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Abstract

We present a neural transition-based model that uses a simple set of edit actions (copy, delete,
insert) for morphological transduction tasks such as inflection generation, lemmatization, and
reinflection. In a large-scale evaluation on four datasets and dozens of languages, our approach
consistently outperforms state-of-the-art systems on low and medium training-set sizes and is
competitive in the high-resource setting. Learning to apply a generic copy action enables our
approach to generalize quickly from a few data points. We successfully leverage minimum risk
training to compensate for the weaknesses of MLE parameter learning and neutralize the negative
effects of training a pipeline with a separate character aligner.

1 Introduction

Morphological string transduction involves mapping one word form into another, possibly given a feature
specification for the mapping, and comprises such inflectional morphology tasks as reinflection and
lemmatization (Figure 1), and related problems such as normalization of historical texts. Traditionally,
this task has been solved with weighted finite state transducers (Mohri, 2004; Eisner, 2002, WFST).
Recently, it has been approached with neural sequence-to-sequence (seq2seq) methods (Faruqui et al.,
2016; Kann and Schütze, 2016), inspired by the advances in neural machine translation (Sutskever et
al., 2014; Bahdanau et al., 2014). Albeit offering a general solution to a special case of the string-to-
string mapping problem, seq2seq models are highly data-intensive. The long tradition of modeling for
morphology offers insights into the specifics of the task, suggesting models that would exploit inductive
biases and thereby attain lower sample complexity. Recent works in seq2seq morphology model full
input string context and unbounded dependencies in the output, but also propose conditioning generation
on the context-enriched representation of one input character at a time (Aharoni and Goldberg, 2017; Yu
et al., 2016). This and constraining character alignment to be monotonic bring this line of work close to
traditional WFST approaches, which monotonically modify a string by performing local changes.

fliegen
� flog{VERB, PAST TENSE,

3RD PERSON, SINGULAR}
na hainmneacha � ainm

Figure 1: Morphological inflection generation in German (left). Lemmatization in Irish (right).

Having as our starting point the hard monotonic attention model of Aharoni and Goldberg (2017,
HA), our goal is to improve seq2seq morphological processing by explicitly modeling local string edits
commonly studied in traditional approaches. Our contributions are as follows:

• First, we explain HA as a neural transition-based system over edit actions. Alternative models are
then available, differing in the choice of edit actions. We argue that extending HA with the COPY

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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edit action is crucial and supported by the nature of the problem, accounting for large performance
gains especially in the low-resource setting.

• Second, trained with the original MLE procedure, HA relies on gold action sequences computed by
a separate character aligner. As a result, the overall approach is a pipeline. We propose enabling
exploration at training (e.g. via expected risk minimization (MRT) or reinforcement learning-style
training), thereby allowing the model to prefer alternative actions that also lead to the correct output
sequence and neutralizing negative effects of the pipelined architecture. Additionally, this approach
benefits from directly optimizing a sequence-level performance metric.

• Third, we conduct extensive experiments on the morphological inflection generation, reinflection
and lemmatization tasks, showing that our approaches come near to or improve on the state-of-the-
art results. We make our code and model predictions publicly available.1

2 Model Description

In our approach, we seek the most probable sequence of edit actions for a given input string and an
optional feature specification for the transduction. Unlike traditional WFST approaches to this prob-
lem, we abandon the explicit modeling of all possible edit sequences via latent alignments in favor of a
greedy, representationally rich RNN-powered transition-based architecture. When training with the MLE

criterion following Aharoni and Goldberg (2017), our overall set-up is a pipeline of a character aligner
followed by a greedy neural string transducer. Character alignments generated by the aligner are mapped
to gold action sequences, whose conditional likelihood the neural transducer then learns to maximize.
Under training with exploration, the neural transducer no longer relies on gold action sequences. Instead,
the parameters are adjusted to directly maximize the model’s accuracy of producing training-set output
sequences.

