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Abstract

In this paper, we propose an approach to learn distributed representations of users and items
from text comments for recommendation systems. Traditional recommendation algorithms, e.g.
collaborative filtering and matrix completion, are not designed to exploit the key information
hidden in the text comments, while existing opinion mining methods do not provide direct sup-
port to recommendation systems with useful features on users and items. Our approach attempts
to construct vectors to represent profiles of users and items under a unified framework to max-
imize word appearance likelihood. Then, the vector representations are used for a recommen-
dation task in which we predict scores on unobserved user-item pairs without given texts. The
recommendation-aware distributed representation approach is fully supported by effective and ef-
ficient learning algorithms over massive text archive. Our empirical evaluations on real datasets
show that our system outperforms the state-of-the-art baseline systems.

1 Introduction

With the prosperity of Internet-based e-commerce in the last decade, millions of item (e.g., prod-
uct/serivce) comments are now available online and even more are flooding in an explosive manner.
Yelp (www.yelp.com), as the largest restaurant comment web site, for example, attracts more than 140
million users to contribute new text comments every month, covering almost all restaurants in USA. It is
widely believed that text comments contain much richer information on users as well as items than dull
scores, with far more precise descriptions on personal preferences and item features. To fully unleash the
potential value underneath the text comments, huge research efforts are now devoted to the design and
development of new technologies to capture and understand the semantics in the comments, particularly
those associated with users and items. The text analytical outcomes are expected to support decision
making and provide new business opportunities in e-commerce.

Recommendation is recognized as one of the most important components in e-commerce systems,
driving the growth of profits. Traditional recommendation systems rely on scores over user-item pairs
under a bipartite graph model, such that accurate score prediction over unobserved user-item pair helps
the system to identify potential interested buyers. A huge bulk of prediction and recommendation strate-
gies are proposed in this domain, e.g. collaborative filtering and matrix completion (Sarwar et al., 2001;
Koren et al., 2009). Because of the limited information included in each individual score, such recom-
mendation strategies commonly suffer from the cold-start problem (Zhou et al., 2011), which returns
poor recommendations to newcoming users. While text mining on comment archive may provide im-
portant information to the recommendation engine, even for fresh users, the integration of such infor-
mation adds new complexity and challenges to the system, since the text mining results are not directly
useful to the recommendation algorithms. In particular, most of the opinion mining techniques avail-
able in the literature (Liu and Zhang, 2012; Melville et al., 2002) do not distinguish attributes on user
preference from attributes of items. The recommendation engines are thus unable to understand the
underlying reasons behind the good and poor opinions from the users on the items. While there are
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Figure 1: Our framework for learning distributed representations for recommendation

attempts on tightly connecting recommendation and text mining, e.g. (McAuley and Leskovec, 2013;
Almahairi et al., 2015), these studies make strong assumptions on the generative mechanism behind the
text comments and scores, which may not correctly reflect the interaction between user preferences and
item attributes appropriately.

To better exploit the value of text comments for recommendation engine, we propose a simple yet
effective approach inspired by the successful distributed representation models on text semantics extrac-
tion (Le and Mikolov, 2014; Mikolov et al., 2013). In our approach, we learn distributed representations
from text comments to represent users and items. Our approach has a number of unique advantages,
which make it a promising alternative to existing feature extraction methods used in comment-based
recommendation systems. Firstly, the distributed representations on users and items are aligned, en-
abling the employment of a huge cluster of classification approaches on prediction and recommendation.
Secondly, distributed representations do not rely on any assumption on the generative procedures over
the user-generated contents. This feature generally avoids the potential bias on the analytical outcomes,
caused by inappropriate setting on the priors, and finally saving computation overheads. Thirdly, the dis-
tributed representations work well on both long and short texts. It is thus likely to enhance the usefulness
of the mining outcomes, by training over text data from multiple sources, e.g. food blogs and restaurant
comments.

