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Abstract

Parallelism is an important rhetorical device. We propose amachine learning approach for automated
sentence parallelism identification in student essays. We build an essay dataset with sentence level
parallelism annotated. We derive features by combining generalized word alignment strategies and the
alignment measures between word sequences. The experimental results show that sentence parallelism
can be effectively identified with aF1 score of 82% at pair-wise level and 72% at parallelism chunk level.
Based on this approach, we automatically identify sentenceparallelism in more than 2000 student essays
and study the correlation between the use of sentence parallelism and the types and quality of essays.

1 Introduction

Parallelism is an important rhetorical device. It can be defined astwo or more coherent text spans (phrases or
sentences), which have similar syntactic structures and related semantics, and express relevant content or emotion
together. Each text span is a parallelism unit and the parallel units form a parallelism chunk. The following two
sentences segmented by the semicolon form an example of sentence parallelism.

The inherent vice of capitalism is the unequal sharing of blessing;

the inherent virtue of socialism is the equal sharing of miseries. by Churchill.

Parallelism adds balance and rhythm to make speeches and writings more vivid and powerful. Moreover,
parallelism also adds clarity to the sentence or even the discourse. Several sentences are expressed similarly to
show that the content in the sentences are equal in importance. Therefore, properly using parallelism may improve
the quality of texts. On the other hand, identifying parallelism in essays would potentially help to evaluate the
quality of writings and benefit applications like essay scoring and organization evaluation.

In this paper, we study the problem of identifying parallelism in student essays. We focus on identifying sentence
parallelism. A parallelism unit is a sentence, and severalparallel sentences form aparallelism chunk. Parallelism
identification is a task to find the parallelism chunks withinessays.

This task is nontrivial. There are several factors to be considered. Since the parallel sentences should have
similar structures and related semantics, they can be seen as forming a certain kind of alignment between each
other. However, such alignment can exist in various levels,from surface lexical patterns to syntactic structures,
semantics and even emotions. Moreover, the alignment can occur at various granularity (words, phrases, clauses
or sentences). Therefore, it is difficult to design manual rules to identify sentence parallelism.

We propose a learning based framework for sentence parallelism identification. We annotate a sentence
parallelism dataset consisting of about 500 student essays. This dataset allows us to derive features to model
sentence parallelism and utilize machine learning to learna prediction model. Since parallelism can be seen
as a kind of alignment, we study various alignment measures to quantify the alignment between sentences.
Sentence alignment depends on word alignment so that we exploit several strategies to generalize word alignment
based on semantic and syntactic properties. The interactions among alignment measures and word alignment
strategies generate features to represent the alignment between sentences. The experimental results show that
sentence parallelism can be effectively identified. TheF1 score can reach 82% at pair-wise level and 72%
at parallelism chunk level. The features based on differentalignment measures and different word alignment
strategies complement each other. We further study the use of sentence parallelism in more than 2000 student
essays based on automated sentence parallelism identification. We observe that the use of sentence parallelism
varies in narrative and argumentative essays and has a positive correlation to the quality of writings especially in
argumentative essays.

This work is licenced under a Creative Commons Attribution 4.0 International License. License details:http://
creativecommons.org/licenses/by/4.0/

794



2 Data

We collected student essays written by Chinese students from a senior high school during mock examinations.
The essay types include narrative and argumentative essays, covering multiple topics. Two labelers were asked to
label parallelism in randomly sampled essays at sentence level. They were guided by the definition of parallelism.
Sentences are obtained by the sentence splitter provided bythe Chinese language processing toolkit — HIT-LTP
(Che et al., 2010). If a sentence contains less than four words, it is not allowed to be labeled. A sentence parallelism
chunk consists of multiple sentences. The labelers recognized the sentence parallelism chunks in essays and
assigned a distinct number to all parallel sentences from the same chunk in order to distinguish different chunks.

Item Number
#Essay 544

avg. #sentence per essay 28.47
avg.#parallelism chunk per essay 2.03

avg. #sentence per chunk 2.68

Table 1: Statistics of the annotated sentence parallelism dataset.

