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Abstract

Gaussian LDA integrates topic modeling with word embeddings by replacing discrete topic dis-
tribution over word types with multivariate Gaussian distribution on the embedding space. This
can take semantic information of words into account. However, the Euclidean similarity used in
Gaussian topics is not an optimal semantic measure for word embeddings. Acknowledgedly, the
cosine similarity better describes the semantic relatedness between word embeddings. To employ
the cosine measure and capture complex topic structure, we use von Mises-Fisher (vMF) mixture
models to represent topics, and then develop a novel mix-vMF topic model (MvTM). Using pub-
lic pre-trained word embeddings, we evaluate MvTM on three real-world data sets. Experimental
results show that our model can discover more coherent topics than the state-of-the-art baseline
models, and achieve competitive classification performance.

1 Introduction

Topic models such as latent Dirichlet allocation (LDA) (Blei et al., 2003) are hierarchical probabilistic
models of document collections. They can effectively uncover the main themes of corpora by using
latent topics learnt from observed collections (Blei, 2012), however, they neglect semantic information
of words. In topic modeling, a “topic” is a multinomial distribution over a fixed vocabulary, i.e., a
word type proportion. Because words are represented by unordered indexes, with statistical inference
algorithms, related words are grouped into topics mainly by using document-level word co-occurrence
information (Wang and McCallum, 2006), rather than semantics of words. That is why LDA often
outputs many low-quality topics, and views in (Das et al., 2015) even suggest that any such observation
of semantically coherent topics in topic models is, in some sense, accidental.

To mix with semantics of words, a recent Gaussian LDA (G-LDA) (Das et al., 2015) model integrates
topic modeling with word embeddings, which can effectively capture lexico-semantic regularities in
language from a large unlabeled corpus (Mikolov et al., 2013). This hot technique transforms words
into vectors (i.e., word vector). To model documents of word vectors, G-LDA replaces the discrete
topic distributions over word types with multivariate Gaussian distributions on the word embedding
space. Because words with similar semantic properties are closer to each other in the embedding space,
semantic information of words can be taken into consideration by using Gaussian distributions to describe
semantic centrality location of topics.

An issue of G-LDA is that the word weights in Gaussian topics are measured by the Euclidean simi-
larity between word embeddings. However, the Euclidean similarity is not an optimal semantic measure,
since most of word embedding algorithms use exponentiated cosine similarity as the link function (Li et
al., 2016a). The cosine similarity may be a better choice to describe the semantic relatedness between
word embeddings. Following this idea, in this paper we use von Mises-Fisher (vMF) distributions on
the embedding space to represent topics, replacing Gaussian topics in G-LDA. The vMF distribution
defines a probability density over vectors on a unit sphere, parameterized by mean µ and concentration
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parameter κ. Its density function for x ∈ RM , ‖x‖ = 1, ‖µ‖ = 1, κ ≥ 0 is given by:

p (x|µ, κ) = cp (κ) exp
(
κµTx

)
(1)

where cp (κ) is the normalization constant. Note that vMF concerns the cosine similarity defined by
µTx. It is a better way to represent topics of word embeddings.

Another issue we face is that topics often contain many words that are far away from each other in
the embedding space. That is, the true distributions of topics often form two or more dominant clump-
s. However, a simple vMF distribution is unable to capture such structure. For example, the topic
〈software, user, net, feedback, grade〉 contains some “dissimilar” words, such as net and grade1. In
this case, a simple vMF topic distribution can not simultaneously place high probabilities on these “dis-
similar” words.

To address the problem mentioned above, we further use mixtures of vMFs to describe topics, rather
than a single vMF. We then develop a novel mix-vMF topic model (MvTM). Mixtures of vMFs can
help us capture complex topic structure that forms more dominant clumps. In MvTM, we consider two
settings with respect to the topic, i.e., disjoint setting and overlapping setting. Naturally, in disjoint
settings all mixtures of vMFs use disjoint vMF bases; and in overlapping setting some mixtures of
vMFs share the same vMF bases. An advantages of the overlapping setting is that it can describe topic
correlation in some degree. We have conducted a number of experiments on three real-world data sets.
Experimental results show that our MvTM can discover more coherent topics than the state-of-the-art
baseline topic models, and achieve competitive performance on the classification task.