Let Σx, Σy, and Σa be alphabets of input characters, output characters, and edit actions, respectively.
Let x = x1, . . . , xn, xi ∈ Σx denote an input sequence, y = y1, . . . , yp, yj ∈ Σy an output sequence,
and a = a1, . . . , am, at ∈ Σa an action sequence. Let {fh}Hh=1 be the set of morpho-syntactic features.

seq2seq state-transition system We build a greedy transition-based string transducer that uses a
seq2seq neural network to model arbitrary dependencies in the input sequence, the unbounded action
history, and the non-deterministic choice of the next action. The system operates a buffer filled with
RNN-encoded input characters, and a decoder RNN, which implements a push-only stack. The config-
uration of the system is given by the decoder state. Transitions are scored based on the output of the
decoder, which takes as input the encoded character from the top of the buffer. Here, we elaborate on the
model architecture.

We encode input sequence x with a bidirectional LSTM (Graves and Schmidhuber, 2005)

h1, . . . ,hn = BiLSTM(E(x1), . . . , E(xn)), (1)

where E returns the embedding for xi. Vector hi is thus the representation of xi in the context of the
entire sequence x. We push h1, . . . ,hn in reversed order into the buffer. Transduction begins with the
full buffer and the empty decoder state.

The decoder LSTM keeps track of the past actions and—through conditioning at each step on hi—
knows of character xi at the top of the buffer and the full contents of the buffer. From the latest state of
the decoder ct−1, we compute the configuration of the system:

st = LSTM(ct−1, [A(at−1) ; hi ; f ]), (2)

where the input is the concatenation of (i) the embedding of the previous action (given by A), (ii) hi
from the top of the buffer indicating the current position in x, and—optionally—(iii) feature vector f ,

1https://github.com/ZurichNLP/coling2018-neural-transition-based-morphology
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Transition at Output y Stack Buffer
0 INSERT(BOS) [] [INSERT(BOS)] [f, l, i, e, g, e, n, EOS]
1 COPY [f] [COPY, INSERT(BOS)] [l, i, e, g, e, n, EOS]
2 COPY [f, l] [COPY, COPY, . . . ] [i, e, g, e, n, EOS]
3 DELETE [f, l] [DELETE,COPY, . . . ] [e, g, e, n, EOS]
4 DELETE [f, l] [DELETE, DELETE, . . . ] [g, e, n, EOS]
5 INSERT(o) [f, l, o] [INSERT(o), DELETE, . . . ] [g, e, n, EOS]
6 COPY [f, l, o, g] [COPY, INSERT(o), . . . ] [e, n, EOS]
7 DELETE [f, l, o, g] [DELETE, COPY, . . . ] [n, EOS]
8 DELETE [f, l, o, g] [DELETE, DELETE, . . . ] [EOS]
9 INSERT(EOS) [f, l, o, g]

Figure 2: Transduction of “fliegen” to “flog”. (Above) Visualization of the system as it chooses a3 =
DELETE. (Below) Full transition sequence. Action a0 is always fixed to INSERT(BOS).

which is the concatenation of the embedded morpho-syntactic features φ ⊆ {fh}Hh=1 associated with this
transduction: f = [F (f1) ; · · · ; F (fH)] and F (fh) = F (0) if fh 6∈ φ.

To compute probabilities of transitions at, we feed st through a softmax classifier:

P (at = k | a<t,x,Θ) = softmaxk(W · st + b) (3)

Model parameters Θ include softmax classifier parameters W and b, the embedding parameters, and the
parameters of the encoder and decoder.

Edit actions Traditional transducers edit input sequence x into output sequence y by a sequence of
single-character edit actions from the following set (Cotterell et al., 2014):

• DELETE: Read xi and write nothing. • SUBST(c) for c ∈ Σy: Read xi and write c.
• INSERT(c) for c ∈ Σy: Write c and read nothing. • COPY: Read xi and write xi.

Let INSERTSy be the set of all insertions with respect to Σy. We consider the following two action
alphabets: ΣHA

a = INSERTSy ∪ {DELETE} and ΣCA
a = ΣHA

a ∪ {COPY}.
Alphabet ΣHA

a is from Aharoni and Goldberg (2017) and includes only the INSERT and DELETE

actions. Both substitution and copying of c are expressed as an INSERT(c) followed by a DELETE.
Alphabet ΣCA

a adds a designated COPY action to ΣHA
a . Thus, copying xi to the output sequence can

be executed by one single action. This results in shorter and simpler action sequences dominated by
COPY actions, following the observation that inflectional changes are typically small and most of x is
preserved in y.2

Action execution Operationally, reading xi corresponds to popping its representation hi from the top
of the buffer. The transducer terminates when the buffer is empty and the latest action at is INSERT(EOS),
where EOS is the end-of-sequence character. If we constrain the number of successive insertions to at
most q, the transducer runs in O(n) time, where n is the length of input x.3

2We also experimented with extending ΣHA
a and ΣCA

a with actions for character substitutions. The resulting models perform
similarly to models without substitutions, and so we do not report them here.

