient descent method (Parikh and Boyd, 2014)
since l1 regularization is non-differentiable at zero. It is used for optimizing the objective as a combina-
tion of both smooth and non-smooth terms. The update formulas is as follows:

θ
(t′)
i = θ

(t)
i − γ(

∂L

∂θi
+ λ

∂R

∂θi
)|
θi=θ

(t)
i

, (16)

∂R

∂θi
=

{
2θ

(t)
i , if ‖θ‖2;

sign(θ
(t)
i ), if ‖θ‖1, and θ(t)i 6= 0.

(17)

θ
(t+1)
i = proxλ(θ

t′
i ) = τ(θt

′
i , γλ), (18)

τ(a, z) =


a− z, if a > z;

a+ z, if a < −z;
0, otherwise.

(19)

where proxλ is a proximal operator, τ is a soft-thresholding operator, and γ is the learning rate.

3 Experiments

3.1 Data Preparation
Corpus. We use the Penn Discourse TreeBank (PDTB) (Prasad et al., 2008), which is the largest hand-
annotated discourse relation corpus annotated on 2312 Wall Street Journal (WSJ) articles. Experiments
are conducted on the four top-level classes as in previous work (Rutherford and Xue, 2014; Chen et al.,
2016). Following the conventional data splitting, we use Section 2-20 as training set, Section 21-22 as
testing set, and Section 0-1 as development set. The relevant statistics is shown in Table 1.

Relation Train Dev. Test
Comparison 1842 393 144
Contingency 3139 610 266
Expansion 6658 1231 537
Temporal 579 83 55

Table 1: Statistics of implicit discourse relations.

Hyper-parameters Value
Initial learning rate 0.01
Minibatch size 30
Dropout rate 0.1
Number of tensor slice 3

Table 2: Hyper-parameters for our TIASL model.

Experimental Settings. The 50-dimensional pre-trained word embeddings are provided by GloVe (Pen-
nington et al., 2014), which are fixed during our model training. All the discourse arguments are padded
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to the same length of 50. And the length of intermediate representation for our network is also 50. The
other parameters are initialized by random sampling from uniform distribution in [-0.1,0.1]. We do not
present the details of tuning the hyper-parameters and only give their final settings as shown in Table 2.

To evaluate our model, we adopt two kinds of experiment settings, including a four-way classification
and four separate one-vs-other binary classification. The former is to observe the overall performance.
And the latter is to solve the problem of unbalance data, where each top level class is against the other
three discourse relation classes. We use an equal number of positive and negative instances in the training
set in each class. The testing set and development set keep the natural state.

3.2 Comparison Methods

We choose the following models as our baselines, which are the state-of-the-art models in argument
representation, interaction and attention aspects during implicit discourse relation recognition.

• Ji2015: Ji and Eisenstein (2014) utilized two recursive neural networks on the syntactic parse tree
to induce argument representation and entity spans.

• Qin2016: Qin et al. (2016b) integrated a CNN and a Collaborative Gated Neural Network (CGNN)
into argument representation.

• Chen2016: Chen et al. (2016) used a Gated Relevance Network (GRN) and incorporated both the
linear and non-linear interactions between word pairs.

• Liu2016: Liu and Li (2016) designed Neural Networks with Multi-level Attention (NNMA) and
selected the important words for recognizing discourse relation. Here, we select the models with
two and three levels attention as baselines.

Besides, we also use the following variants of RNN and the proposed TIASL model for comparisons.

• LSTM: encode two discourse arguments by LSTM respectively, and concatenate the two represen-
tations, feeding them to the full connection hidden layer as the input of softmax classifier.

• Bi-LSTM: based on LSTM, we consider the bidirectional context information, and use Bi-LSTM
to encode two discourse arguments.

• Bi-LSTM+Interactive Attention: further integrate the interactive attention to obtain the new argu-
ment representations shown in Eq.(11).

• Bi-LSTM+Tensor Layer: based on Bi-LSTM, adopt the neural tensor network to capture the
semantic interaction between two arguments.

• TIA with k-Max Pooling: use k-max pooling operation instead of our sparse strategy to select
features after tensor layer in neural Tensor network with Interactive Attention model (TIA).

• Our TIASL: based on Bi-LSTM with Interactive Attention and Tensor Layer, we add l1 regu-
larization for tensor parameters in order to capture the most important interactions.

3.3 The Overall Performance

Table 3 shows the overall performance, using F1 score and accuracy for four-wary classification and F1

score for binary classification. With respect to four-way classification, we have the following observa-
tions:

• Ji2015 gains the lowest performance on both F1 score and accuracy, which separately computes dis-
course argument representations by integrating syntactic parse tree into RNN. It indicates a simple
neural network, which ignores the interactive context of two discourse arguments, is not sufficient
for implicit discourse relation recognition.
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Model Binary Classification Four-way Classification
Comp. Cont. Expa. Temp. F1 Acc.