2 Model

In this section, we simply review LDA and G-LDA.

2.1 LDA

LDA (Blei et al., 2003) is a representative probabilistic topic model of document collections. In LDA,
the main themes of corpora are described by topics, where each topic is a multinomial distribution φ
over a fixed vocabulary (i.e., a word type proportion). Each document is a multinomial distribution θ
over topics (i.e., a topic proportion). For simplification, distributions φ and θ are designed to be sampled
from the conjugate Dirichlet priors parameterized by β and α, respectively. Suppose that D, K and V
denote the number of documents, topics and word types. The generative process of LDA is as follows:

1. For each topic k ∈ {1, 2, · · · ,K}
(a) Sample a topic φk ∼ Dir (β)

2. For each document d ∈ {1, 2, · · · , D}
(a) Sample a topic proportion: θd ∼ Dir (α)
(b) For each of the Nd words embeddings

i. Sample a topic indicator zdn ∼Multinomial (θd)
ii. Sample a word wdn ∼Multinomial (φzdn

)

Reviewing the definition above, we note that a topic in LDA is a discrete distribution over observable
word types (i.e., word indexes). In this sense, LDA neglects semantic information of words and precludes
new word types to be added into topics.

2.2 G-LDA

G-LDA (Das et al., 2015) integrates topic modeling with word embeddings. This model replaces the
discrete topic distributions over word types with multivariate Gaussian distributions on an M-dimensional

1This means that the cosine similarity between word embeddings of net and grade is small.

152



embedding space, and concurrently replaces the Dirichlet priors with the conjugate Normal-Inverse-
Wishart (NIW) priors on Gaussian topics. Because word embeddings learnt from large unlabeled corpora
effectively capture semantic information of words (Bengio et al., 2003), G-LDA can handle, in some
sense, words’ semantics and new word types. Let N (µk,Σk) be the Gaussian topic k with mean µk and
covariance matrix Σk. The generative process of G-LDA is as follows:

1. For each topic k ∈ {1, 2, · · · ,K}
(a) Sample a Gaussian topic N (µk,Σk) ∼ NIW (µ0, κ0,Ψ0, ν0)

2. For each document d ∈ {1, 2, · · · , D}
(a) Sample a topic proportion: θd ∼ Dir (α)
(b) For each of the Nd word embeddings

i. Sample a Gaussian topic indicator zdn ∼Multinomial (θd)
ii. Sample a word embedding wdn ∼ N (µzdn

,Σzdn
)

3 MvTM

G-LDA defines Gaussian topics, which measure word weights in topics by the Euclidean similarity
between word embeddings. However, the Euclidean similarity is not an optimal semantic measure of
word embeddings. People often prefer the cosine similarity (Li et al., 2016a). To upgrade G-LDA, a
novel mix-vMF topic model (MvTM) is proposed, where we replace the Gaussian topic in G-LDA with
mixture of vMFs. In this work, we use mixture of vMFs with C mixture components (Banerjee et al.,
2005) described by:

p (x|π1:C , µ1:C , κ) =
C∑

c=1

πcpc (x|µc, κ) (2)

where pc (x|µc, κ) is the mixture vMF component (i.e., base); πc is the mixture weight and such that∑C
c=1 πc = 1. The design of MvTM has two advantages. First, the vMF distribution defines a probability

density over normalized vectors on a unit sphere. Reviewing Eq.1, it can be seen that vMF concerns the
cosine similarity. Second, using linear vMF mixture model can help us capture complex topic structure,
which forms two or more dominant clumps.