In our approach, we adapt the vectorization techniques used in the training of distributed representa-
tions over words and documents, to address the problem of factor decomposition between user prefer-
ences and item attributes. User vectors and item vectors are introduced as independent representations
to the target users and items correspondingly and are learned by a neural network. In the model, the
user vector is shared across the comments written by the same user and the item vector is shared across
the comments written on the same item. Then, the vector representations are included in the training
of the task of score prediction in which we predict rates on unobserved user-item pairs without given
texts. The experimental results on real datasets show that our approach generates a significant margin of
performance advantage over existing methods in the task of score prediction.

2 Preliminaries

In this section, we define the task of score prediction and introduce the background of distributed repre-
sentations of words and documents.
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2.1 Score Prediction

Assume that we have a fixed group of n users U = {U1, U2, . . . , Un} and a fixed group of m items
I = {I1, I2, . . . , Im}. Here, an item Ij can be either a product or a service, provided to all the users in
U without any restriction. Each comment Ck in database C = {C1, C2, . . . , Cl} composes a sequence
of Lk words {w1, w2, . . . , wLk

}, with every word drawn from a known dictionary D. Each comment Ck

is also uniquely associated with a user Ui ∈ U, an item Ij ∈ I and a score Sk. It indicates that user
Ui purchases item Ij with score Sk and detailed text comments in Ck. The recommendation system is
expected to return a group of items to each user Ui, such that the user Ui is more likely to buy these items
with high scores and good comments. Therefore, the problem of recommendation is usually transformed
into the score prediction problem, as formally defined below.

Problem 1 Score Prediction Given (U, I, C), the problem of score prediction is to estimate the score
over unseen user-item pair (Ui, Ij) without text comments, where Ui ∈ U and Ij ∈ I.

Obviously, the score prediction is quite different from text-based sentiment classification which has
text information in the testing stage. The recommendation system is more efficient, if the score prediction
returns more accurate estimations.

2.2 Distributed Representations

Here, we briefly review the approaches of learning distributed representations of words and
documents(Mikolov et al., 2013; Le and Mikolov, 2014). Word distributed representation denotes
semantical meanings of the words extracted from large-scale text archive in a unified way
(Mikolov et al., 2013). Each word is represented by a vector of fixed length L, such that 1) semanti-
cally similar words are close to each other in the new vector space; and 2) the semantics of words are
compositional by vector operations. To simplify the notation, we use w to denote a word in the dictio-
nary, as well as its corresponding vector representation. Given a sequence of words, i.e. w1, . . . , wT ,
the distributed representations of the words are calculated by maximizing the likelihood of observing the
words in the sequence, based on the neighbor words in the sequence. Mathematically, with the specified
neighborhood width d, this objective is formalized as

1
T

T∑
i=1

log Pr (wi | wi−d, . . . , wi−1, wi+1, . . . , wi+d) .

For words at the beginning and end of the sequence, special null words are inserted as the padding
words. To generate the vector representations of the words, the algorithm runs an optimization over the
vectors as well as a group of weights, with a weight vector vwi of length (2d−1)L associated with every
word wi. Given the representations of the words in form of vectors, the vector representations of the
words in the neighborhood of wi are concatenated, resulting in a long vector xi of length (2d−1)L. The
probability of observing wi in the context of xi is estimated by the following equation:

Pr (wi | xi) = softmax(W · xi + b). (1)

where W is the weight matrix connecting the input and the output and b is a bias vector. To efficiently op-
timize the weights and word representations, a number of optimization tricks, including hierarchical soft-
max and negative sampling are suggested in (Mikolov et al., 2013), in order to train the representations
in reasonable time. The detail of learning procedure can be found in the paper of (Mikolov et al., 2013).