3In practice, we simply cap the number of actions at 150.
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f l i e g e n
| | | | | | |
f l o g ε ε ε

f l i e g e n
| | | | | | |
f l o ε g ε ε

Figure 3: Longest Common Substring (LCS, left) and Chinese Restaurant Process (CRP, right) character
alignments for the same x and y. Input sequence x is at the top, output sequence y at the bottom. A CRP

aligner recovers this alignment given sufficient training data and number of iterations.

MLE training The model is trained to maximize the conditional log-likelihood of the data D =
{(x(l),a(l))}Nl=1, which is an everywhere differentiable function of parameters Θ:

L(D,Θ) =
N∑
l=1

m∑
t=1

logP (a
(l)
t | a

(l)
<t,x

(l),Θ) (4)

The gold action sequences a(l) are computed by a deterministic algorithm from some character align-
ment: a(l) = CAlignΣa

(x(l),y(l)). Figure 3 illustrates different character alignment algorithms that we use
in our experiments. A simple procedure for the generation of gold actions from alphabet ΣCA

a would call
the following subroutine d on each pair of character alignment (b1, c1), . . . , (br, cr) between input x and
output y, where bk ∈ Σx ∪ {ε} and ck ∈ Σy ∪ {ε} but not bk = ck = ε:

d(b, c) =


COPY, if b = c,

DELETE, if c = ε,

INSERT(c), if b = ε,

DELETE, INSERT(c) otherwise % substitution

Applying this procedure to e.g. the CRP alignment from Figure 3, we obtain the following gold action
sequence: COPY, COPY, DELETE, INSERT(o), DELETE, COPY, DELETE, DELETE.

Learning with exploration Training with MLE comes with a number of limitations. First, the model
is not exposed to its own errors at training time: It makes predictions conditioned on gold-action his-
tories, which is at odds with test time when the model has to condition on predicted actions. Second,
MLE training increases the model’s per-action likelihood, although at test time, the model’s performance
is assessed with sequence-level accuracy or edit distance. Both constitute well-known MLE training
biases—the exposure bias and the loss-evaluation mismatch (Wiseman and Rush, 2016). Finally, we
would like the model to be less dependent on the gold actions generated by the aligner, which is unin-
formed of the downstream task, and that at training, the model can choose alternative action sequences
leading to correct predictions, if that helps it generalize.

To address all these issues at once, we train the model by minimizing the expected risk (Och, 2003;
Smith and Eisner, 2006) of the actual training data T = {(x(l),y(l))}Nl=1:

R(T,Θ) =
N∑
l=1

Ea|x(l) ; Θ

[
∆(y,y(l))

]
, (5)

where y is computed from a and x, and the risk is given by a combination of normalized Levenshtein
distance (NLD) and accuracy:

∆(y,y(l)) = NLD(y,y(l))− 1{y = y(l)} (6)

Thus, an action sequence a attains the lowest risk of−1 if its corresponding output sequence y is identical
to y(l) of the training sample and the highest risk of +1 if the number of edits from y to y(l) equals the
maximum of their lengths.
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Figure 4: Accuracy as a function of dataset size (left) and the ratio of dataset size to the num-
ber of unique transformations (right) for selected experiments. A log scale is used for the
X axis. CLX50/CLX300=average scores on CELEX with 50/300 samples (Figure 5), SGM16
=SIGMORPHON2016, SGM17L/SGM17M=SIGMORPHON2017-low/medium, LEM=average scores on
lemmatization, LEMGA/LEMTL=lemmatization Irish/Tagalog.

