
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: System Demonstrations,
pages 228–232, Osaka, Japan, December 11-17 2016.

CamelParser:
A System for Arabic Syntactic Analysis

and Morphological Disambiguation

Anas Shahrour, Salam Khalifa, Dima Taji, Nizar Habash
Computational Approaches to Modeling Language (CAMeL) Lab

New York University Abu Dhabi, UAE
{anas.shahrour,salamkhalifa,dima.taji,nizar.habash}@nyu.edu

Abstract

In this paper, we present CamelParser, a state-of-the-art system for Arabic syntactic dependency
analysis aligned with contextually disambiguated morphological features. CamelParser uses a
state-of-the-art morphological disambiguator and improves its results using syntactically driven
features. The system offers a number of output formats that include basic dependency with mor-
phological features, two tree visualization modes, and traditional Arabic grammatical analysis.

1 Introduction

Automatic processing of Arabic is challenging for several reasons (Habash, 2010). Arabic is morpho-
logically rich and highly ambiguous. The morphological analyzer we use represents Arabic words with
15 features, such as gender, number, person, state, case, etc. (Pasha et al., 2014). And due to Arabic’s
optional diacritization orthography, words have an average of 12 analyses per word (Pasha et al., 2014).
Furthermore, Arabic morphology and syntax have complex agreement rules. For example, a noun may
get its case by being the subject of a verb and its state by being the head of an Idafa (possessive) con-
struction; while adjectives modifying this noun agree with it in its case, their state is determined by the
state of the last element in the Idafa construction chain the noun heads.

In this paper, we present CamelParser, a system for Arabic syntactic dependency analysis aligned with
contextually disambiguated morphological features. CamelParser uses a state-of-the-art morphological
disambiguator, MADAMIRA (Pasha et al., 2014), and improves its results using syntactically driven
features. The system offers a number of output formats that include basic Columbia Arabic Treebank
dependency (Habash and Roth, 2009) with morphological features, two tree visualization modes, and
traditional Arabic grammatical analysis. CamelParser is publicly available for research purposes.1

2 Related Work

In related work on modeling Arabic syntax and morphology, Habash et al. (2007a) demonstrated that
given good syntactic representations, case prediction can be done with a high degree of accuracy. Alkuh-
lani et al. (2013) later extended this work to cover all morphological features. Marton et al. (2013)
explored the contribution of different POS tag sets and several lexical and inflectional morphology fea-
tures to dependency parsing of Arabic. Building on all of these previous efforts, Shahrour et al. (2015)
presented an approach for improving the quality of several morphological features using syntax. They
demonstrated that predicted syntax can significantly improve the full morphological analysis choice, par-
ticularly for case and state. Our system, CamelParser, further builds on their approach and improves on
it by optimizing the syntactic parsing and by offering output in several formats including aligned syntax
and morphology, traditional Arabic grammatical analysis (H. @Q«@ ǍiςrAb),2 tree visualization, and tree
annotation output compatible with the dependency annotation tool TrEd (Pajas, 2008).

1CamelParser can be downloaded from http://camel.abudhabi.nyu.edu/resources/.
2Arabic transliteration is presented in the Habash-Soudi-Buckwalter scheme (Habash et al., 2007b).

228

3 System Description

3.1 Overview

CamelParser is based on the system proposed by Shahrour et al. (2015) and uses the same data splits
(Train, Dev and Test) described by Diab et al. (2013) for the Penn Arabic Treebank (PATB, parts 1, 2
and 3) (Maamouri et al., 2004), and the same morphological feature representations derived from the
PATB analyses following the approach used in the MADAMIRA Arabic morphological analysis and
disambiguation system (Pasha et al., 2014). We trained an Arabic dependency parser using MaltParser
(Nivre et al., 2007) on the Columbia Arabic Treebank (CATiB) version of the PATB (Habash and Roth,
2009). We used an enriched data format that includes all our morphological features and three POS tag
sets with different degrees of granularity: CATiBex (Marton et al., 2013), Kulick (Kulick et al., 2006),
and Buckwalter (Buckwalter, 2002).