Paragraph (or document) vector is an extension of word distributed representation, by introducing a
global vector indicating the topics of the whole paragraph (Le and Mikolov, 2014). When generating
the representation of the neighborhood xi, the paragraph vector, another vector of fixed length across
paragraphs, is included. The paragraph vector is effective on capturing the context of the words, which
can be used to enhance the accuracy of the word prediction model and extract overall topics of the whole
paragraph.
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3 Our Approach

Our approach for learning distributed representations is inspired by the models for learning the vectors
of words and documents in (Le and Mikolov, 2014; Mikolov et al., 2013). In our solution, as presented
in Figure 1, there are three types of distributed representations built and utilized in the learning phase, in-
cluding word representation, user representation and item representation. Each representation is a vector
of fixed length in its respective domain, say W , U and I respectively. Intuitively, the word representa-
tion denotes the conceptual meanings of the words in a latent space. Similarly, the user representation
denotes the personal preferences over the items, and item representation denotes the important attributes
of the items. The dimensions of the user representations, for example, are expected to indicate personal
preference and behavior patterns, such as 1) whether the user prefers cheap items; or 2) whether the
user prefers better service to good foods during dining in restaurants. We hereby emphasize that such
preferences and profiles are automatically extracted from the data, without any supervision or manual
labeling involved.

When the context is clear, we use Ui (resp. Ij) to denote both the user identity (resp. item identity) as
well as its corresponding representation vector. Similarly, we misuse w to denote a word in dictionary
D and its word representation vector. There are two parts in our approach: 1) Learning distributed
representations of words, users, and items; 2) Score prediction for pairs of users and items without text
comments.

3.1 The Learning Model

During the learning phase, the contexts are fixed-length and sampled from a sliding window over the text
comments. The matrix D, with stacked word vectors, is shared across all the text comments. However,
the user vector is shared across the comments written by the same user and the item vector is shared
across the comments written on the same item.

By looking up the matrices, we obtain the vectors of users, items, and words. After concatenating all
relevant vectors in order, including user vector, item vector and neighborhood word vectors, a bi-layer
neural network model is built on top of the concatenated vector to predict the words as shown in the left
part of Figure 1.

Suppose that the target word is w and the input (the concatenated vector) is Xw. A intermediate layer
is applied on the input vector Xw to generate a fixed length vector with Lh binary variables Vh. Each
variable vi ∈ Vh is independently activated, based on the weight assignment on the edges between input
vector and intermediate layer, following the logistic function:

Pr(vi = 1) =
1

1 + exp
(
−

(∑
xj∈Xw

xj · wij

)) .

where wij is the weight connecting from the jth dimension of the input to the ith dimension of Vh.
From the intermediate layer, our model predicts the word occurrence with another prediction layer. On
this layer, the system employs exactly the same softmax function used in the existing word vector and
paragraph vector models. The prediction function is,

Pr (w | Vh) = softmax(W h
w · Vh + bh).

where W h
w is the weight vector connecting Vh to w and bh is the bias vector.

Based on the model above, the training of the model with the text comment archive is in two folds.
Firstly, the weights in the neural network are optimized to reflect the correlation between user/item/word
representations and the word occurrence likelihood. Secondly, the construction of the representation
identifies meaningful semantics into the vectors, especially for the user representation and item repre-
sentation. When there are multiple users and items available in the comment database, the result repre-
sentations automatically reveal the actual preferences of the users and the attributes of the items, because
common topics across comments are merged and appear as a dimension in the representations.
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3.2 Training the Parameters

During training, the parameters we should learn include the weights in the above equations and the vector
representations of users, items and words. We use stochastic gradient descent to learn the parameters.
Then the backpropagation algorithm is employed to push the gradients to the concatenated vector level,
and thus used to update the weights on the edges as well as the user/item/word vectors by exactly the
same mechanism. At every step of the learning phase, we sample a fixed-length context from a random
comment.