Following Shen et al. (2016), we approximate the expectation under the posterior distribution P (a |
x(l); Θ) with ancestral sampling from the model and re-normalize the sampled probability scores to get
a new distribution Q:

R(D,Θ) ≈
N∑
l=1

∑
a∈S(x(l))

Q(a | x(l); Θ, α) ∆(y,y(l)) (7)

Q(a | x(l); Θ, α) =
P (a | x(l); Θ)α∑

a′∈S(x(l)) P (a′ | x(l); Θ)α
(8)

Here, S(x(l)) denotes the set of samples from P (a | x(l); Θ) and α ∈ R is a hyper-parameter that
controls for the peakedness of the new distribution Q.

3 Experiments

In the following experiments, we evaluate the performance of our model with an explicit copy action
(referred to as CA) and show how it further improves with exploration training (-MRT).

Unless stated otherwise, our MLE models are trained on gold actions computed using Mans Hulden’s
Chinese Restaurant Process string-pair aligner (indicated as CRP)4 and decoded with beam search. On
some problems, we find a simple strategy, which heuristically maximizes the number of COPY actions, to
work surprisingly well: The Longest Common Substring aligner (LCS) first aligns the longest common
substring of x and y and then pads both strings to the same length.

MRT models are initialized with the corresponding MLE models and decoded with beam search. We
found the best value of α = 1 from {1, 0.1, 0.05} on the CELEX-ALL task (§ 3.1) and used that for all
other datasets as well.

We use the same embedding parameters for characters and insertion actions (i.e. A(INSERT(b)) =
E(b)) to match closely the set-up of Aharoni and Goldberg (2017). In all our systems, the dimension of
the character and action embeddings is 100, LSTM hidden layers are of size 200, and all LSTMs are single-
layer. We use LSTMs with peephole connections and coupled input and forget gates (Greff et al., 2016).
We optimize with ADADELTA (Zeiler, 2012) and update parameters at a single training sample (=batch
size 1) during MLE training. For MRT, we build sets S(x(l)) by drawing twenty samples per training
example. We mini-batch using these sets as batches. We include the gold action sequence (generated for
MLE training) into the batch. We implement our models using DyNet (Neubig et al., 2017).

All experiments report exact accuracies. They are mean accuracies over single runs with different
initializations, unless the model is an ensemble (marked with an -E suffix). The ensembles are built with
majority voting over differently initialized runs of the same model.

4https://github.com/ryancotterell/sigmorphon2016/blob/master/src/baseline/align.c
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Figure 5: Learning curves on the CELEX dataset.

Model 13SIA 2PIE 2PKE rP Avg.
CELEX-BY-TASK

LAT 87.5 93.4 87.4 84.9 88.3
NWFST 85.1 94.4 85.5 83.0 87.0
HA∗ 84.6 93.9 88.1 85.1 87.9
CA 85.0 94.5 88.0 84.9 88.1
HA∗-MRT 84.8 94.0 88.1 85.2 88.0
CA-MRT 85.6 94.6 88.0 85.3 88.4

CELEX-ALL (ensembles)
MED 83.9 95.0 87.6 84.0 87.2
HA 85.8 95.1 89.5 87.2 89.5
HA∗-E 85.3 94.8 88.9 87.4 89.1
CA-E 85.8 94.9 88.8 86.7 89.1
HA∗-MRT-E 85.8 95.0 89.2 87.7 89.4
CA-MRT-E 86.7 94.9 89.3 87.1 89.5

Table 1: Results on the CELEX dataset.

We evaluate our approaches on four standard morphological datasets and compare to the following
published systems: (HA) the ensemble of five MLE models over ΣHA

a of Aharoni and Goldberg (2017)
as well as our re-implementation of a single model marked as HA∗; (MED) the ensemble of five soft-
attentional models of Kann and Schütze (2016) and an alternative implementation of the soft-attention
approach, SOFT, by Aharoni and Goldberg (2017); (NWFST) the neural WFST model of Rastogi et al.
(2016) and (LAT) the non-neural WFST with latent variables of Dreyer et al. (2008).

3.1 Morphological reinflection
The task is to map an inflected form x into another form y of that word given a feature specification φ
for this transformation.