CamelParser improves on the morphological disambiguation done in MADAMIRA using the syntactic
analysis information to predict the case and state features with an unlexicalized machine learning model.
The predicted case and state are used to select a new morphological analysis. The final output consists
of the syntax in CATiB style aligned with the MADAMIRA morphology features for each token (see the
list of features exemplified in Table 1). The output formats are discussed in section 3.4.

3.2 Syntactic Parser Optimization

For parser optimization, we divided the Dev set into two parts with nearly equal number of tokens:
DevTune (35,759 words) and DevTest (35,750 words). During the optimization, the parser was trained on
Train (with gold morphological features) and evaluated against DevTune (with predicted morphological
features). DevTest is reserved for future development.

The optimization was performed in two stages. The first stage is using MaltOptimizer (Ballesteros
and Nivre, 2012), a tool for optimizing MaltParser for a specific dataset. MaltOptimizer does not allow
the user to use separate train and test sets, a feature that we need to train the parser on gold features and
evaluate against predicted features. For this reason, we used a modified version of MaltOptimizer that
allows the user to provide separate train and test sets.3

While MaltOptimizer optimizes for the parsing algorithm, the learning algorithm, and the feature
model, it doesn’t optimize for the set of morphological features used. That is, it cannot produce an
optimal subset of morphological features, it can either conclude that it helps to include all features or
that it helps to exclude them all. This is why a second stage of optimization is performed to optimize
for the morphological feature set. The lemma is the exception as it is represented in a separate column
in the CoNLL-X format, and so MaltOptimizer can optimize for it separately. In the second stage of
optimization, we use MaltParser in the optimal settings from the first stage. The optimization is done in
a greedy way starting with an empty morphological feature set or with the lemma if it was selected in the
first stage. At each round of optimization, we decide which of the remaining morphological features score
is the highest when added to the current feature set, and if the added feature gives an improvement to the
labeled attachment score, a new feature set is determined and the optimization continues. Otherwise, the
new feature is dropped and the optimization round is concluded.

3.3 Arabic Grammatical Analysis

To facilitate the use of this system in the context of Arabic grammar education, the CamelParser output
is mapped to the traditional way of expressing Arabic grammatical analyses (H. @Q«@ ǍiςrAb). The system
traverses the syntactic tree and uses a collection of grammatical analysis and morphology rules to trans-
late the syntactic and morphological information to the traditional grammatical analysis representation.
The output is provided in plain text or tabular HTML format. Figure 1.(iii) shows an example grammat-
ical analysis output. The grammatical analysis output for the noun hAK. P

@ ÂrbAH ‘profits’, which is the

subject in the example translates to the following: the subject with a nominative case indicated by the
‘Damma’ ending, and it is the head of an Idafa construct.

3We are thankful to Miguel Ballesteros and Joakim Nivre for providing us with the modified version of MaltOptimizer.
229

1.(i) CATiB Dependency Column Format

1 tzAydt VRB 0 —
2 >rbAH NOM 1 SBJ
3 AlmjmwEp NOM 2 IDF
4 Al<sbAnyp PROP 3 MOD
5 Alrsmyp NOM 3 MOD
6 fy PRT 1 MOD
7 AlsnwAt NOM 6 OBJ
8 AlE$r NOM 7 MOD
9 Al>xyrp NOM 7 MOD
10 . PNX 1 MOD

1.(ii) CATiB Dependency Tree Format
<P 	Yg. >

�HYK
@ 	Q�K

hAK. P

@

�é«ñÒj. ÖÏ @
�éJ
 	K AJ.�B @ �éJ
ÖÞ�QË @

ú

	̄

�H@ñ	J�Ë@

Qå��ªË@ �èQ�
 	g

B@

.

