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Abstract
This paper introduces Valencer: a RESTful API to search for annotated sentences matching a
given combination of syntactic realizations of the arguments of a predicate – also called valence
pattern – in the FrameNet database. The API takes as input an HTTP GET request specifying a
valence pattern and outputs a list of exemplifying annotated sentences in JSON format. The API
is designed to be modular and language-independent, and can therefore be easily integrated to
other (NLP) server-side or client-side applications, as well as non-English FrameNet projects.

1 Introduction

The Berkeley FrameNet project (Baker et al., 1998) aims at creating a human and machine-readable lex-
ical database of English, supported by corpus evidence annotated in terms of frame semantics (Fillmore,
1982). Its output takes the form of a database of corpus-extracted and annotated sentences specifying
schematic representations of events, relations or entities called frames, frame-evoking words called lexi-
cal units, and semantic roles called frame elements. The latest data release contains about 1,200 frames,
10,000 frame elements, 13,000 lexical units and 200,000 manually annotated sentences (see Section 2
for examples of FrameNet annotated sentences).

Computational linguistics applications such as information extraction (Surdeanu et al., 2003), para-
phrase recognition (Padó and Erk, 2005), question answering (Shen and Lapata, 2007) and parsing (Das
et al., 2013) have made extensive use of FrameNet taxonomy and its documentation of the syntactic va-
lence of the arguments of predicates. Information regarding predicate-argument structures – referred to
as valence patterns in FrameNet (see Section 2) – could also benefit corpus linguists, alongside NLP ap-
plications, when searching for complex semantic and/or syntactic patterns not bounded by given lexical
items, overcoming thereby the limitations of traditional concordancers (Manning, 2003).

However, given the current structure of FrameNet data (Baker et al., 2003), valence patterns cannot be
searched directly and can only be accessed through the lexical units they refer to, although a given valence
pattern may be realized in multiple lexical units across several distinct frames. Therefore, searching for
all annotated sentences matching a given valence pattern, across lexical units and frames, requires some
additional pre-processing of FrameNet data, beside the implementation of a specific search engine.

In this paper we address this issue and introduce Valencer: a RESTful API to search for annotated
sentences matching a given valence pattern in the FrameNet database. The API takes as input an HTTP
GET request specifying the queried valence pattern (see Section 3.3) and outputs a list of annotated
sentences in JSON format (see Section 3.4). The Valencer API provides a lightweight server-side
application compatible with modern W3C standards. It removes from potential users the burden of
having to import and index FrameNet data, validate input queries and optimize the valence pattern search
engine. Its JSON output, consistent with FrameNet data structure, makes the API easy to integrate into
other (NLP) server-side or client-side applications. Finally, being language-independent, the API can be
smoothly adapted to other FrameNet projects (e.g. Japanese (Ohara et al., 2004)), if they use the same
XML data release format as the Berkeley FrameNet. Valencer is open-source, licensed under the MIT
license and freely available at https://github.com/akb89/valencer.
This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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2 Valence Patterns in FrameNet

In FrameNet, syntactic realizations of frame elements are called valences and are represented as triplets
FE.PT.GF of frame element (FE), phrase type (PT) and grammatical function (GF). Valence patterns
refer to the range of combinatorial possibilities of valences for each lexical unit. Examples of valence
patterns are given in (1) and (2) for the lexical unit give.v in the Giving frame. The two valence
patterns differ in the morpho-syntactic realizations of their THEME and RECIPIENT frame elements.

(1) a. He gives local charities money
b. [He]Donor.NP.Ext gives [local charities]Recipient.NP.Obj [money]Theme.NP.Dep

(2) a. He gives money to local charities
b. [He]Donor.NP.Ext gives [money]Theme.NP.Obj [to local charities]Recipient.PP[to].Dep

In (1) and (2), ‘NP’ refers to a noun phrase, ‘PP[to]’ to a prepositional phrase headed by to, ‘Ext’ to an
external argument (the subject), ‘Obj’ to an object and ‘Dep’ to a dependent.

3 API overview

3.1 Architecture
The Valencer API is a JavaScript Node.js-based RESTful web application relying on a MongoDB
database. The workflow of the API follows: (1) receive an HTTP GET request specifying a valence
pattern, (2) validate the query and its parameters, (3) retrieve and return the relevant data, and (4) output
a collection of documents in JSON format. The output documents correspond to populated MongoDB
entries. The technological choice of a document-based, JSON-oriented NoSQL database such as Mon-
goDB is particularly relevant to our case as it allows us to keep consistency between the structure of the
data output by the API and the structure of the data stored in the database. Additionally, the JSON format
of the output makes the API particularly well-suited for integration with JavaScript web clients.