After annotation, we collected 544 student essays, each of which has at least one sentence parallelism chunk.
30 essays were annotated by both labelers, and the Kappa value between them is 0.71 (Carletta, 1996), which
indicates a moderate consistence. The mainly disagreementlies in their different judgement standards in terms
of the quality of parallelism between sentences. After discussion and reaching a consensus, they reviewed all the
annotations. Table 1 shows the basic statistics of the dataset.

3 Sentence Parallelism Identification

We cast sentence parallelism identification as a classification problem. Given an essay, we conduct a binary
classification for every pair of sentences to determine whether they areparallel or non-parallel. Further, we get
parallelism chunks according to the results of pair-wise classification.

According to the definition of parallelism, parallel sentences are expected to have sorts of alignment. The
alignment can be about words, syntactic structures and semantics. In this section, we would exploit a set of
alignment measures to quantity sentence alignment for a pair of sentences. For all alignment measures, the basis is
the alignment between single words. Therefore, we start by studying word alignment strategies and look forward
to incorporate information from multiple aspects. Then we introduce the alignment measures that are adapted for
this task. Combining alignment measures and word alignmentstrategies, we can derive rich features to represent
sentence alignment.

We use the HIT-LTP toolkit (Che et al., 2010) to conduct word segmentation, part-of-speech (POS) tagging and
dependency parsing. All alignment measures would be computed on word sequences.

3.1 Word Alignment Strategies

Without loss of generality, we define a matrixR, which measures the alignment between every pair of tokens in
vocabularyV . R(w, v) represents the alignment score between a pair of tokens(w, v), w, v ∈ V . According to
different assumption,R(w, v) may have different values. We consider the following word alignment strategies:

• Exact Match: R(w, v) = 1, if str(w) == str(v), otherwiseR(w, v) = 0. str(w) is the surface string ofw.

• POS Match: R(w, v) = 1, if pos(w) == pos(v), otherwiseR(w, v) = 0. pos(w) is the POS tag of wordw.

• Syntactic Role Match: R(w, v) = 1, if syntacticrole(w) == syntacticrole(v), otherwiseR(w, v) = 0.
syntacticrole(w) is the syntactic role of wordw. Here, we use dependency parsing to get the dependency
labels as the syntactic roles. Considering the example shown in Figure 1,syntacticrole(Sº)=SBV ,
syntacticrole(~�)=HED andsyntacticrole(�/)=V OB.

• Semantic Match. R(w, v) = 1, if similarity(w, v) > threshold, otherwise R(w, v) = 0.
similarity(w, v) is a semantic similarity measure forw and v. Here, we compute the similarity
based on word embeddings. Word embeddings are distributed representations of words learned on large
scale corpus using neural networks (Mikolov et al., 2013). Each word is represented by a dense real value
vector. similarity(w, v) computes the cosine similarity between the vectors ofw andv. The threshold is
empirically set to 0.75.

The above strategies generalize words to various levels. Weexpect such generalization could help find alignment
between sentences. For example, consider the following parallel sentences:
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Chinese: Sº NÊ �/
English: The spring breeze blows the land

POS tags: N V N
Syntactic roles: SBV HED VOB

HED

SBV VOB

Figure 1: Dependency parsing tree for the sentenceSºNÊ�/(The spring breeze blows the land).SºNÊ�/,�ÔE� (The spring breeze blows the land, reviving everything).ä�| {�,s��j (The root supports the crown, growing the forrest).

The two parallel sentences don’t share any word so that the exact match strategy fails to identify the alignment
between them. However, the alignment can be captured based on POS, syntactic role and semantic matches.

3.2 Sequence Alignment Measures

We use the following algorithms to measure the alignment between sentences.
Longest Common Subsequence(LCSeq)Longest Common Subsequence algorithm is a commonly used approach
to compare multiple sequences (Hirschberg, 1977). The subsequences are not required to occupy consecutive
positions within the original sequences. Parallel sentences often contain longer common subsequences. The LCSeq
algorithm can be effectively solved by using dynamic programming. Given two sequenceX = (x1, x2, ..., xm)
andY = (y1, y2, ..., yn), the prefixes ofX areXi, i from 1 tom; the prefixes ofY areYj , j from 1 ton. Let
LCSeq(Xi, Yj) represent the set of longest common subsequence of prefixesXi andYj . This set of sequences
can be got in the way below.