1.(iii) Traditional Arabic Grammatical Analysis (H. @Q«@)

H. @Q«B@ 	áÓ AêË Ém× B �é 	J» A�Ë@ �I�
 	K

A�JË @ Z A�K ZA�JË @ð , i�J 	®Ë @ úÎ« ú

	æJ.Ó ú
æ
	�AÓ Éª 	̄ : �HYK
@ 	Q�K

	¬A 	�Ó ñëð �éÒ 	�Ë@ éª 	̄P �éÓC«ð ¨ñ 	̄QÓ É«A 	̄ : hAK. P

@

�èQå�ºË@ èQk. �éÓC«ð PðQm.× éJ
Ë @
	¬A 	�Ó : �é«ñÒj. ÖÏ @�èQå�ºË@ èQk. �éÓC«ð PðQm.× [�é«ñÒj. ÖÏ @] �Iª	K : �éJ
 	K AJ.�B @�èQå�ºË@ èQk. �éÓC«ð PðQm.× [�é«ñÒj. ÖÏ @] �Iª	K : �éJ
ÖÞ�QË @

Qk.
	¬Qk : ú

	̄

(ÕËA� �I	K ñÓ ©Ôg. ñëð) �èQå�ºË@ èQk. �éÓC«ð [ú

	̄] Qm.Ì'@ 	¬Qm�'. PðQm.× Õæ� @ : �H@ñ	J�Ë@

�èQå�ºË@ èQk. �éÓC«ð PðQm.× [�H@ñ	J�Ë@] �Iª	K : Qå��ªË@
�èQå�ºË@ èQk. �éÓC«ð PðQm.× [�H@ñ	J�Ë@] �Iª	K : �èQ�
 	g

B@

Õæ

�̄Q�K �éÓC« : .

Figure 1: CamelParser Output Formats. Morphological features are not shown due to space limita-
tions. The example sentence is . �èQ�
 	g

B@ Qå��ªË@ �H@ñ	J�Ë@ ú

	̄ �éJ
ÖÞ�QË @ �éJ
 	K AJ.�B @ �é«ñÒj. ÖÏ @ hAK. P

@ �HYK
@ 	Q�K tzAydt

ÂrbAH AlmjmwEh̄ AlǍsbAnyh̄ Alrsmyh̄ fy AlsnwAt Alς šr AlÂxyrh̄ (Lit. increased profits the-group the-
Spanish the-official in the-years the-ten the-last.) ‘The profits of the official Spanish group increased in
the last ten years.’ The output in 1.(i) is in the Buckwalter Transliteration scheme (Habash et al., 2007b).

3.4 Output Formats
The CamelParser produces the following output formats:

• Syntactic analysis in the CATiB dependency representation (Habash and Roth, 2009) aligned with
the morphology of each token in the feature-value pair format used in MADAMIRA (Pasha et al.,
2014). Table 1 shows the features and their values for one example word. For more details on
Arabic morphological features, see (Habash, 2010).

• Traditional Arabic grammatical analysis format.
• Tree visualization in PDF format.
• Tree file in .fs format for annotation in the TrEd tree editor (Pajas, 2008).

Additionally, as a side product, CamelParser generates an improved morphological disambiguation
file in .mada format (MADAMIRA tool output), and a corresponding ATB4MT tokenization file (Ara-
bic Treebank tokenization scheme). Figure 1 shows the same analysis in the first three output formats
discussed above.

230

Feature Value Description of Feature and Value
1 tok AlmjmwEp Arabic Treebank token form (Buckwalter Transliteration)
2 toknorm AlmjmwEp Alif/Ya normalized token (Buckwalter Transliteration)
3 toklex majomuwEap Lemma of token (Buckwalter Transliteration)
4 tok utf8 �é«ñÒj. ÖÏ @ Arabic Treebank token (UTF8)
5 toknorm utf8 �é«ñÒj. ÖÏ @ Alif/Ya normalized token form (UTF8)
6 toklex utf8 �é �«ñ �Ò�m.