To train the weights from hidden variables to the target words, we apply negative sam-
pling. The negative sampling method is a simplified variation of Noise Contrastive Estimation
(Gutmann and Hyvarinen, 2012; Mhih and Teh, 2012). To compute the probabilities efficiently, we use
the negative sampling method proposed by (Mikolov et al., 2013), which approximates the probabil-
ity by the correct example and K negative samples for each instance. The formulation to compute
log(Pr(wi|Vh)) is,

log σ(zwi) +
K∑

k=1

Ewk∼P (w)[log σ(−zwk
)] (2)

where σ(zw) = 1/(1+ exp(−zw)), zw = W h
w ·Vh + bh, wi is the target word, Vh is the vector of hidden

variables, and P (w) is the noise distribution on the data. We set K as 5 in our experiments as used in
(Mikolov et al., 2013). We perform the iterative update after predicting the target word,

θ ← θ − α(
∂

∑
log(Pr(wi|Vh))

∂θ
) (3)

where α is the learning rate and θ is the set of parameters to learn that includes the weights of the model.
The initial value of α is 0.025. During training, the learning rate is halved if the log-likelihood does not
improve significantly after one update. Then, the training stops if it does not improve again.

The computation efficiency on the training procedure is excellent, because most of the computation
time is spent on the training between hidden variables and target words. The training between concate-
nated vectors and hidden variables is much more efficient, since the number of variables involved is
highly constrained, depending on the specified size of the word neighborhood and the size of the hidden
variable layer.

After the learning phase, we obtain the distributed representations of users and items shown as vectors.
They are used in the score prediction task.

3.3 Predicting Scores

As is described in Problem 1, the problem of score prediction is to estimate the score of a user before
he/she actually purchases the item. Thus, we do not have the text comment for the given pair when
testing. We build a regression/classification model on top of the user/item representations. Specifically,
a prediction model is a parameterized function F (Ui, Ij) with inputs of user/item vectors and outputs of
score estimation. While any regression model can be employed as the parameterized function F (·), we
use the network shown in the right part of Figure 1. First, we learn a non-linear transformation which
can project the input user/item representations into a space where it becomes linearly separable. The
space is a intermediate layer referred to as a hidden layer. Then, a logistic regression classifier takes the
transformed vectors for predicting the scores.

As indicated in Figure 1, the input layer contain the user and item representations and the average
scores (bUi and bIj ) of user and item, and the output layer has possible ratings.

Given the input x, h(x) = s(W 1x + b1) represents the hidden layer, where W 1 is the weight matrix
connecting the input vector to the hidden layer and b1 is a bias vector for the transformation. Here, we
use tanh(a) = (ea − e−a)/(ea + e−a) for function s since it is fast when training the parameters.

Specifically, the prediction is then obtained by applying:

P (y|x) = softmax(W 2h(x) + b2) (4)
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Yelp Dianping Amazon
review# 1.6M 1.2M 1.2M
item# 60,785 43,141 246,200
users# 366,715 350,936 641,380
review# per item 25.81 27.98 4.73
review# per user 4.27 3.44 1.81
word# per review 128.93 91.78 167.39

Table 1: Statistics of data set

where W 2 is the weight matrix connecting the hidden layer to the output layer and b2 is a bias vector for
the classifier. We use stochastic gradient descent to learn all parameters of the model, including W 1, b1,
W 2 and b2. Finally, the prediction of the model ypred is the class whose probability is maximal:

ypred = argmaxiP (Y = yi|x) (5)

4 Experiments

4.1 Dataset

We evaluate the systems on datasets from a variety of public sources. The first one is from Yelp Dataset
Challenge1, which contains about 1.6M reviews. The second one is from Dianping (www.dianping.com),
which consists of user reviews on the restaurants located in China. We also include about 1.2M reviews
from Amazon previously used for opinion analysis in (Jindal and Liu, 2008). In the datasets, each review
contains a user ID, restaurant/product ID, numeric rating (from 1 to 5), and detailed comment text. We
filter out the reviews that do not have comment texts. The detailed statistics of the data sets are summa-
rized in Table 1. The reviews are written in two different languages, Yelp and Amazon using English,
and Dianping using Chinese. The experiments with different languages and domains demonstrate the
genericity of our approach.

For each dataset, we randomly split the whole set into two parts: 80% as training data and 20% as test
data. We also randomly select 10% of training data as development data to tune the parameters of the
systems.