LCSeq(Xi, Yj) =


⊘ if i = 0 or j = 0
LCSeq(Xi−1, Yj−1) ∪ xi if R(xi, yj) = 1
longest(LCSeq(Xi, Yj−1), LCSeq(Xi−1, Yj)) if R(xi, yj) = 0

R(xi, yj) represents the condition of word alignment and can be realized using strategies in§3.1. We compute
the LCSeq and the normalized length of LCSeq (NormLCSeq) forsentencessi andsj as features. NormLCSeq is
computed as Equation 1.

NormLCSeq(si, sj) =
|LCSeq(si, sj)|
max(|si|, |sj |) (1)

Longest Common Substrings (LCStr) Parallel sentences have a high chance to have common substrings.
Therefore, we compute the longest common substrings of two sentences. Different from LCSeq, the common
substrings are required to occupy consecutive positions. Therefore, high LCStr indicates a better local alignment.
Different word alignment strategies can be applied. We use the length of the longest common substring as a feature.
Needleman-Wunsch Algorithm(NW) We adapt the Needleman-Wunsch algorithm (Needleman and Wunsch,
1970) for our task. This algorithm is widely used in computational biology for finding sequence alignment among
genes. Compared with LCS, it looks for an alignment between whole sequences, which maximizes an overall score
function as the sum of the scores over all aligned element pairs in two sequences.

Given two sequencesX ∈ V∗ and Y ∈ V∗, an alignment can be represented as a two-dimensional array
AlignX,Y

2×I that every word in one sequence is aligned to one word in the other sequence or to an indel which is
caused by inserting a word into one sequence or deleting a word from the other sequence, whereI is the number
of aligned element pairs. The alignment score is computed asEquation 2.

AlignScore(X, Y ) =
I∑

i=1

S(AlignX,Y
0,i , AlignX,Y

1,i ) (2)

whereS(x, y) assigns a score between a pair of aligned elements.
To computeS(x, y), there are two types of parameters: agap penalty and asubstitution matrix. Gap penalty

values are used to penalize the score when a word in one sequence is aligned to an indel in the other. Therefore,
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NW algorithm would penalize the long distance matches. The substitution matrix is used to assign alignment
scores between every pairs of words. A good pair alignment will be rewarded with a higher score. Obviously, the
word alignment strategies we discuss in§3.1 can be used here to construct the substitution matrix.

The alignment algorithm runs based on dynamic programming.Please refer to the details in (Needleman and
Wunsch, 1970). Once we get the best alignment, we can get a best AlignScore. This score is correlated to the
length of sequences. To reduce this effect, we use the normalized score, as shown in Equation 3, to build features .

NormAlignScore(X, Y ) =
AlignScore(X, Y )

I
(3)

3.3 Tree Alignment Measures

We also exploit syntactic structures. Tree kernels are the natural way to exploit syntactic structural properties,
which compute the similarities between parsed trees without enumerating the whole fragment space. In this work,
we parse sentences with a dependency parser. We use the Partial Tree (PT) kernel (Moschitti, 2006) to measure the
similarity between two trees, since it is suitable for dependency parsing. In addition, partial tree kernel considers
the ordered child sequence, which makes it suitable for our task as well.

The PT kernel is defined as:

K(T1, T2) =
∑

n1∈NT1

∑
n2∈NT2

△(n1, n2) (4)

whereNT1 andNT2 are the sets of nodes inT1 andT2, respectively and△(n1, n2) indicates the number of common
fragments rooted at then1 andn2 nodes. The kernels can be effectively computed based on dynamic programming
(Moschitti, 2006)µ
• if R(n1, n2) = 0, then△(n1, n2) = 0

• else△(n1, n2) would be computed recursively on the sets of ordered child sequences ofn1 andn2.

Again, we can utilize strategies introduced in§3.1 to computeR(n1, n2). Figure 1 shows a dependency
parsing tree of an example sentence. We use the normalized kernel values as features,Knorm(T1, T2) =

K(T1,T2)√
K(T1,T1)K(T2,T2)

.