�× Lemma of token (UTF8)
7 catib4 NOM A coarser version of CATiB POS (PROP is mapped to

NOM, and VRB-PASS is mapped to VRB)
8 catibex Al-NOM-p CATiBEX POS tag (Marton et al., 2013)
9 pos noun MADAMIRA’s POS tag (Pasha et al., 2014)
10 gloss collection;group;bloc English Gloss
11 prc3 0 Proclitic 3 (question proclitic), with value 0
12 prc2 0 Proclitic 2 (conjunction proclitic), with value 0
13 prc1 0 Proclitic 1 (preposition proclitic), with value 0
14 prc0 Al det Proclitic 0 (article proclitic), with value Al det for the deter-

miner È@ Al ‘the’
15 per na Person, with value N/A
16 asp na Aspect, with value N/A
17 vox na Voice, with value N/A
18 mod na Mood, with value N/A
19 gen f Gender, with value f for feminine
20 num s Number, with value s for single
21 stt d State, with value d for definite
22 cas g Case, with value g for genitive
23 enc0 0 Enclitic 0 (pronominals), with value 0
24 rat y Rationality (currently under development; defaulting to y)
25 catib6 NOM CATiB POS tag (Habash and Roth, 2009)
26 penpos DT+NN Penn POS tag (Habash, 2010)
27 bw DET+NOUN+NSUFF FEM SG

+CASE DEF GEN
Buckwalter POS tag (Buckwalter, 2002)

Table 1: The features generated by CamelParser for the word �é«ñÒj. ÖÏ @ Almjmwςh̄ ‘the group’ from the
example shown in Figure 1, and their values and descriptions. The system’s transliterated Arabic values
are in the Buckwalter scheme (Habash et al., 2007b). The exact output line from CamelParser is:
3 AlmjmwEp NOM 2 IDF tok:AlmjmwEp toknorm:AlmjmwEp toklex:majomuwEap tok utf8:

�é«ñÒj. ÖÏ @
toknorm utf8:

�é«ñÒj. ÖÏ @ toklex utf8:
�é �«ñ �Ò�m.

�× catib4:NOM catibex:Al-NOM-p pos:noun

gloss:collection;group;bloc prc3:0 prc2:0 prc1:0 prc0:Al det per:na asp:na

vox:na mod:na gen:f num:s stt:d cas:g enc0:0 rat:y catib6:NOM pennpos:DT+NN

bw:DET+NOUN+NSUFF FEM SG+CASE DEF GEN.

4 Evaluation

Parsing Accuracy We compare the performance of CamelParser to the parser described in Shahrour et
al. (2015), henceforth, Baseline Parser. The two systems use the same training data (Train) and report on
the same testing data (Test) in predicted morphology setting. CamelParser, however, uses more features
and has been optimized as discussed above. In terms of labeled attachment, unlabeled attachment, and
label accuracy, CamelParser achieves 83.8%, 86.4%, and 93.2%, respectively. These are significant
improvements over the Baseline Parser’s respective scores of 81.6%, 84.6%, and 92.0%. Previously
reported state-of-the-art results by Marton et al. (2013) are 81.7%, 84.6%, and 92.8% (again, for labeled
attachment, unlabeled attachment, and label accuracy, respectively). We present their numbers here
although it is hard to conduct a fair comparison because of differences in training and testing data sets.

Morphological Disambiguation Accuracy We compare the performance of the morphological dis-
ambiguation produced by CamelParser to that of the MADAMIRA system which CamelParser uses. All
the results are reported on the same data set (Test). There are many metrics that can be used, but we focus
here on two harsh metrics: full word diacritization accuracy and all morphological feature selection. The
MADAMIRA system produces 88.1% and 86.1% for these two metrics respectively. CamelParser’s use
of syntax to improve morphological analysis raises the scores to 90.8% and 88.7%.