CELEX This dataset of German verbal morphology transformations was compiled by Dreyer et
al. (2008) from the CELEX database (Baayen et al., 1993). It comprises four transformations
(13SIA7→13SKE, 2PIE 7→13PKE, 2PKE 7→z, rP 7→pA),5 featuring such morphological phenomena as cir-
cumfixation, infixation, and irregular stem changes. The data are split into five folds, each with 500
training samples per transformation. We conduct two types of evaluation on these data. In the original
experiment, which we call CELEX-BY-TASK, models are trained on each transformation separately, and
scores are averaged over the folds. In the second experiment, CELEX-ALL, five single models are trained
on all the 2,000 samples of one fold and then ensembled. Again, scores are averaged over the folds.
As part of CELEX-BY-TASK, we additionally evaluate how our models perform on even fewer—50, 100,
and 300—training samples on two tasks, 2PKE and 13SIA. CELEX could be considered a relatively sim-
ple dataset as the ratio of the number of training samples to the number of unique transformations is
high, even though the overall training-data size is modest. On the other hand, most CELEX tasks require
learning complex lexical properties such as the distinction between strong and weak verbs or prefix types.

3.2 Morphological inflection generation
Given a feature specification φ and a base form x, the task is to generate the corresponding inflected
form y.

Sigmorphon 2017 The low (100 training samples) and medium (1,000 training samples) settings of the
SIGMORPHON 2017 shared task data (Cotterell et al., 2017) feature fifty-two languages. The datasets
contain extremely diverse language material and morphological transformations. Unlike CELEX, input x
is always a dictionary form, however morphological changes are unrestricted. The low setting constitutes
a very hard learning problem, with the ratio of training samples to unique transformations being 2.8 on

5Glossary: 13SIA=1st/3rd person singular indicative past; 13SKE=1st/3rd person singular subjunctive present; 2PIE=2nd
person plural indicative present; 13PKE=1st/3rd plural subjunctive present; 2PKE=2nd person plural subjunctive present;
z=“zu” infinitive; rP=plural imperative; pA=past participle.
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Model (averages) low medium Model (ensembles) low medium
baseline 37.9 64.7 37.9 64.7
HA∗ lcs 29.1 78.5 HA∗-E lcs 31.5 80.2
CA lcs 47.3 79.5 CA-E lcs 48.8 81.0
HA∗ crp 23.9 75.4 HA∗-E crp 26.1 77.8
CA crp 42.5 78.9 CA-E crp 44.0 80.6
HA∗-MRT lcs 30.2 79.6 HA∗-MRT-E lcs 33.1 81.5
CA-MRT lcs 48.1 80.3 CA-MRT-E lcs 49.9 81.9
HA∗-MRT crp 25.3 78.1 HA∗-MRT-E crp 28.1 80.5
CA-MRT crp 43.6 81.1 CA-MRT-E crp 45.7 82.9

HACM-E7 46.8 81.8
HAEM-E7 48.5 80.3
HA[EC]M-E15 50.6 82.8

Table 2: Results on the SIGMORPHON 2017 dataset.

average (SD = 2.9). In the medium setting, the mean number of unique transformations rises to 19.8
(SD = 29.3), with a minimum of 1.4 observed for Basque and a maximum of 200 for English.

For this dataset, we also show the results for the official baseline, a ruled-based system that is particu-
larly strong in the low setting,6 and the best systems of the shared task (Makarov et al., 2017).

Sigmorphon 2016 The SIGMORPHON 2016 shared task dataset (Cotterell et al., 2016) is the largest
dataset. It comprises ten languages with about 12,800 training examples on average. The number of
samples per transformation varies from 6 for Maltese to 198 for Hungarian, being 112 samples per
transformation on average (SD = 51.3). In both SIGMORPHONS, we train five single models for each
language.

3.3 Lemmatization

Given an inflected word form x (without any feature specification), the task is to predict the correct
dictionary form y. Following Dreyer (2011) and Rastogi et al. (2016), we evaluate our approach on a
subset of the dataset by Wicentowski (2002). The data, split into ten folds, comprise four languages, with
per-fold training sizes ranging on average from 1,100 for Irish to 7,635 for Tagalog. For each language,
we train a separate model for each fold and then average the scores over the folds.

4 Results and Discussion

Generally, comparing the performance of CA and HA (or HA∗), we observe that CA achieves great per-
formance gains on small-sized problems while matching HA in the higher-resource setting (Figure 4).