3.4 Location and Length Features

We observe that parallel sentences also locate regularly indiscourse. For example, they usually occupy consec-
utively within the same paragraph, or locate symmetricallyin multiple paragraphs. In addition, they often have
close length and close number of clauses. We use the following features to describe these observations.

• Adjacencyµif two sentences in the same paragraph, and the absolute difference of sentence indexes is
smaller than 3, the feature value is set to 1, otherwise it is set to 0.

• Location Alignment: This feature is based on the sentence positions. If two sentences are in different
paragraphs and they are both the first sentence in the paragraphs, or both the last sentence in the paragraphs,
the feature value is set to 1, otherwise it is set to 0.

• Length difference: The absolute length difference of two sentences.

• Clause difference: If the number of clauses is the same, the feature is set to 1, otherwise it is set to 0. The
clauses are segmented by commas.

3.5 Summarization of Features

We summarize the used features in Table 2. Except for location and length features, we use various alignment
measures together with different word alignment strategies to generate features. We use both the absolute and
normalized length of LCSeq scores as features. LCStr focuses on local consecutive matches, therefore we only
use the length of longest common substrings as features. Thetree kernel method deals with syntactic structural
properties, therefore we construct two trees for each sentence based on dependency parsing. We use POS tags and
dependency tags respectively as the values of the tree nodes.
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Feature Set Feature Word Alignment Strategy

LCSeq

|LCSeqexact(si, sj)|, NormLCSeqexact(si, sj) Exact match
|LCSeqpos(si, sj)|, NormLCSeqpos(si, sj) POS match
|LCSeqsemantic(si, sj)|, NormLCSeqsemantic(si, sj) Semantic match
|LCSeqsyntacticrole(si, sj)| , NormLCSeqsyntacticrole(si, sj) Syntactic role match

LCStr

|LCStrexact(si, sj)| Exact match
|LCStrpos(si, sj)| POS match
|LCStrsemantic(si, sj)| Semantic match
|LCStrsyntacticrole(si, sj)| Syntactic role match

NW

NormAlignScoreexact(si, sj) Exact match
NormAlignScorepos(si, sj) POS match
NormAlignScoresemantic(si, sj) Semantic match
NormAlignScoresyntacticrole(si, sj) Syntactic role match

Tree
Alignment

Knorm
pos (si, sj) POS match

Knorm
syntacticrole(si, sj) Syntactic role match

LocLen

Adjacency —
Location Alignment —
Length Difference —
Clause Difference —

Table 2: Summarization of the features for a sentence pair< si, sj >.

3.6 Parallelism Chunk Identification

Given an essay, once every pair of sentences is classified asparallel or non-parallel, we construct parallelism
chunks based on the classification results. We use an aggressive strategy based on transitivity: if two sentence
pairs< x, y > and< x, z > are parallel, then< x, y, z > forms a parallelism chunk, no matter whether pair
< y, z > is classified as parallel.

4 Evaluation

4.1 Experimental Settings

Data and ClassifiersWe split the essays in our dataset into 5 parts and run cross-validation. Each time, 4 parts are
used for training and the remaining part is used for test. Sentences from the same parallelism chunks form a set of
positive pairs, while sentences that are in the same essay but not parallel form negative pairs.

The word embeddings for semantic similarity computation are learned using the Word2Vec tool (Mikolov et al.,
2013) on a dataset consisting of 85,000 student essays collected from the web. The dimension of word embeddings
is 50. The size of vocabulary is about 490,000.

We adopt the Random Forests (Breiman, 2001) as the classifierand use the implementation in Scikit-learn toolkit
(Pedregosa et al., 2011) with default parameters.
Evaluation Metrics We adopt precision, recall andF1 score as evaluation metrics. The metrics can be computed
at pair-wise level and parallelism chunk level respectively.