231

5 Conclusion

We presented CamelParser, a system for improved syntactic analysis and morphological disambigua-
tion of Arabic. The system uses an optimized syntactic parser and produces morphologically-enriched
syntactic dependencies, along with tree visualizations, TrEd file outputs for annotation, and traditional
grammatical analyses.

References
Sarah Alkuhlani, Nizar Habash, and Ryan Roth. 2013. Automatic morphological enrichment of a morphologically

underspecified treebank. In HLT-NAACL, pages 460–470.

Miguel Ballesteros and Joakim Nivre. 2012. Maltoptimizer: an optimization tool for maltparser. In Proceedings
of the Demonstrations at the 13th Conference of the European Chapter of the Association for Computational
Linguistics, pages 58–62. Association for Computational Linguistics.

Tim Buckwalter. 2002. Buckwalter Arabic Morphological Analyzer Version 1.0. Linguistic Data Consortium,
University of Pennsylvania, 2002. LDC Catalog No.: LDC2002L49.

Mona Diab, Nizar Habash, Owen Rambow, and Ryan Roth. 2013. LDC Arabic treebanks and associated corpora:
Data divisions manual. arXiv preprint arXiv:1309.5652.

Nizar Habash and Ryan M Roth. 2009. CATiB: The Columbia Arabic Treebank. In Proceedings of the ACL-
IJCNLP 2009 Conference Short Papers, pages 221–224. Association for Computational Linguistics.

Nizar Habash, Ryan Gabbard, Owen Rambow, Seth Kulick, and Mitchell P Marcus. 2007a. Determining case in
Arabic: Learning complex linguistic behavior requires complex linguistic features. In EMNLP-CoNLL, pages
1084–1092.

Nizar Habash, Abdelhadi Soudi, and Tim Buckwalter. 2007b. On Arabic Transliteration. In A. van den Bosch and
A. Soudi, editors, Arabic Computational Morphology: Knowledge-based and Empirical Methods. Springer.

Nizar Habash. 2010. Introduction to Arabic Natural Language Processing. Morgan & Claypool Publishers.

Seth Kulick, Ryan Gabbard, and Mitch Marcus. 2006. Parsing the Arabic Treebank: Analysis and Improvements.
In Proceedings of the Treebanks and Linguistic Theories Conference, pages 31–42, Prague, Czech Republic.

Mohamed Maamouri, Ann Bies, Tim Buckwalter, and Wigdan Mekki. 2004. The Penn Arabic Treebank: Building
a Large-Scale Annotated Arabic Corpus. In NEMLAR Conference on Arabic Language Resources and Tools,
pages 102–109, Cairo, Egypt.

Yuval Marton, Nizar Habash, and Owen Rambow. 2013. Dependency parsing of modern standard Arabic with
lexical and inflectional features. Computational Linguistics, 39(1):161–194.

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas Chanev, Gülsen Eryigit, Sandra Kübler, Svetoslav Marinov, and
Erwin Marsi. 2007. MaltParser: a language-independent system for data-driven dependency parsing. Natural
Language Engineering, 13(02):95–135.

Petr Pajas. 2008. Tred: Tree editor. http://ufal.mff.cuni.cz/ pajas/tred.

Arfath Pasha, Mohamed Al-Badrashiny, Ahmed El Kholy, Ramy Eskander, Mona Diab, Nizar Habash, Manoj
Pooleery, Owen Rambow, and Ryan Roth. 2014. MADAMIRA: A Fast, Comprehensive Tool for Morphologi-
cal Analysis and Disambiguation of Arabic. In In Proceedings of LREC, Reykjavik, Iceland.

Anas Shahrour, Salam Khalifa, and Nizar Habash. 2015. Improving Arabic diacritization through syntactic anal-
ysis. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, EMNLP
2015, Lisbon, Portugal, September 17-21, 2015, pages 1309–1315.

232

