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Abstract

Most neural network models for document classification on social media focus on text infor-
mation to the neglect of other information on these platforms. In this paper, we classify post
stance on social media channels and develop UTCNN, a neural network model that incorporates
user tastes, topic tastes, and user comments on posts. UTCNN not only works on social media
texts, but also analyzes texts in forums and message boards. Experiments performed on Chinese
Facebook data and English online debate forum data show that UTCNN achieves a 0.755 macro-
average f-score for supportive, neutral, and unsupportive stance classes on Facebook data, which
is significantly better than models in which either user, topic, or comment information is with-
held. This model design greatly mitigates the lack of data for the minor class without the use of
oversampling. In addition, UTCNN yields a 0.842 accuracy on English online debate forum data,
which also significantly outperforms results from previous work as well as other deep learning
models, showing that UTCNN performs well regardless of language or platform.

1 Introduction

Deep neural networks have been widely used in text classification and have achieved promising results
(Lai et al., 2015; Ren et al., 2016; Huang et al., 2016). Most focus on content information and use
models such as convolutional neural networks (CNN) (Kim, 2014) or recursive neural networks (Socher
et al., 2013). However, for user-generated posts on social media like Facebook or Twitter, there is more
information that should not be ignored. On social media platforms, a user can act either as the author of
a post or as a reader who expresses his or her comments about the post.

In this paper, we classify posts taking into account post authorship, likes, topics, and comments. In
particular, users and their “likes” hold strong potential for text mining. For example, given a set of posts
that are related to a specific topic, a user’s likes and dislikes provide clues for stance labeling. From a
user point of view, users with positive attitudes toward the issue leave positive comments on the posts
with praise or even just the post’s content; from a post point of view, positive posts attract users who hold
positive stances. We also investigate the influence of topics: different topics are associated with different
stance labeling tendencies and word usage. For example we discuss women’s rights and unwanted babies
on the topic of abortion, but we criticize medicine usage or crime when on the topic of marijuana (Hasan
and Ng, 2014). Even for posts on a specific topic like nuclear power, a variety of arguments are raised:
green energy, radiation, air pollution, and so on. As for comments, we treat them as additional text
information. The arguments in the comments and the commenters (the users who leave the comments)
provide hints on the post’s content and further facilitate stance classification.

In this paper, we propose the user-topic-comment neural network (UTCNN), a deep learning model
that utilizes user, topic, and comment information. We attempt to learn user and topic representations
which encode user interactions and topic influences to further enhance text classification, and we also
incorporate comment information. We evaluate this model on a post stance classification task on forum-
style social media platforms. The contributions of this paper are as follows: 1. We propose UTCNN,
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a neural network for text in modern social media channels as well as legacy social media, forums, and
message boards — anywhere that reveals users, their tastes, as well as their replies to posts. 2. When
classifying social media post stances, we leverage users, including authors and likers. User embeddings
can be generated even for users who have never posted anything. 3. We incorporate a topic model to
automatically assign topics to each post in a single topic dataset. 4. We show that overall, the pro-
posed method achieves the highest performance in all instances, and that all of the information extracted,
whether users, topics, or comments, still has its contributions.

2 Related Work

2.1 Extra-Linguistic Features for Stance Classification

In this paper we aim to use text as well as other features to see how they complement each other in a
deep learning model. In the stance classification domain, previous work has showed that text features
are limited, suggesting that adding extra-linguistic constraints could improve performance (Bansal et al.,
2008; Hasan and Ng, 2013a; Walker et al., 2012). For example, Hasan and Ng as well as Thomas et al.
require that posts written by the same author have the same stance (Hasan and Ng, 2013b; Thomas et
al., 2006). The addition of this constraint yields accuracy improvements of 1–7% for some models and
datasets. Hasan and Ng later added user-interaction constraints and ideology constraints (Hasan and Ng,
2013a): the former models the relationship among posts in a sequence of replies and the latter models
inter-topic relationships, e.g., users who oppose abortion could be conservative and thus are likely to
oppose gay rights.