At pair-wise level, the precision and recall are computed as:

pair-precision =
#correctly identified parallelism sentence pairs

#identified parallelism sentence pairs
(5)

pair-recall =
#correctly identified parallelism sentence pairs

#true parallelism sentence pairs
(6)

At chunk level, the precision and recall are computed as:

chunk-precision =
#correctly identified parallelism chunks

#identified parallelism chunks
(7)

chunk-recall =
#correctly identified parallelism chunks

#true parallelism chunks
(8)

A correctly identified parallelism chunk means the identified chunk has the same sentences with a labeled chunk.
In both cases,F1 = 2×precision×recall

precision+recall .
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Feature Set pair-P pair-R pair- F1 chunk-P chunk-R chunk-F1

LocLen 0.71 0.41 0.52 0.38 0.32 0.35
LCSeq 0.72 0.64 0.68 0.45 0.49 0.47
LCStr 0.71 0.63 0.67 0.46 0.48 0.47
NW 0.75 0.68 0.72 0.49 0.55 0.52

Tree alignment 0.67 0.44 0.53 0.33 0.31 0.32

NW + LocLen 0.85 0.78 0.81 0.68 0.70 0.69
NW + Tree alignment 0.81 0.70 0.75 0.58 0.59 0.59

ALL 0.85 0.79 0.82 0.73 0.70 0.72

Table 3: Evaluation results of using different alignment measures.

Word Alignment Strategy pair-P pair-R pair- F1 chunk-P chunk-R chunk-F1

Exact 0.72 0.69 0.71 0.47 0.54 0.50
POS 0.49 0.51 0.50 0.23 0.31 0.26

Syntactic role 0.77 0.59 0.67 0.52 0.52 0.52
Semantic 0.79 0.66 0.72 0.56 0.57 0.56

Exact + Syntactic role 0.81 0.71 0.76 0.62 0.65 0.64
Exact + Semantic + Syntactic role 0.82 0.72 0.77 0.64 0.65 0.64

Exact + Semantic + Syntactic role + POS 0.81 0.72 0.76 0.62 0.65 0.63

Table 4: Evaluation results of using different word alignment strategies.

4.2 Results

Table 3 shows the experimental results using different sequence alignment measures. All word alignment strategies
are used in this experiment. The best alignment measure is the score computed using the Needleman-Wunsch
algorithm. This is reasonable, since it captures the alignment on the whole sequence, considering the local
alignments like LCStr and penalizing long distance matches, which LCSeq ignores.

Different from LCStr, LCSeq and NW, tree alignment exploitsmore complex structural information. So tree
alignment based measures should complement sequence basedmeasures. The best combination of tree based and
sequence based measures are NW plus tree alignment.

Using the location and length features (LocLen) alone leadsto a low recall, but they can improve the performance
when combining with other features. We can see that combining LocLen and NW achives good performance.

Combining all alignment measures achieves the best performance. The results demonstrate that pair-wise
sentence parallelism can be effectively identified. The chunk-wise performance is moderate. The precision of
pair-wise classification is shown to be more crucial to the chunk-wise performance.

Feature Weight

NormAlignScoresemantic 0.161
NormAlignScoreexact 0.148

NormAlignScoresyntacticrole 0.117
NormAlignScorepos 0.105
Location Alignment 0.078

Knorm
syntacticrole 0.062

NormLCSeqexact 0.056
Length Difference 0.047

Knorm
pos 0.040

LCStrexact 0.036

Table 5: Top ranked feature weights.

We are also interested in the contributions of various word alignment strategies. Table 4 shows the performance
of using different word alignment strategies and their combinations. All alignment measures are used in this
experiment. We can see that the semantic match strategy performs best. This indicates that semantic level
information is important. We observe that the best combination of two strategies is the combination of exact
match and syntactic role match, while the best combination of three strategies is the combination of exact match,

799



0 10 20 30 40 50 60
Scores

0

50

100

150

200

250

N
u
m
b
e
r 
o
f 
e
ss
a
y
s

Argumentative
Narrative

(a) Distribution of essays scores.

Narrative Argumentative
0

500

1000

1500

2000

2500

N
u
m
b
e
r 
o
f 
ch

u
n
ks

Cross-para chunks
Intra-para chunks

(b) Number of chunks in narrative and
argumentative essays.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Relative positions

0.05

0.10

0.15

0.20

0.25

P
e
rc
e
n
ta
g
e
 o
f 
ch

u
n
ks

(c) Distribution of chunks’ relative posi-
tions.

Figure 2: Basic statistics of the student essay dataset and the use of sentence parallelism in the dataset.

semantic match and syntactic role match. Different strategies complement each other except that the POS match
doesn’t provide extra gain in our experiments. Table 5 showsthe feature weights learned by the Random Forests
model. The trend is similar to the previous observations.