4.2 Score Prediction

We report the mean absolute error (MAE) of the score predictor, i.e., MAE = 1
N

∑
u,i∈T |r̂ui − rui|,

where T is the test set, N is the total number of predicted ratings, r̂ui and rui are the predicted rating and
the user assigned rating scores for user u and item i, respectively.

We compare with four systems: 1) CF: This is a user-based Collaborative Filtering (CF) system in
which we follow the description of (Sarwar et al., 2001). 2) FM: This is a latent factor model imple-
mented in libfm2(Rendle, 2012). 3) CTR: This is a collaborative topic regression model adapted from
(Wang and Blei, 2011)3, which is proposed to recommend scientific articles in citation networks. 4)
HFT: This is the Hidden Factors as Topics (HFT) model proposed by (McAuley and Leskovec, 2013),
which is a state-of-the-art system using text reviews4. The first two systems use rating information only
and the other two systems utilize text reviews. The settings of all the systems are tuned on the devel-
opment sets. According to the results on the development sets, we set user/item vectors size as 100 and
number of hidden units as 50 in our system.

Table 2 shows the experimental results of score prediction, where DRT is our system. FM is better than
the traditional Collaborative Filtering (CF) system. This shows that the factor model is very powerful.
HFT and CTR achieve similar scores to FM on two datasets and perform better than FM on the Amazon

1http://www.yelp.com/dataset challenge/
2http://libfm.org/
3https://www.cs.princeton.edu/∼chongw/software/ctr.tar.gz
4http://cseweb.ucsd.edu/∼jmcauley/code/code RecSys13.tar.gz
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data. Our system provides the best performance on all the datasets and is significantly better than other
systems (p < 10−5).

System Yelp Dianping Amazon
CF 1.0004 0.6906 0.9924
FM 0.9276 0.6609 0.8936
CTR 0.9243 0.6619 0.8693
HFT 0.9221 0.6615 0.8658
DRT 0.9064 0.6316 0.8165

Table 2: Results of score prediction (MAE)
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Figure 2: MAE vs number of training reviews per user (Yelp)

The number of training reviews is important for recommendation systems. We thus investigate the
effect of training reviews per user. Figure 2- 4 show the MAE scores with varying number of training
reviews per user. The trend of the results shows that all the systems are getting better scores, with
increasing number of comments. When the number of training reviews grows larger, the performance gap
between DRT and CF also grows. This fact indicates that our approach can make use of text comments
to improve performance. The results also show that with 2 or 3 training reviews, DRT performs best on
3 among 6 cases, while with 4 or more training reviews, DRT can beat other approaches. In future work,
we will try to improve the bad cases.

We also investigate the effect of different lengths of comments to our system (DRT). To reduce the
effect of numbers of training reviews per user, we calculate the average lengths of comments written
by the users who only have 4-10 training reviews. We ignore the users whose average comment length
is no more than 20 words. We group the users into several groups by setting every 20 words as one
BIN. For example, BIN-40 includes the users whose average comment length is in (20,40] and BIN-100
includes the users whose average comment length is in (80,100]. Figure 5 shows the relation between
the MAE scores and the comment lengths. From the figure, we find that DRT roughly gets consistent
performance along with the increase of comment lengths. However, this fact is against what we expect:
the longer texts might result in better performance. We check some long comments in three datasets and
find that most of the long comments indeed have more detailed information, but also bring some noise.
For example, some users like to describe the experiences in other restaurants before commenting on the
target restaurant. The results indicate that our system can partial reduce the effect of noisy information
and achieve similar performance on both long and short texts.
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Figure 3: MAE vs number of training reviews per user (Dianping)

5 Related Work

In this paper, we utilize user comments to enhance recommendation systems. Text mining techniques
are now widely used on comment data on the Internet to support a large variety of applications in e-
commerce. Liu et al. (2005) discuss the possibility of comparing comments available online to identify
important opinions of the users on the items. Zhai et al. (2011) present an approach to select important
sentences in the product comments. Zhang et al. (2015) design a customized solution to restaurant
comment summarization on dishes. Topic modeling techniques based on Dirichlet allocation are recently
popular in text analytics (Blei et al., 2003), which is particularly effective on long documents to find
meaningful topics (Blei et al., 2004). However, we hereby emphasize that all these techniques are not
directly helpful to improve recommendation systems.