Formally, MvTM models documents consisting of normalized word embeddings w in an M-
dimensional space, i.e., ‖w‖ = 1 and w ∈ RM . Suppose that there are K topics in total. We characterize
each topic k as a mixture of vMFs with parameter ∆k =

{
πk|1:C

, µk|1:C , κk

}
. Besides the topic design,

again suppose that each document is a topic proportion θ, drawn from a Dirichlet prior α. Let D and
Nd be the number of documents and the number of words in document d, respectively. The generative
process of MvTM is given by:

1. For each document d ∈ {1, 2, · · · , D}
(a) Sample a topic proportion: θd ∼ Dir (α)
(b) For each of the Nd word embeddings

i. Sample a vMF mixture topic indicator zdn ∼Multinomial (θd)
ii. Sample a word vector wdn ∼ vMF (∆zdn

)

In MvTM, the vMF bases of different topics can be either disjoint or overlapping. For disjoint MvTM
(abbr. MvTMd), the vMF bases of different topics are disjoint. In MvTMd, the total number of vMF
bases isC×K. For overlapping MvTM (abbr. MvTMo), vMF bases are allowed to be shared by different
topics. An advantage is that the overlapping setting can describe topic correlation in some degree. For
example, if two topics share a same vMF base and their corresponding mixture weights are close to each
other, they may be semantically correlated. In previous study, we have examined several overlapping
patterns, e.g., all topics share a same set of vMF bases. However, an issue is that such patterns often
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output many twinborn topics. In this work, we use the following overlapping scheme: suppose that there
are G groups ofK ′ topics. In a group, each topic consists of C ′ personal vMF bases, and all topics in this
group share P public vMF bases, where C ′ + P = C. In this setting, the total number of vMF bases is
G× (K ′ × C ′ + P ), and topics in a group Gg use a same κg, i.e., κg = κk = · · · = κk′ if k · · · k′ ∈ Gg.
The intuition behind overlapping by topic groups is that only a small set of topics may be semantically
correlated. Besides, the personal vMF base design can effectively avoid the outputs of twinborn topics.

3.1 Inference
For MvTM, the topic proportions {θd}d=D

d=1 and the topic assignments {zdn}d=D,n=Nd
d=1,n=1 are hidden vari-

ables; and the topics {vMF (∆k)}k=K
k=1 are model parameters. Given an observable document collection

W consisting of word embeddings, we wish to compute the posterior distribution over θ and z, and to
estimate vMF (∆).

Because the exact posterior distribution p(θ, z|W,α,∆) is intractable to be computed, we must resort
approximation inference algorithms. Due to the multinomial-Dirichlet design, the topic proportion θ
can be analytically integrated out. We then use hybrid variational-Gibbs (HVG) (Mimno et al., 2012)
to approximate a posterior over the topic assignment z: p(z|W,α,∆). A variational distribution of the
following form is used:

q(z) =
D∏

d=1

q(zd) (3)

where q(zd) is a single distribution over the KNd possible topic configurations, rather than a product of
Nd distributions. By using this variational distribution, we obtain an Evidence Lower BOund (ELBO) L
as follows :

log p(z|W,α,∆) ≥ L(zd,∆) ∆= Eq [log p(W, z|α,∆)]− Eq [log q(z)] (4)

We then develop an expectation maximization (EM) process to optimize this ELBO, where in the E-
step we maximize L with respect to the variational distribution q(z), and in the M-step we maximize
L with respect to the model parameter ∆, holding q(z) fixed. Optimizing q(z) directly is expensive
because for each document d it needs to enumerate all KNd possible topic configurations. We therefore
apply Monte-Carlo approximation to this ELBO L in Eq.4 by:

L(zd,∆) ∆= Eq [log p(W, z|α,∆)]− Eq [log q(z)]

≈ 1
B

B∑
b=1

(
log p(W, z(b)|α,∆)− log q

(
z(b)

))
(5)

where
{
z(b)

}b=B

b=1
are samples drawn from q(z). Because the variational distributions q(zd) are indepen-

dent from each other, reviewing Eq.3, each document d drives a personal sampling process with respect
to q(zd).

In the E-step, for each document d we use Gibbs sampling to draw B samples from q(zd). This se-
quentially samples topic assignment to each word embedding from the posterior distribution conditioned
on all other variables and the data. The sampling equation is given by:

p(zdn = k|z−n
d , α,∆) ∝ (N−n

dk + α)× vMF(wdn|∆k) (6)

where Ndk is the number of word embeddings assigned to topic k in document d; the superscript “-n” is
a quantity that excludes the word embedding wdn. During per-document Gibbs sampling, we iteratively
run the MCMC chain a fixed number of times and save the last B samples.