For work focusing on online forum text, since posts are linked through user replies, sequential labeling
methods have been used to model relationships between posts. For example, Hasan and Ng use hidden
Markov models (HMMs) to model dependent relationships to the preceding post (Hasan and Ng, 2013b);
Burfoot et al. use iterative classification to repeatedly generate new estimates based on the current state
of knowledge (Burfoot et al., 2011); Sridhar et al. use probabilistic soft logic (PSL) to model reply links
via collaborative filtering (Sridhar et al., 2015). In the Facebook dataset we study, we use comments
instead of reply links. However, as the ultimate goal in this paper is predicting not comment stance but
post stance, we treat comments as extra information for use in predicting post stance.

2.2 Deep Learning on Extra-Linguistic Features

In recent years neural network models have been applied to document sentiment classification (Socher
et al., 2012; Socher et al., 2013; Kalchbrenner et al., 2014; Johnson and Zhang, 2015; Huang et al.,
2016). Text features can be used in deep networks to capture text semantics or sentiment. For example,
Dong et al. use an adaptive layer in a recursive neural network for target-dependent Twitter sentiment
analysis, where targets are topics such as windows 7 or taylor swift (Dong et al., 2014a; Dong et al.,
2014b); recursive neural tensor networks (RNTNs) utilize sentence parse trees to capture sentence-level
sentiment for movie reviews (Socher et al., 2013); Le and Mikolov predict sentiment by using paragraph
vectors to model each paragraph as a continuous representation (Le and Mikolov, 2014). They show that
performance can thus be improved by more delicate text models.

Others have suggested using extra-linguistic features to improve the deep learning model. The user-
word composition vector model (UWCVM) (Tang et al., 2015b) is inspired by the possibility that the
strength of sentiment words is user-specific; to capture this they add user embeddings in their model.
In UPNN, a later extension, they further add a product-word composition as product embeddings, ar-
guing that products can also show different tendencies of being rated or reviewed (Tang et al., 2015a).
Their addition of user information yielded 2–10% improvements in accuracy as compared to the above-
mentioned RNTN and paragraph vector methods. We also seek to inject user information into the neural
network model. In comparison to the research of Tang et al. on sentiment classification for product re-
views, the difference is two-fold. First, we take into account multiple users (one author and potentially
many likers) for one post, whereas only one user (the reviewer) is involved in a review. Second, we add
comment information to provide more features for post stance classification. None of these two factors
have been considered previously in a deep learning model for text stance classification. Therefore, we
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Figure 1: Document composition in a convolutional neural network with three convolutional filters and
user- and topic-dependent semantic transformations. Respectively, xw is the word embedding of word
w, x′w is the word embedding of word w after transformation, Uk and Tj are user and topic matrix
embeddings for user k and topic j.

propose UTCNN, which generates and utilizes user embeddings for all users — even for those who have
not authored any posts — and incorporates comments to further improve performance.

3 Method

In this section, we first describe CNN-based document composition, which captures user- and topic-
dependent document-level semantic representation from word representations. Then we show how to
add comment information to construct the user-topic-comment neural network (UTCNN).

3.1 User- and Topic-dependent Document Composition
As shown in Figure 1, we use a general CNN (Kim, 2014) and two semantic transformations for doc-
ument composition 1 . We are given a document with an engaged user k, a topic j, and its composite
n words, each word w of which is associated with a word embedding xw ∈ Rd where d is the vector
dimension. For each word embedding xw, we apply two dot operations as shown in Equation 1:

x′w = [Uk · xw; Tj · xw] (1)

where Uk ∈ Rdu×d models the user reading preference for certain semantics, and Tj ∈ Rdt×d models
the topic semantics; du and dt are the dimensions of transformed user and topic embeddings respectively.
We use Uk to model semantically what each user prefers to read and/or write, and use Tj to model the
semantics of each topic. The dot operation of Uk and xw transforms the global representation xw to
a user-dependent representation. Likewise, the dot operation of Tj and xw transforms xw to a topic-
dependent representation.