A huge bulk of recommendation algorithms are proposed in the literature. Collaborative filtering is
known as the most popular approach (Su and Khoshgoftaar, 2009; Sarwar et al., 2001) and matrix fac-
torization has recently emerged as an effective strategy to improve the effectiveness of collaborative
filtering (Koren et al., 2009; Rendle, 2012). Latent Factorization Model decomposes the matrix of user-
item features and identifies the features connected to users and items respectively. Some other invariants,
such as max-margin matrix factorization (Rennie and Srebro, 2005) and probabilistic matrix factoriza-
tion (Salakhutdinov and Mnih, 2008), are proposed to improve the robustness of the factorization out-
puts. Singh and Gordon (2008) further encode genres of movies and roles of actors in movies as binary
relations into a collective matrix factorization model. All these approaches require the generation of
matrix with aligned features, and only can use very limited information besides scores.

There are a handful of attempts to incorporate rich text information into recommendation engines.
Musat et al. (2013) revise the original collaborative filtering approach, by modeling user similarity
based on the feature words shown in their text comments. In their approach, the feature words are
nouns with the highest opinion counts. Zhang et al. (2014) adopt a similar strategy to support per-
sonalized recommendation based on text comments. Their approach utilizes existing sentiment analy-
sis tools (Lu et al., 2011) to generate the feature words. These words are fed into latent factor model
(Koren et al., 2009) to build profiles on the users and items. However, the feature extraction proce-
dure used in their method does not distinguish user preference and item features in the opinion. He et
al. (2015) tries to build tripartite graph model with user, item and discussion topic engaged. The recom-
mendation system exploits the tripartite graph model to make personalized recommendation decisions.
In their approach, the feature words are identified similarly as Zhang et al. (2014). All the above studies
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Figure 4: MAE vs number of training reviews per user (Amazon)

identify the feature words directly extracted from comments.
Recently some researchers try to learn latent aspects from comments (Wu and Ester, 2015). Wang et

al. (2011) builds a regression model over the topic results from LDA. Their approach does not try to
identify user profiles, and thus only applicable to score prediction on the text comments. Wang and
Blei (2011) combine the merits of traditional collaborative filtering and topic modeling which provides
a latent structure to recommend scientific articles in citation networks. Tang et al. (2015) learn repre-
sentations of users and item for sentiment classification. Although similar concepts of user and item
representations are used in (Tang et al., 2015), there are two major differences. Firstly, the problem we
try to solve is completely different: they work on review sentiment classification, while our work focuses
on score prediction without text. Secondly, the models are different: their approach includes user/product
representation in CNN to enhance score prediction accuracy over text review, while out proposal attempts
to maximize the likelihood of individual words. McAuley and Leskovec (2013) use a topic model to ex-
tract user and item profiles based on text comments. Although related, such approaches differ from ours
in that they represent latent topics by keywords which are limited in representations. The approach of
McAuley and Leskovec (2013) is the most relevant work to ours, but there are a number of limitations
in their work. Firstly, they assume there is a one-to-one correspondence between the entries in the user
profile and item profile. Secondly, their optimization relies on the assumption of LDA, such that the
words are drawn independently from an unknown distribution. Our approach does not have any strong
assumption on the generation mechanism.

6 Conclusion

In this paper, we have presented a simple yet effective approach to learn distributed representations of
users and items from large amounts of text reviews. In our approach, the user vectors and item vectors
are learned by a neural network. The user representation denotes the personal preferences over the
items, while the item representation denotes the important attributes of the items. Finally, the distributed
representations are used in recommendation systems. When tested on the datasets from different domains
and languages, our systems achieve better performance than the state-of-the-art baseline systems.
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