5 Sentence Parallelism and Essay Writing

The automated sentence parallelism identification makes itpossible to study the use of sentence parallelism in
student essays and its relation to essay quality on large datasets. We collected another dataset containing essays
written by senior high school students in mock examinations. This dataset has 1036 narrative essays and 1064
argumentative essays, and it doesn’t overlap with the dataset introduced in§2. All these essays had been scored
by professional high school teachers. The scores ranges from 0 to 60. The distribution of essay scores is shown in
Figure 2(a). We can see the distribution of either narrativeor argumentative essays meets the normal distribution.
The dataset should be representative to reflect the real situation.

5.1 How Students Use Sentence Parallelism

We use our system to process these essays and extract parallelism chunks. We extract 2224 and 1219 parallelism
chunks in argumentative essays and narrative essays respectively. These parallelism chunks can be categorized
into two types:intra-para chunks andcross-para chunks. Intra-para chunks contain parallel sentences within the
same paragraph, while cross-para chunks have parallel sentences across multiple paragraphs.

The ratio of each type of chunks are shown in Figure 2(b). Parallelism chunks, especially the ones that cross
paragraphs, are used more often in argumentative essays than in narrative essays. We examine some essays and
find that in argumentative essays, students would use parallel sentences to express their main ideas that are used to
support the thesis from different aspects. The parallelismcan add the clarity in organization. Therefore, there are
more cross-para chunks in argumentative essays.

We also examine the relative positions of parallelism chunks. We use the average sentence number of sentences
in a chunk divided by the number of sentences in the essay as the relative position of the chunk. Figure 2(c) shows
the distribution of relative positions, which are grouped into 10 zones. We can see the distribution is interesting
that sentence parallelism is used much more often in the beginning or the ending of essays, while relatively less
parallel sentences are used in the body part. We guess the reason is that since parallel sentences are used to impress
the readers, the beginning and the ending parts are easier todraw readers’ attentions. As a result, students tend to
put impressive sentences at these important positions.

Essay type #intra-para chunks #cross-para chunks #all chunks Presence
Narrative 0.146 0.082 0.161 0.146

Argumentative 0.20 0.233 0.290 0.299

Table 6: Pearson coefficients between scores and the number of different types of parallelism chunks.

5.2 Sentence Parallelism and Essay Scores

Does the use of sentence parallelism relate to the quality ofessays? To answer this question, we analyze the
relationship between sentence parallelism and essay scores. We first compute the pearson correlation coefficients
between the number of different types of parallelism chunksand the scores of essays. Table 6 shows the results.
The correlation coefficient with the number of chunks can reach 0.29 in argumentative essays. In contrast, the
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Essay type All essays Presence Absence

Narrative 43.74 44.09 43.13
Argumentative 45.65 46.35 42.13

Table 7: Average scores of essays in terms of the presence or absence of sentence parallelism.

correlation in narrative essays is much lower. The number ofcross-para chunks has a higher correlation to essay
scores in argumentative essays, but a lower correlation in narrative essays, compared with the number of intra-para
chunks.

If we consider the presence or absence of parallelism, the correlations have the same trends as shown in the last
column in Table 6. Table 7 shows the average scores of essays in terms of the presence or absence of sentence
parallelism. In both narrative and argumentative essays, essays with sentence parallelism tend to have higher
scores in average compared with the ones without sentence parallelism. Both differences are significant at 95%
level (t-test, p< 0.05). The score difference is more obvious in argumentative essays.
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Figure 3: Average number of parallelism chunks in essays coming from different score ranges.

We further examine sentence parallelism in essays within 4 different score ranges, including 40 points below,
40 to 45, 46-49 and 50-60. We compute the average number of parallel sentence chunks in each score range. The
result is shown in Figure 3 for argumentative and narrative essays respectively. We can see that the essays from
higher score ranges have a larger average number of parallelism chunks. The trend holds for both argumentative
and narrative essays.