In the M-step, we optimize ∆ given all samples of z obtained in E-step. This is achieved by maximiz-
ing the following approximate ELBO L′:

L′ ∆=
1
B

B∑
b=1

(
log p(W, z(b)|α,∆) + const

)
(7)
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For the disjoint setting, i.e., MvTMd, the optimization ofL′ is equivalent to independently estimate ∆k

for each topic k. Due to space limit, we omit the derivation details (Gopal and Yang, 2014). Extracting
all Nk word embeddings assigned to topic k, for each word embedding wi we compute its weights for all
C vMF bases by:

weightic =
πk|cvMF(wi|µk|c, κk)∑C

j=1 πk|jvMF(wi|µk|j , κk)
(8)

and then update ∆k by:

Rk|c =
Nk∑
i=1

weightic × wi, rk =
C∑

c=1

∥∥∥Rk|c
∥∥∥

Nk

µk|c =
Rk|c∥∥∥Rk|c

∥∥∥ , πk|c =
Nk∑
i=1

weightic
Nk

, κk =
rkM − r3

k

1− r2
k

(9)

For the overlapping setting, i.e., MvTMo, there are a few changes to the optimization of L′. In each
topic group Gg, the updates of π and µ of personal vMF bases remain unchanged, whereas the mean µ
of public vMF bases and κ of this group are updated by:

rg =
C∑

c=1

∥∥∥∑k∈Gg
Rk|c

∥∥∥∑
k∈Gg

Nk
, µk|p =

∑
k∈Gg

Rk|p∥∥∥∑k∈Gg
Rk|p

∥∥∥ , κg =
rgM − r3

g

1− r2
g

(10)

where µk|p is the mean of the pth public vMF base for topic k and note that µk|p = µk′|p if k, k′ ∈ Gg.
For clarity, the overall EM inference algorithm for MvTM is outlined in Algorithm 1.

Algorithm 1 Inference for MvTM
1: Initialize parameters.
2: For t = 1, 2, · · · ,Max iter do
3: E-step
4: For document d=1 to D do
5: Gibbs sampling for B topic assignments z(b)

d using Eq.6
6: End for
7: M-step
8: For MvTMd, optimize ∆ using Eq.8 and 9.
9: For MvTM0, optimize ∆ using Eq.8, 9 and 10.

10: End for

3.2 Time Complexity
We first analyze the time complexities of E-step and M-step, and then present the overall time cost of
MvTM.

In the E-step, the main time cost is the topic assignment sampling of each word embedding over K
topics. Reviewing Eq.6, one sampling process needs to compute the probabilities of the current word
embedding, i.e., vMF(wdn|∆k), in all K topics, which requires O(KCM) time. Fortunately, the topics
are fixed in the E-step, thus we only need to compute the value of vMF(w|∆k) for each word embedding
at the beginning of each EM sweep, and save them in the memory. This requires O(V KCM) time,
where V is the number of word embeddings. Consequently, the topic sampling process of MvTM is
equivalent to the sampling of Gibbs sampling LDA, requiring O(K) time. We present that the per-
iteration time complexity of E-step is given by O(V KCM + ζNVK), where ζ is the iteration number
in per-document Gibbs sampling and NV is the total number of word embeddings occurred in a corpus.
Recently, sparse sampling algorithms (Yao et al., 2009; Li et al., 2014) effectively accelerate the sampling
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Table 1: Summarization of data sets used in our experiments. NV is the total number of word tokens;
NV /D is the average document length; “label” denotes the number of pre-assigned classes.

Data set V D NV NV /D label

NG 18,127 18,768 1,946,487 104 20

NIPS 4,805 1,740 2,097,746 1,206 −
Wiki 7,702 44,819 6,851,615 153 −

of topic models. Inspired by (Li et al., 2016b), we employ the Alias method (Walker, 1977; Marsaglia
et al., 2004) to reduce the per-word sampling cost from O(K) to O(Kd), where Kd is the number of
instantiated topics in document d and commonly Kd � K. The per-iteration time complexity of E-step
now is O(V KCM + ζNVKd).