4.1 Morphological reinflection

CA is a very competitive model on both CELEX-BY-TASK and CELEX-ALL, and adding exploration (CA-
MRT) results in the strongest performance in both evaluations (Table 1). In contrast to HA∗, in very low
settings (Figure 5), CA performs not much worse than the only non-neural model, LAT. HA∗ and NWFST

need around 300 training examples to start catching up, and the extremely low-resource conditions (50,
100) on 13SIA are especially troublesome for HA∗. On CELEX-ALL, even with more training data,
soft-attentional ensemble MED is typically much weaker, including tasks with infixation (2PKE) and
circumfixation (rP).

Advancing further on most CELEX tasks is difficult due to morphological irregularities. As an example,
examining the predictions of CA-MRT on one fold of the rP task reveals that the system largely fails to
predict strong-verb participles (71% of the errors), conjugating 67% of them as if they were regular.

6https://github.com/sigmorphon/conll2017/tree/master/baseline
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Model RU DE ES KA FI TR HU NV AR MT Avg.
HA∗ 91.32 95.91 98.63 97.69 94.75 96.99 98.44 90.57 93.93 85.28 94.35
CA 90.81 95.97 98.75 97.97 95.59 97.11 98.64 89.74 93.59 85.77 94.39

ensembles
MED 91.46 95.80 98.84 98.50 95.47 98.93 96.80 91.48 99.30 88.99 95.56
SOFT 92.18 96.51 98.88 98.88 96.99 99.37 97.01 95.41 99.30 88.86 96.34
HA 92.21 96.58 98.92 98.12 95.91 97.99 96.25 93.01 98.77 88.32 95.61
HA∗-E 91.95 96.28 98.85 97.90 95.78 97.55 98.77 92.14 95.08 87.82 95.21
CA-E 91.87 96.36 98.84 98.35 96.50 97.74 98.90 92.14 94.63 87.66 95.30

Table 3: Results on the SIGMORPHON 2016 dataset: ru=Russian, de=German, es=Spanish,
ka=Georgian, fi=Finnish, tr=Turkish, hu=Hungarian, nv=Navaho, ar=Arabic, mt=Maltese.

4.2 Morphological inflection generation

Table 2 summarizes the results on the SIGMORPHON 2017 dataset. In the low setting, CA easily beats
the baseline system, whereas HA∗ fails to do so. Our simple majority-vote ensemble CA-MRT-E over five
models comes very close to the complex 15-strong ensemble HA[EC]M-E15 of Makarov et al. (2017),
the best system of the shared task. Under a paired permutation test, the latter system is statistically
significantly better (p < 0.05) on only twenty one languages.

In the medium setting, CA maintains the advantage, although the performance gap from HA∗ is much
smaller. CA-MRT-E even outperforms the shared task’s best system, although the gain is statistically
significant for only ten languages. In both settings, MRT consistently improves the performance of both
the HA∗ and CA models.

In the high-resource scenario of SIGMORPHON 2016 (Table 3), HA∗ and CA attain virtually identical
results, occasionally outperforming the soft-attentional ensembles. Unlike HA, we use the same set of
hyper-parameters (the dimension of embeddings, the number of hidden LSTM layers, etc.) for all of
our experiments, which might explain that both our reimplementation HA∗ and CA perform less strongly
here. Due to computational restrictions, we could not apply MRT to this dataset.

4.3 Lemmatization

On the lemmatization task (Table 4), CA strongly outperforms WFST models LAT and NWFST on aver-
age. Yet, the HA∗ reimplementation consistently delivers the best results on every language. The error
analysis for English in Rastogi et al. (2016) mentions the tendency of their system, NWFST, to simply
copy the inflected word over, which accounts for 25% of English-language errors. Given that CA also
has a dedicated copy action, one might suspect that the inferior performance of CA compared to HA∗ for
English and Basque would be due to excessive copying. An inspection of the incorrectly predicted lem-
mas reveals that both systems produce virtually the same number of copy errors. The difference in error
counts is actually due to cases where the system modifies the inflected word form. For English, errors
typically occur in strong verbs and verbs with graphemic alternations, as e.g. “oozing” gets incorrectly
lemmatized as “ooz”. The scores of over 97% on every language and the kind of unsolved cases, likely
requiring external resources, suggest that this task should be considered solved.