After the two dot operations on xw, we have user-dependent and topic-dependent word vectors Uk ·xw

and Tj ·xw, which are concatenated to form a user- and topic-dependent word vector x′w. Then the trans-
formed word embeddings X ′w = [x′1; x′2; ...; x′n] are used as the CNN input. Here we apply three con-
volutional layers on the concatenated transformed word embeddings x′c = [x′m; x′m+1; ...; x

′
m+lcf−1] ∈

Rd·lcf :
hcf = f

(
Wcf · x′c + bcf

)
(2)

1Here by saying document, we mean the user-generated content in a post or a comment.
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Figure 2: The UTCNN model. Assuming one post author, l likers and p topics, xdw is the word embed-
ding of word w in the document; xcw is the word embedding of word w in the comments; Uk and uk are
the moderator matrix and vector embedding for moderator k; Tj and tj are the topic matrix and vector
embedding for topic j; Ri and ri are the commenter matrix and vector embedding for commenter i. For
simplicity we do not explicitly plot the topic vector embedding part for comments, but it does include a
maximum pooling layer as with documents.

where m is the index of words; f is a non-linear activation function (we use tanh2); Wcf ∈ Rlen×d·lcf is
the convolutional filter with input length d · lcf and output length len, where lcf is the window size of the
convolutional operation; and hcf and bcf are the output and bias of the convolution layer cf , respectively.
In our experiments, the three window sizes lcf in the three convolution layers are one, two, and three,
encoding unigram, bigram, and trigram semantics accordingly.

After the convolutional layer, we add a maximum pooling layer among convolutional outputs to obtain
the unigram, bigram, and trigram n-gram representations. This is succeeded by an average pooling layer
for an element-wise average of the three maximized convolution outputs.

3.2 UTCNN Model Description

Figure 2 illustrates the UTCNN model. As more than one user may interact with a given post, we first add
a maximum pooling layer after the user matrix embedding layer and user vector embedding layer to form
a moderator matrix embedding Uk and a moderator vector embedding uk for moderator k respectively,
where Uk is used for the semantic transformation in the document composition process, as mentioned
in the previous section. The term moderator here is to denote the pseudo user who provides the overall
semantic/sentiment of all the engaged users for one document. The embedding uk models the moderator
stance preference, that is, the pattern of the revealed user stance: whether a user is willing to show his
preference, whether a user likes to show impartiality with neutral statements and reasonable arguments,
or just wants to show strong support for one stance. Ideally, the latent user stance is modeled by uk

for each user. Likewise, for topic information, a maximum pooling layer is added after the topic matrix
embedding layer and topic vector embedding layer to form a joint topic matrix embedding Tj and a joint
topic vector embedding tj for topic j respectively, where Tj models the semantic transformation of topic
j as in users and tj models the topic stance tendency. The latent topic stance is also modeled by tj for
each topic.

As for comments, we view them as short documents with authors only but without likers nor their
own comments3. Therefore we apply document composition on comments although here users are com-
menters (users who comment). It is noticed that the word embeddings xw for the same word in the posts
and comments are the same, but after being transformed to x′w in the document composition process

2Some papers suggest using ReLU as the activation function in deep CNNs with many layers. Nevertheless, we use tanh
as the activation function, as our model is moderately deep and empirically we found the impact to be limited.

3Recently Facebook released a function allowing likes and comments on comments, but it was not available during the time
we collected data. However, UTCNN works on this richer data, as comments are treated as posts under this framework.
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Dataset FBFans CreateDebate

Type Sup Neu Uns All
ABO GAY OBA MAR

F A F A F A F A

Training 7,097 19,412 245 26,754 770.4 622.4 700.8 400.0 420.8 367.2 355.2 145.6
Development 155 2,785 11 2,951 - - - - - - - -
Testing 252 2,619 19 2,890 192.6 155.6 175.2 100.0 105.2 91.8 88.8 36.4

All 7,504 24,816 275 32,595 963.0 778.0 876.0 500.0 526.0 459.0 444.0 182.0

Table 1: Annotation results of FBFans and CreateDebate dataset.

Author
Post

Sup Neu Uns

Sup 58.5% 51.3% 29.4%
Neu 33.9% 43.5 % 9.3%
Uns 7.6% 5.2% 61.3%

Table 2: Distribution of like behavior.

shown in Figure 1, they might become different because of their different engaged users. The output
comment representation together with the commenter vector embedding ri and topic vector embedding
tj are concatenated and a maximum pooling layer is added to select the most important feature for com-
ments. Instead of requiring that the comment stance agree with the post, UTCNN simply extracts the
most important features of the comment contents; they could be helpful, whether they show obvious
agreement or disagreement. Therefore when combining comment information here, the maximum pool-
ing layer is more appropriate than other pooling or merging layers. Indeed, we believe this is one reason
for UTCNN’s performance gains.