3.2 Underlying technologies
The choice of JavaScript, Node.js and MongoDB is primarily motivated by considerations of perfor-
mance and maintainability. Performances of the V8 engine powering Node.js have turned JavaScript
into a serious challenger of PHP for server-side technologies, especially when PHP is not used with a
JIT compiler. Additionally, JavaScript asynchronous programming, especially when implemented with
the async/await features of ECMAScript 2017, brings the benefits of concurrent programming without
the traditional shortcomings of callbacks (see http://callbackhell.com/). It may even yield
performance gains over traditional multi-threading approaches while avoiding complexity overhead. Fi-
nally, a multi-purpose technological environment, coded in a single programming language and able
to handle both back-end and front-end computing as well as (XML) datasets imports greatly decreases
refactoring and debugging complexity and improves long-term maintainability. Moreover, schemaless
databases such as MongoDB provide a flexible architecture for handling sparse data, easy manipulation
of complex tree-structures, and a seamless mapping to human-readable XML formats.

3.3 Input
The API takes as an entry point an HTTP GET request specifying a valence pattern ‘vp’. For example,
the query corresponding to the valence pattern in sentence (2b) is:

GET/annoSets?vp=Donor.NP.Ext Theme.NP.Obj Recipient.PP[to].Dep

The API is flexible and can process combinations of triplets FE.PT.GF in any order (e.g. PT.FE.GF,
GF.PT.FE). It can also process partial triplets, with up to two non-specified elements (FE.PT, GF, PT.GF,
etc.). This enables the API to process “semantic queries” – queries specifying only frame elements – such
as Donor Theme Recipient, as well as “syntactic queries” – queries specifying only phrase types
and/or grammatical functions – such as NP.Ext NP.Obj PP[to].Dep, and, of course, arbitrary
combinations of both, such as NP.Ext Theme Recipient.PP[to].

157



annotationSet document part 1/2
{"annotationSet": {

"_id": 1632555,
"sentence": {

"_id": 1090710,
"text": "He gives money to local

charities . ",
...

},
"lexUnit": {

"_id": 4344,
"name": "give.v",

"frame": {
"_id": 139,
"name": "Giving",
"lexUnits": [{

"_id": 4344,
"name": "give.v"}, {
"_id": 5344,
"name": "donate.v"}, {
...

}],
"frameElements": [{

"_id": 1052,
"name": "Donor",
...}, {

...
}],
...

},
...

annotationSet document part 2/2
...
"pattern": {

"_id": "57fc94026cc52246ae399541",
"valenceUnits": [{

"_id": "57fc94026cc52246ae",
"FE": "Donor",
"PT": "NP",
"GF": "Ext"}, {
...

}]
},
"labels": [{

"_id": "57fc94f96cc52246ae46e9ff",
"name": "Donor",
"type": "FE",
"startPos": 0,
"endPos": 1}, {
"_id": "57fc94f96cc52246ae46ea05",
"name": "NP",
"type": "PT",
"startPos": 0,
"endPos": 1}, {
"_id": "57fc94f96cc52246ae46ea02",
"name": "Ext",
"type": "GF",
"startPos": 0,
"endPos": 1}, {
...

}]
}}

Figure 1: A sample output of the Valencer API: the annotationSet document corresponding to sen-
tence (2a) “He gives money to local charities”. For readability, the document is split into two parts.

3.4 Output

The ValencerAPI is primarily designed to output a collection of annotationSet documents (see Fig-
ure 1). In the original FrameNet XML data, annotationSet tags are found under two separate subgroups
of the lexical unit entities: they connect the part which lists the syntactic realization of the arguments
of the predicate (the valence patterns of the lexical unit) to the part which lists the annotated sentences
exemplifying each valence pattern and their respective labels. In the Valencer, the annotationSet ob-
ject merges all this information into one object: it centralizes information regarding a specific annotated
sentence, its label, the lexical unit it refers to and the specific valence pattern it exemplifies. All original
FrameNet ids are kept to potentially retrieve the original entities directly into the FrameNet database.

3.5 Authentication

The Valencer API follows a traditional HMAC-SHA1 key/secret authentication process to allow ac-
cess to the API methods. The header of each HTTP request to the API must include a key, a Unix
timestamp and a signature. The signature itself is the concatenation of the specified API route, the speci-
fied query and the Unix timestamp. It is hashed using a SHA1 algorithm and the secret corresponding to
the key. At each HTTP request, the server recomputes the signature using the stored secret correspond-
ing to the specified key and checks if it matches the signature passed to the header before accepting or
rejecting the request. The timestamp is used to prevent man-in-the-middle attacks by setting a validation
period for querys, disallowing thereby replay attacks using stolen keys, querys, and signatures.