We also want to consider the effect of the quality of sentenceparallelism. Instead of dealing with the content, we
considerlong chunks whose chunk sizes are equal to or greater than 3. We simply view long chunks as high quality
parallelism. The results are also shown in Figure 3. The differences among score ranges in argumentative essays
are more obvious so that high quality sentence parallelism might be a useful indicator of well written argumentative
essays. In contrast, long chunks appear much less in narrative essays across all score ranges.

5.3 Discussion

This section have studied the relationship between the use of sentence parallelism and the types and quality of
student essays. The biggest observation is that the essay type—argumentative or narrative essay—is a key factor
when we study sentence parallelism. First, the frequency and styles of using sentence parallelism are different.
Parallelism is much more often used in argumentative essays. The ratio of cross-para chunks is also higher in
argumentative essays. Second, the frequency or presence ofusing sentence parallelism has a positive correlation
to the quality of essays. The correlation exists but is weak in narrative essays, while it is stronger in argumentative
essays. According to the score distributions, recognizinghigh quality and low quality essays is crucial and
challenging. High quality sentence parallelism may be useful to distinguish good and poor argumentative essays.

Notice that the ways of using parallelism may relate to how students are taught on writing, which might be
different across countries and cultures. The observed statistics may also be affected by the topics of essays.
Nonetheless, the observations should potentially help to design features for automated writing evaluation.
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6 Related Work

6.1 Sequence Alignment

Finding the common parts among sequences have been a set of classic computer science problems. The typical
problems include finding the longest common subsequence (Hirschberg, 1977), longest common substring and
multiple sequence alignment (Carrillo and Lipman, 1988; Needleman and Wunsch, 1970). These techniques are
commonly used in computational biology and also applied to natural language processing for constructing concept
mapping dictionary (Barzilay and Lee, 2002), identifying sentence level paraphrases (Barzilay and Lee, 2003)
and modeling the organization of student essays (Persing etal., 2010). In this work, we exploit these alignment
measures for deriving features, since parallel sentences should have a kind of alignment.

6.2 Semantic Similarity of Texts

A large of body of previous work focuses on measuring the semantic similarity of texts. Semantic similarity of text
usually depends on exploiting the semantic similarity of words and concepts (Corley and Mihalcea, 2005; Mitchell
and Lapata, 2008). While the semantic similarity of words and concepts are learned based on distributional
statistics (Lin, 1998; Padó and Lapata, 2007). Recently, neural networks based methods are proposed to learn the
distributed representation of words on large scale of corpus (Mikolov et al., 2013). The learned word embeddings
enable similar words to have a close distance in the vector space. There is also work on sentential paraphrase
identification (Madnani and Dorr, 2010). Paraphrases are different expressions that convey the same meaning.
Although it is similar to our task, the goals are different, since parallel sentences are not expected to have the same
meaning and paraphrases are not required to have similar structures. Many researchers also exploit the structural
properties of sentences to measure semantic similarity of texts, such as the tree kernel emthods (Moschitti, 2006;
Mooney and Bunescu, 2005; Culotta and Sorensen, 2004).

6.3 Text Quality Analysis

Some work focuses on dealing with rhetorical device such as recognizing metaphor in texts (Shutova, 2010).
Parallelism is also an important rhetorical device. Hobbs and Kehler (1997) study the clause level parallelism.
However, little work has been done on sentence-level parallelism identification. These is work on predicting the
quality of articles (Louis and Nenkova, 2013; Pitler and Nenkova, 2008), writing styles (Ashok et al., 2013) and
student essays (Attali and Burstein, 2006). They mainly usesimple shallow features, but seldomly use rhetorical
device related features. Automated rhetorical device analysis should help to improve the above tasks.

7 Conclusion

We have investigated identifying sentence parallelism in student essays. We adopt machine learning to learn
a prediction model based on an annotated dataset. We study various alignment measures and different word
alignment strategies for deriving features. The evaluation demonstrates that our proposed method can effectively
identify sentence parallelism, achieving aF1 score of 82% at pair-wise level and 72% at parallelism chunk level.
We also study the use of sentence parallelism in more than 2000 student essays based on automated parallelism
identification. We find that students tend to use more sentence parallelism in argumentative essays compared with
narrative essays. The essays with sentence parallelism have higher scores in average. The presence of high quality
sentence parallelism shows to be an indicator of high quality argumentative essays.
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