Finally, the pooled comment representation, together with user vector embedding uk, topic vector
embedding tj , and document representation are fed to a fully connected network, and softmax is applied
to yield the final stance label prediction for the post.

4 Experiment

We start with the experimental dataset and then describe the training process as well as the implemen-
tation of the baselines. We also implement several variations to reveal the effects of features: authors,
likers, comment, and commenters. In the results section we compare our model with related work.

4.1 Dataset

We tested the proposed UTCNN on two different datasets: FBFans and CreateDebate. FBFans is a
privately-owned4, single-topic, Chinese, unbalanced, social media dataset, and CreateDebate is a public,
multiple-topic, English, balanced, forum dataset. Results using these two datasets show the applicability
and superiority for different topics, languages, data distributions, and platforms.

The FBFans dataset contains data from anti-nuclear-power Chinese Facebook fan groups from
September 2013 to August 2014, including posts and their author and liker IDs. There are a total of
2,496 authors, 505,137 likers, 33,686 commenters, and 505,412 unique users. Two annotators were
asked to take into account only the post content to label the stance of the posts in the whole dataset as
supportive, neutral, or unsupportive (hereafter denoted as Sup, Neu, and Uns). Sup/Uns posts were those
in support of or against anti-reconstruction; Neu posts were those evincing a neutral standpoint on the
topic, or were irrelevant. Raw agreement between annotators is 0.91, indicating high agreement. Specif-
ically, Cohen’s Kappa for Neu and not Neu labeling is 0.58 (moderate), and for Sup or Uns labeling is

4Currently not released due to copyright and privacy issues.
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0.84 (almost perfect). Posts with inconsistent labels were filtered out, and the development and testing
sets were randomly selected from what was left. Posts in the development and testing sets involved at
least one user who appeared in the training set. The number of posts for each stance is shown on the
left-hand side of Table 1. About twenty percent of the posts were labeled with a stance, and the number
of supportive (Sup) posts was much larger than that of the unsupportive (Uns) ones: this is thus highly
skewed data, which complicates stance classification. On average, 161.1 users were involved in one post.
The maximum was 23,297 and the minimum was one (the author). For comments, on average there were
3 comments per post. The maximum was 1,092 and the minimum was zero.

To test whether the assumption of this paper – posts attract users who hold the same stance to like
them – is reliable, we examine the likes from authors of different stances. Posts in FBFans dataset are
used for this analysis. We calculate the like statistics of each distinct author from these 32,595 posts.
As the numbers of authors in the Sup, Neu and Uns stances are largely imbalanced, these numbers are
normalized by the number of users of each stance. Table 4 shows the results. Posts with stances (i.e., not
neutral) attract users of the same stance. Neutral posts also attract both supportive and neutral users, like
what we observe in supportive posts, but just the neutral posts can attract even more neutral likers. These
results do suggest that users prefer posts of the same stance, or at least posts of no obvious stance which
might cause annoyance when reading, and hence support the user modeling in our approach.

The CreateDebate dataset was collected from an English online debate forum5 discussing four topics:
abortion (ABO), gay rights (GAY), Obama (OBA), and marijuana (MAR). The posts are annotated as
for (F) and against (A). Replies to posts in this dataset are also labeled with stance and hence use the
same data format as posts. The labeling results are shown in the right-hand side of Table 1. We observe
that the dataset is more balanced than the FBFans dataset. In addition, there are 977 unique users in the
dataset. To compare with Hasan and Ng’s work, we conducted five-fold cross-validation and present the
annotation results as the average number of all folds (Hasan and Ng, 2013b; Hasan and Ng, 2014).

The FBFans dataset has more integrated functions than the CreateDebate dataset; thus our model can
utilize all linguistic and extra-linguistic features. For the CreateDebate dataset, on the other hand, the
like and comment features are not available (as there is a stance label for each reply, replies are evaluated
as posts as other previous work) but we still implemented our model using the content, author, and topic
information.