4 Use Cases

By design the Valencer API is primarily intended to be integrated to other NLP systems or plugged to
a web-based client, which is why all necessary information regarding an annotated sentence are gathered
in a single annotationSet. However, to a human user, an annotationSet may include a lot of irrelevant in-
formation, such as object ids or references, which may render the analysis of the output of the API rather
tedious. In order to better illustrate the functionalities of the Valencer API, we have implemented four

158



additional routes in our middlewares, beside GET/annoSets, to extract and process only the necessary
attributes of an annotationSet entity depending on specific use cases.

4.1 Get Lexical Units

GET/lexUnits returns a collection of lexical units, with their respective names and frame names,
which contain at least one reference to the specified valence pattern given in input. It can be help-
ful, e.g., in searching for paraphrasing candidates, as FrameNet is characterized by relatively narrow-
scope frames and frame elements. Indeed, by definition, lexical units sharing specific valence patterns
should be relatively close semantically. For example, querying for the valence pattern Donor.NP.Ext
Theme.NP.Obj Recipient.PP[to].Dep corresponding to sentence (2b) returns eleven lexical
units, ten of which are in the Giving frame: bequeath.v, contribute.v, donate.v, gift.v, give out.v,
give.v, hand in.v, hand out.v, hand over.v and hand.v. All verbs should therefore form valid sentences
relatively close in meaning when replacing the verb give in sentence (2a): “He gives money to local
charities”. GET/lexUnits can also be used to analyze the “semantic scope” of a specific (syntactic)
construction, by checking which lexical units match a given “syntactic” valence pattern, i.e., a valence
pattern with unspecified frame elements. Querying, for instance, for the pattern NP.Ext NP.Obj
NP.Dep corresponding to a prepositional indirect object construction returns a list of 346 unique lexical
units (from a total of about 13,000) found in 206 frames (from a total of about 1,200).

4.2 Get Frames

GET/frames returns a collection of unique frame names corresponding to frames which contain lexical
units which themselves contain at least one reference to the specified valence pattern given in input.
Similarly to GET/lexUnits, GET/frames can be used to investigate the semantic scope of a given
valence pattern (see Section 4.1). Additionally, GET/frames can be used to check which frames a
frame element belongs to, an information that is not straightforwardly available in FrameNet (one has
to search through all related frames to check whether or not it contains the frame element). Due to the
diversity of semantic relations between frames in FrameNet – referred to as frame relations – frame
elements can appear in more than one frame, and some (relatively abstract) frame elements can even
appear in a significant number of frames. For instance, the DONOR and THEME frame elements of
example (1) and (2) appear in 3 and 60 frames respectively.

4.3 Get Patterns

GET/patterns returns a collection of (valence) patterns – itself a collection of valenceUnit objects
with FE, PT, GF attributes – matching the input. It is mostly useful for checking with which other
valence units a given valence unit is realized. For example, querying for Donor.NP.Ext returns 81
unique patterns with 127 exemplifying sentences. There are currently 54,264 unique valence patterns in
the FrameNet database.

4.4 Get Valence Units

GET/valenceUnits returns a collection of unique valenceUnit objects matching the input. It is par-
ticularly useful for checking all the syntactic realizations of a given frame element, or all the frame
elements realized in a given syntactic valence. For example, querying for the frame element DONOR

returns 12 unique valence units such as Donor.PP[from].Dep or Donor.PP[of].Ext. Query-
ing for PP[of].Ext returns a list of 16 valence units including frame elements such as DONOR,
TOPIC, MESSAGE or ENTITY. Querying then back for the output valence units with GET/patterns,
GET/frames or GET/lexUnits provides more information about each pattern, frames and lexical
units in which the valence units are realized.
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5 Related Work

It is already possible to search for complex syntactic constructions within treebanks using tools such as
TGrep21. The main benefit of using FrameNet instead of treebanks lays in the theoretical background of
frame semantics situated at the interface between syntax and semantics. It makes it possible to incorpo-
rate semantics and search for complex combinations of both syntactic and semantic constructions (see
Section 3.3). FrameNet also brings a fine-grained classification of frames and frame elements, a strong
advantage over PropBank (Palmer et al., 2005) for tasks such as paraphrase generation (see Section
4.1). Finally, FrameNet is free and machine readable, contrary to VDE (Herbst et al., 2004), theoreti-
cally noise-free as manually annotated, contrary to VALEX (Korhonen et al., 2006), and has a broader
coverage than VerbNet (Schuler, 2005).

6 Conclusion

This paper introduced Valencer: a free, open-source and language-independent RESTful API to en-
able querying for valence patterns in the FrameNet database. The Valencer renders parts of FrameNet
data more straightforwardly accessible and can also prove useful in non-FrameNet-specific tasks such as
searching for complex semantic and syntactic constructions or generating high quality paraphrase.
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