Ji2015 35.93% 52.78% - 27.63% 38.52% 43.56%
Qin2016 41.55% 57.32% 71.50% 35.43% - -
Chen2016 40.17% 54.76% - 31.32% 44.61% 57.84%
Liu2016 (two levels) 36.70% 54.48% 70.43% 38.84% 46.29% 57.17%
Liu2016 (three levels) 39.86% 53.69% 69.71% 37.61% 44.95% 57.57%
Our TIASL 40.35% 56.81% 72.11% 38.65% 47.59% 59.06%

Table 3: Comparisons with the state-of-the-art models.

• The accuracy of Chen2016 model is better than that of other baselines. It verifies the effectiveness
word pair information, which uses gate mechanism to control the combination of linear and non-
linear interactions between argument pairs. However, there unavoidably exits some noises, and this
model has not considered the sparsity of pair patterns. F1 score of Liu2016 (two levels) model is
higher than that of other baselines, which achieves 1.34% than that of three levels attention’s. It in-
dicates that attention mechanism is useful, and yet paying more attention may bring the over-fitting
problem due to more parameters.

• Our TIASL gains an improvement 1.30% on F1 score than that of Liu2016 (two levels), and an
improvement 1.22% on accuracy than that of Chen2016. The results imply that our model with
interactive attention for the bidirectional asymmetry of two arguments and sparse pair pattern selec-
tion is useful for recognizing implicit discourse relation.

For binary classification, the observations are as follows:

• F1 scores of Temporal relation are the lowest in all models. This is reasonable since it accounts for
the smallest number of instances (only 5%) in the corpus. With the increase of instance number in
different relations, F1 scores also rise. It proves that the corpus is also crucial to implicit discourse
relation recognition.

• Qin2016 gains the best performance on Contingency, and our TIASL model obtains the comparable
score with it. Notably, Chen2016 and Liu2016 (two levels) are quite relevant work to ours. Different
from them, our model integrates the attention-based interactive information between arguments at
representation stage. This may be the main reason why our TIASL model is better than the two
models (the improvements of 2.05% and 2.33%, respectively). Similar results are in Comparison
relation.

• Our TIASL model achieves state-of-the-art performance in recognition of the Expansion relation.
The reasons are two-fold: (1) some argument pairs may have confusable word pairs, which can
be effectively mined by asymmetric attention; (2) some complex argument pairs need to be further
understood their semantic representation and explore the indicative and interactive patterns. Our
TIASL model integrates these two aspects and performs well.

3.4 The Effectiveness of Each Component

In order to verify the effectiveness of attention mechanism, neural tensor layer and l1 regularization, we
design five experiments to compare with our TIASL model. Seen from Table 4, we have the following
observations:

• The performance of LSTM is the worst on each relation. Although Bi-LSTM captures more infor-
mation than LSTM, the results are not very good. The reason is that separately encoding discourse
argument by LSTM or Bi-LSTM ignores the local focused words since it equally treats every word.
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Model Binary Classification Four-way Classification
Comp. Cont. Expa. Temp. F1 Acc.

LSTM 32.95% 43.38% 68.10% 30.80% 36.40% 54.50%
Bi-LSTM 34.01% 44.68% 68.53% 31.27% 36.54% 55.31%
Bi-LSTM + Interactive Attention 35.43% 45.92% 68.57% 32.50% 43.27% 55.68%
Bi-LSTM + Tensor Layer 37.36% 46.73% 69.81% 33.89% 43.61% 55.97%
TIA with k-max pooling 39.78% 55.13% 70.96% 37.65% 46.77% 57.83%
Our TIASL 40.35% 56.81% 72.11% 38.65% 47.59% 59.06%

Table 4: The effects of different components.

• Bi-LSTM with Interactive Attention performs better than the above two simple models. In detail, the
F1 score of this model gains 2.48%, 2.54%, 1.70% improvement on Comparison, Contingency and
Temporal than that of LSTM, respectively. We perform significance test for these improvements,
and they are both significant under one-tailed t-test (p < 0.05). It indicates that the model could
find pair specific clues in two arguments by constructing the relevance of word pairs to some extent.
And the effectiveness of our attention mechanism for capturing the interactive information between
the arguments is crucial at representation stage.

• Bi-LSTM with Tensor Layer slightly achieves better performance. This indicates the effectiveness
of tensor layer for capturing complex interactive features. The TIA model, which combines attention
mechanism and tensor layer, also performs better, but lower than our TIASL model. It is because
that k-max pooling strategy could not guarantee getting the important interaction pairs from the
global perspective. How to represent and explain these interactive features mined in our model will
be our next research focus.