4.2 Settings

In the UTCNN training process, cross-entropy was used as the loss function and AdaGrad as the opti-
mizer. For FBFans dataset, we learned the 50-dimensional word embeddings on the whole dataset using
GloVe6 (Pennington et al., 2014) to capture the word semantics; for CreateDebate dataset we used the
publicly available English 50-dimensional word embeddings, pre-trained also using GloVe. These word
embeddings were fixed in the training process. The learning rate was set to 0.03. All user and topic
embeddings were randomly initialized in the range of [-0.1 0.1]. Matrix embeddings for users and topics
were sized at 250 (5× 50); vector embeddings for users and topics were set to length 10.

We applied the LDA topic model (Blei et al., 2003) on the FBFans dataset to determine the latent topics
with which to build topic embeddings, as there is only one general known topic: nuclear power plants. We
learned 100 latent topics and assigned the top three topics for each post. For the CreateDebate dataset,
which itself constitutes four topics, the topic labels for posts were used directly without additionally
applying LDA.

For the FBFans data we report class-based f-scores as well as the macro-average f-score (FSNU
1 ) shown

in equation 3.

FSNU
1 = 2 · PSNU ·RSNU

PSNU + RSNU
(3)

5http://www.createdebate.com/
6http://nlp.stanford.edu/projects/glove/
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Method Features F-score
FSNU

1Content User Topic Comment Sup Neu Uns

Majority .000 .841 .000 .280
SVM -UniBiTrigram

√
.721 .967 .091 .640

SVM -UniBiTrigram
√ √

.610 .938 .156 .621
SVM -AvgWordVec

√
.631 .952 .114 .579

SVM -AvgWordVec
√ √

.526 .100 .165 .336
SVM -AvgWordVec (transformed)

√ √ √
.571 .920 .229 .637

SVM -AvgWordVec (transformed)
√ √ √ √

.597 .963 .210 .642

CNN (Kim, 2014)
√

.738 .967 .171 .637
CNN (Kim, 2014)

√ √
.726 .964 .222 .648

RCNN (Lai et al., 2015)
√

.669 .951 .079 .606
RCNN (Lai et al., 2015)

√ √
.628 .944 .096 .605

UTCNN without user
√ √ √

.748 .973 .000 .580
UTCNN without topic

√ √ √
.643 .944 .476 .706

UTCNN without comment
√ √ √

.632 .940 .480 .707
UTCNN shared user embedding

√ √ √ √
.625 .969 .531 .732

UTCNN (full)
√ √ √ √

.698 .957 .571 .755*

Table 3: Performance of post stance classification on the FBFans dataset.
*UTCNN (full) results are statistically significant (p-value < 0.005) with respect to all other methods except for UTCNN shared

user embedding.

where PSNU and RSNU are the average precision and recall of the three class. We adopted the macro-
average f-score as the evaluation metric for the overall performance because (1) the experimental dataset
is severely imbalanced, which is common for contentious issues; and (2) for stance classification, content
in minor-class posts is usually more important for further applications. For the CreateDebate dataset,
accuracy was adopted as the evaluation metric to compare the results with related work (Hasan and Ng,
2013a; Hasan and Ng, 2013b; Sridhar et al., 2015).

4.3 Baselines

We pit our model against the following baselines: 1) SVM with unigram, bigram, and trigram features,
which is a standard yet rather strong classifier for text features; 2) SVM with average word embedding,
where a document is represented as a continuous representation by averaging the embeddings of the
composite words; 3) SVM with average transformed word embeddings (the x′w in equation 1), where
a document is represented as a continuous representation by averaging the transformed embeddings of
the composite words; 4) two mature deep learning models on text classification, CNN (Kim, 2014)
and Recurrent Convolutional Neural Networks (RCNN) (Lai et al., 2015), where the hyperparameters
are based on their work; 5) the above SVM and deep learning models with comment information; 6)
UTCNN without user information, representing a pure-text CNN model where we use the same user
matrix and user embeddings Uk and uk for each user; 7) UTCNN without the LDA model, representing
how UTCNN works with a single-topic dataset; 8) UTCNN without comments, in which the model
predicts the stance label given only user and topic information. All these models were trained on the
training set, and parameters as well as the SVM kernel selections (linear or RBF) were fine-tuned on the
development set. Also, we adopt oversampling on SVMs, CNN and RCNN because the FBFans dataset
is highly imbalanced.