As a final remark, we note that with the datasets at hand, performance attribution is often hampered
by the lack of explicit characterization of morphological phenomena or lexical properties at the example
level (we have derived some of these meta-data for the CELEX rP task). Given the difficulties interpreting
neural models, computational morphology could arguably profit from challenge sets that have recently
been gaining popularity in machine translation (Sennrich, 2017; Avramidis et al., 2018).

5 Related Work

Traditional models for morphological string transduction are discriminatively trained WFSTs (Cotterell
et al., 2014; Dreyer et al., 2008; Eisner, 2002). The transducer defines eligible edit sequences for x (each
implying a different monotonic character alignment), and its weights are expressed in terms of hand-
crafted features. Rastogi et al. (2016) employ RNNs to parametrize the weights of a globally normalized
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Model basque english irish tagalog Avg.
Size 4.7K 3.9K 1.1K 7.6K 4.3K

LAT 93.6 96.9 97.9 88.6 94.2
NWFST 91.5 94.5 97.9 97.4 95.3
HA∗ lcs 97.0 97.5 97.9 98.3 97.7
CA lcs 96.3 96.9 97.7 98.3 97.3
HA∗ crp 96.2 97.7 97.3 97.9 97.3
CA crp 96.1 96.7 96.8 97.6 96.8

Table 4: Results on the lemmatization dataset.

WFST, thereby conditioning on global context. The powerful approach of Dreyer et al. (2008) adds latent
variables to a globally normalized log-linear WFST to learn task-specific properties: a word’s paradigm
class and approximate morphological segmentation.

Enabling soft character alignment via a deterministic function of inputs (Kann and Schütze, 2016) has
proven crucial to the success of seq2seq models first proposed for this task in Faruqui et al. (2016). In
line with the traditional simplification of the task, other neural-network approaches treat hard monotone
character alignment as a latent variable that the model marginalizes out using dynamic programming,
while enabling unbounded dependencies in the output and permitting online generation (Yu et al., 2016;
Graves, 2012). An appealing alternative to latent alignment is to learn from supervised alignment, an
idea explored to train soft-attention models (Mi et al., 2016). For hard-attention models (Aharoni and
Goldberg, 2017), training with an observed alignment is particularly simple as it results in learning from
a single gold action sequence.

A state-transition system is an elegant, linear-time model for morphological string transduction, in
which eligible monotonic edit sequences are implied by the semantics of the actions. As demonstrated
on other tasks (Dyer et al., 2015; Andor et al., 2016), when provided with global context via RNNs,
the model overcomes the limitations of a locally normalized conditional distribution, while retaining
computational efficiency.

Using a single designated copy action in not new in morphological string transduction, e.g. the SIG-
MORPHON 2016 feature-based state-transition baseline uses COPY[n], where n is the number of char-
acters to copy. Biasing towards copy edits is crucial to the performance of the model of Rastogi et al.
(2016). An alternative to the copy action is to introduce a binary latent variable that signals whether
yi is copied from xi or generated (Gu et al., 2016; Gulcehre et al., 2016; See et al., 2017). Extending
models with alignment variables with such a copying mechanism is simple as the the choice of which xi
has to be copied need not be modeled (Makarov et al., 2017): The copy variable points to the xi that yj
is aligned with. This alternative requires learning additional model parameters, which could explain its
somewhat worse performance on smaller-sized problems.

Minimum risk training (Smith and Eisner, 2006; Och, 2003) is one simple solution enabling explo-
ration and addressing the loss-evaluation mismatch. The approach of Shen et al. (2016) closely relates
to classical policy gradient methods in reinforcement learning (Edunov et al., 2018). A number of alter-
native methods have recently been proposed to address the MLE training biases in the context of seq2seq
models (Andor et al., 2016; Wiseman and Rush, 2016; Ranzato et al., 2016; Rennie et al., 2017).

6 Conclusion

In a large-scale evaluation on different morphological tasks and languages, we show that a neural
transition-based system over edit actions consistently outperforms state-of-the-art systems on morpho-
logical string transduction tasks in low- and medium-resource settings and is competitive on large training
sets. Crucially, adding a designated action to copy the input character over to the output string helps the
transition model generalize quickly from very few data points. Using a training procedure that enables
exploration of the action space (e.g. minimum risk training) consistently improves the performance of
our models as they are exposed to action sequences other than those proposed by the character aligner
underlying the static oracle in the MLE training procedure.
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