• Our TIASL model achieves the best performance. It not only encodes discourse arguments with
important word pairs by interactive attention, but also captures the more deeper and the more im-
portant semantic interactions by NTN with l1 regularization. The integration of all components is
useful for recognizing implicit discourse relations.

The observations of each component’s four-way classification are consistent with the binary classifica-
tion.

3.5 Interactive Attention Analysis
To demonstrate the validity of our interactive attention, we visualize the heat maps of argument pairs
shown in Figure 2, which shows the interaction matrices of only using Bi-LSTM and our interactive
attention on an example. Every word accompanies with the various background colors. The darker
patches denote the correlations of word pairs are higher. The example of Contingency relation is listed
below:

Arg1: You are really lucky.

Arg2: The earthquake suddenly came two hours after you left.

However, it might be classified as a Comparison relation if we only focus on the informative word
pair (lucky, earthquake) with contrasting sentiment polarity. Therefore, we need to consider the context
of the whole argument pair to infer the correct relation from two back and forth reading directions.

Seen from Figure 2(a), the word pairs (are, you), (lucky, earthquake), (lucky, left) get the higher
scores, the scores on the other pairs are arbitrary. It demonstrates the Bi-LSTM model may be influenced
by the word pair frequency in corpus. Meanwhile, it encodes two arguments separately, which ignores
the relevant and informative interactions between two arguments. Figure 2(b) as a comparison, we
observe that there are the more word pairs obtaining the higher scores, which are ignored in Figure 2(a).
This proves that the effectiveness of generating interactive argument representation by our interactive
attention, which imitates human-like reading strategy.
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(a) Bi-LSTM (only word embedding) (b) Bi-LSTM + Interactive attention

Figure 2: The relatedness between two arguments.

4 Related Work

Traditional methods for implicit discourse relation recognition rely on artificial and shallow features,
such as POS, polarity, word position, etc. Recent neural network based methods acquire the better
performance, and mainly focus on two aspects:

4.1 Argument Representation

The prerequisite of recognizing discourse relation is to have a good argument representation. Most
previous researches use various neural networks, such as CNN, RNN, and hybrid models (Zhang et
al., 2015; Qin et al., 2016a; Rutherford et al., 2016) to encode discourse arguments as low-dimensional,
dense and continuous representations. Ji and Eisenstein (2014) integrate the linguistic features, including
syntactic parsing and coreferent entity mentions into compositional distributed representations.

Though argument representation contains the high-level semantic, it does not embody emphasis during
reading comprehension. Some used neural architectures with attention mechanism pick up the important
information from discourse arguments (Mnih et al., 2014; Zhang et al., 2016). Li et al. (2016) exploit the
hierarchical attention to capture the focus of different granularity. Liu and Li (2016) imitate the repeated
reading strategy, and proposes neural networks with multi-level attention to recognize discourse relations.
However, these researches have not considered the human-like reading strategy from two directions. The
imagination by first reading one argument is different from the other, which has the reciprocal effects on
implicit discourse relation recognition.

4.2 Pair Interactions

The emphasis of discourse arguments is partly obtained by attention mechanism. Most studies tend to
discover more semantic interactions between two arguments by complex neural networks (Chen et al.,
2016; Qin et al., 2016b; Lan et al., 2017). Cai and Zhao (2017) generate discourse argument represen-
tations via pair-specified feature extraction. Lei et al. (2017) conduct word interaction score to capture
both linear and quadratic relation for argument representation.

Neural tensor network is good at capturing multiple interactions in data, and gets the good performance
on entity relation (Socher et al., 2013a), Chinese word segmentation(Pei et al., 2014) and sentiment anal-
ysis (Socher et al., 2013b) tasks. And some NTN-like methods learn the semantic interaction between
discourse arguments (Chen et al., 2016). Yet they do not discriminate the noises and the redundant
information existed in interactions, and ignore the sparsity of pair patterns.

Inspired by sparse learning in deep neural networks (Collins and Kohli, 2014; Yoon and Hwang,
2017; Wen et al., 2017), they use sparse regularization to obtain compact deep networks by removing
unnecessary weighs. In our paper, we introduce sparse learning into neural tensor network to select some
indicative and informative word pair patterns. To our knowledge, our study is the first to employ the idea
of sparse learning in implicit discourse relation recognition.
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5 Conclusion

A novel neural tensor network framework with interactive attention and sparse learning (TIASL) is pro-
posed for implicit discourse relation recognition. We imitate human-like bidirectional reading strategy,
and encode the semantic representation with reciprocal influence of discourse arguments through interac-
tive attention. And we further adopt neural tensor network with l1 regularization to capture the indicative
and informative interactions between discourse arguments. Our experimental results on PDTB show that
the proposed TIASL model is effective.

However, we just take the surface word pairs to express the correlation by calculating the pair-wise
matrix in this paper. We will automatically mine the deeper interaction between two arguments and
explain the specific patterns of the different relations.
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