4.4 Results on FBFans Dataset

In Table 3 we show the results of UTCNN and the baselines on the FBFans dataset. Here Majority
yields good performance on Neu since FBFans is highly biased to the neutral class. The SVM models
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perform well on Sup and Neu but perform poorly for Uns, showing that content information in itself is
insufficient to predict stance labels, especially for the minor class. With the transformed word embedding
feature, SVM can achieve comparable performance as SVM with n-gram feature. However, the much
fewer feature dimension of the transformed word embedding makes SVM with word embeddings a more
efficient choice for modeling the large scale social media dataset. For the CNN and RCNN models, they
perform slightly better than most of the SVM models but still, the content information is insufficient to
achieve a good performance on the Uns posts. As to adding comment information to these models, since
the commenters do not always hold the same stance as the author, simply adding comments and post
contents together merely adds noise to the model.

Among all UTCNN variations, we find that user information is most important, followed by topic and
comment information. UTCNN without user information shows results similar to SVMs — it does well
for Sup and Neu but detects no Uns. Its best f-scores on both Sup and Neu among all methods show that
with enough training data, content-based models can perform well; at the same time, the lack of user
information results in too few clues for minor-class posts to either predict their stance directly or link
them to other users and posts for improved performance. The 17.5% improvement when adding user
information suggests that user information is especially useful when the dataset is highly imbalanced.
All models that consider user information predict the minority class successfully. UCTNN without topic
information works well but achieves lower performance than the full UTCNN model. The 4.9% perfor-
mance gain brought by LDA shows that although it is satisfactory for single topic datasets, adding that
latent topics still benefits performance: even when we are discussing the same topic, we use different
arguments and supporting evidence. Lastly, we get 4.8% improvement when adding comment informa-
tion and it achieves comparable performance to UTCNN without topic information, which shows that
comments also benefit performance. For platforms where user IDs are pixelated or otherwise hidden,
adding comments to a text model still improves performance. In its integration of user, content, and
comment information, the full UTCNN produces the highest f-scores on all Sup, Neu, and Uns stances
among models that predict the Uns class, and the highest macro-average f-score overall. This shows its
ability to balance a biased dataset and supports our claim that UTCNN successfully bridges content and
user, topic, and comment information for stance classification on social media text. Another merit of
UTCNN is that it does not require a balanced training data. This is supported by its outperforming other
models though no oversampling technique is applied to the UTCNN related experiments as shown in this
paper. Thus we can conclude that the user information provides strong clues and it is still rich even in
the minority class.

We also investigate the semantic difference when a user acts as an author/liker or a commenter. We
evaluated a variation in which all embeddings from the same user were forced to be identical (this is
the UTCNN shared user embedding setting in Table 3). This setting yielded only a 2.5% improve-
ment over the model without comments, which is not statistically significant. However, when separating
authors/likers and commenters embeddings (i.e., the UTCNN full model), we achieved much greater im-
provements (4.8%). We attribute this result to the tendency of users to use different wording for different
roles (for instance author vs commenter). This is observed when the user, acting as an author, attempts
to support her argument against nuclear power by using improvements in solar power; when acting as a
commenter, though, she interacts with post contents by criticizing past politicians who supported nuclear
power or by arguing that the proposed evacuation plan in case of a nuclear accident is ridiculous. Based
on this finding, in the final UTCNN setting we train two user matrix embeddings for one user: one for
the author/liker role and the other for the commenter role.

4.5 Results on CreateDebate Dataset

Table 4 shows the results of UTCNN, baselines as we implemented on the FBFans datset and related
work on the CreateDebate dataset. We do not adopt oversampling on these models because the Cre-
ateDebate dataset is almost balanced. In previous work, integer linear programming (ILP) or linear-
chain conditional random fields (CRFs) were proposed to integrate text features, author, ideology, and
user-interaction constraints, where text features are unigram, bigram, and POS-dependencies; the author
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Method Features Topics
AVG

Text User ABO GAY OBA MAR

Majority .549 .634 .539 .695 .604
SVM -UniBiTrigram

√
.592 .569 .565 .673 .600

SVM -AvgWordVec
√

.559 .637 .548 .708 .613
SVM -AvgWordVec (transformed)

√ √
.859 .830 .800 .741 .808

CNN (Kim, 2014)
√

.553 .636 .557 .709 .614
RCNN (Lai et al., 2015)

√
.553 .637 .534 .709 .608

ILP (Hasan and Ng, 2013a)
√

.614 .626 .581 .669 .623
ILP (Hasan and Ng, 2013a)

√ √
.749 .709 .727 .754 .735

CRF (Hasan and Ng, 2013b)
√ √

.747 .699 .711 .754 .728
PSL (Sridhar et al., 2015)

√ √
.668 .727 .635 .690 .680

UTCNN without topic
√ √

.824 .851 .743 .814 .808
UTCNN without user

√
.617 .627 .599 .685 .632

UTCNN (full)
√ √

.878 .850 .857 .782 .842*

Table 4: Accuracies of post stance classification on CreateDebate dataset.
*UTCNN results were statistically significant (p-value < 0.001) with respect to other UTCNN settings.

constraint tends to require that posts from the same author for the same topic hold the same stance; the
ideology constraint aims to capture inferences between topics for the same author; the user-interaction
constraint models relationships among posts via user interactions such as replies (Hasan and Ng, 2013a;
Hasan and Ng, 2013b).

The SVM with n-gram or average word embedding feature performs just similar to the majority. How-
ever, with the transformed word embedding, it achieves superior results. It shows that the learned user
and topic embeddings really capture the user and topic semantics. This finding is not so obvious in the
FBFans dataset and it might be due to the unfavorable data skewness for SVM. As for CNN and RCNN,
they perform slightly better than most SVMs as we found in Table 3 for FBFans.

Compared to the ILP (Hasan and Ng, 2013a) and CRF (Hasan and Ng, 2013b) methods, the UTCNN
user embeddings encode author and user-interaction constraints, where the ideology constraint is mod-
eled by the topic embeddings and text features are modeled by the CNN. The significant improvement
achieved by UTCNN suggests the latent representations are more effective than overt model constraints.

The PSL model (Sridhar et al., 2015) jointly labels both author and post stance using probabilistic soft
logic (PSL) (Bach et al., 2015) by considering text features and reply links between authors and posts
as in Hasan and Ng’s work. Table 4 reports the result of their best AD setting, which represents the full
joint stance/disagreement collective model on posts and is hence more relevant to UTCNN. In contrast to
their model, the UTCNN user embeddings represent relationships between authors, but UTCNN models
do not utilize link information between posts. Though the PSL model has the advantage of being able
to jointly label the stances of authors and posts, its performance on posts is lower than the that for the
ILP or CRF models. UTCNN significantly outperforms these models on posts and has the potential to
predict user stances through the generated user embeddings.

For the CreateDebate dataset, we also evaluated performance when not using topic embeddings or user
embeddings; as replies in this dataset are viewed as posts, the setting without comment embeddings is not
available. Table 4 shows the same findings as Table 3: the 21% improvement in accuracy demonstrates
that user information is the most vital. This finding also supports the results in the related work: user
constraints are useful and can yield 11.2% improvement in accuracy (Hasan and Ng, 2013a). Further
considering topic information yields 3.4% improvement, suggesting that knowing the subject of debates
provides useful information. In sum, Table 3 together with Table 4 show that UTCNN achieves promising
performance regardless of topic, language, data distribution, and platform.
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5 Conclusion

We have proposed UTCNN, a neural network model that incorporates user, topic, content and comment
information for stance classification on social media texts. UTCNN learns user embeddings for all users
with minimum active degree, i.e., one post or one like. Topic information obtained from the topic model
or the pre-defined labels further improves the UTCNN model. In addition, comment information pro-
vides additional clues for stance classification. We have shown that UTCNN achieves promising and
balanced results. In the future we plan to explore the effectiveness of the UTCNN user embeddings for
author stance classification.
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