In the M-step, the time cost of MvTMd and that of MvTMo are almost the same. We only present
the time complexity of MvTMd. Reviewing the M-step, we see that the most expensive updates include
Eq.8, the first and the fourth equations in Eq.9. They require O(V CM), O(V CM) and O(V C). Thus
we present that the (per-iteration) time complexity of M-step is O(V CM).

Overall, we see that in each EM sweep the E-step dominates the run-time, giving an approximate
total per-iteration time complexity O(V KCM + ζNVKd). Clearly, MvTM is much efficient than Gibbs
sampling G-LDA (Das et al., 2015), because G-LDA needs to repeatedly compute the determinant and
inverse of the covariance matrix in Gaussian topics. For each word occurring, this spends O(M2) time,
even using Cholesky decomposition.

4 Experiment

In this section, we evaluate MvTM qualitatively and quantitatively.

4.1 Experimental Setting
Data set Three data sets were used in our experiments, including Newsgroup (NG), NIPS and
Wikipedia (Wiki). The NG data set is a collection of newsgroup documents, consisting of 20 class-
es. We will use NG to examine the classification performance of MvTM in Section 4.3. The NIPS data
set is a collection of papers in the NIPS conference. The processed versions of these two data sets were
downloaded from the open source of G-LDA2. For the Wiki data set, we downloaded a number of doc-
uments from online English Wikipedia, and processed these documents using a standard vocabulary3.
The statistics of the three data sets are listed in Table 1.

Baseline model: In the experiments, we used two baseline models, including LDA4 and G-LDA2. For
both baseline models, we use their open source codes publicly available on the net. A pre-trained 50-
dimensional word embeddings5 were used. Especially for MvTM, we normalized the word embeddings.

4.2 Evaluation on Topics
We use the PMI score (Newman et al., 2010) to evaluate the quality of topics learnt by topic models.
This metric is based on the pointwise mutual information of a power-law reference corpus. For a topic k,
given T most probable words the PMI score is computed by:

PMI (k) =
1

T (T − 1)

∑
1≤i≤j≤T

log
p (wi, wj)
p (wi) p (wj)

(11)

where p (wi) and p (wi, wj) are the probabilities of occurring word wi and co-occurring word pattern
(wi, wj) estimated by the reference corpus, respectively. In the experiments, we use the Palmetto6 tool

2https://github.com/rajarshd/Gaussian LDA
3http://www.cs.princeton.edu/∼mdhoffma/
4http://gibbslda.sourceforge.net/
5GloVe word embeddings available at http://nlp.stanford.edu/projects/glove/
6http://aksw.org/Projects/Palmetto.html
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Figure 1: PMI performance of 15 top words on NG, NIPS and Wiki.

Table 2: Random selected examples of top words learnt by baseline models and our MvTM on NG.
LDA G-LDA

president car treating space government car disease space
government cars writes nasa administration university food nasa
fbi engine medical gov support ohio treatment spacecraft
mr good cancer orbit state cars doctor earth
clinton oil doctor writes military carolina medical orbit
koresh mr doesn don leaders virginia eat level
children speed treatment moon groups harvard patients mars
people drive brain mission public speed cancer put
batf ford patients solar policy michigan drink asked
administration article drug water forces missouri course shuttle

MvTMd MvTMo

country car disease earth country wheel patients space
western cars treatment orbit government door treatments earth
arab driver medical mars state gear therapy orbit
muslim bike patients light president car treatment mars
territory drivers infection space public pulling diabetes spacecraft
government truck drugs orbiting policy inside diseases light
war vehicle diseases jupiter leaders wheels hiv surface
occupation driving brain solar administration front treating orbiting
eastern vehicles tests orbiter war stuck disease solar
occupied wheel treating spacecraft people rolled vaccine orbiter

to compute PMI scores of the top 15 words.
We train baseline models and our MvTM with 50 topics, and evaluate the average PMI score of all

topics. For MvTMd, the number of vMF bases is set to 2, i.e., C = 2. For MvTMo, topics are organized
into ten groups, where each group consists of five topics; and the numbers of personal vMF bases and
public vMF bases are set to 2 and 3, respectively7.

The experimental PMI results on three data sets are shown in Figure 1. It is clearly seen that MvTM
performs better than LDA and G-LDA. This implies that MvTM outputs more coherent topics. Some
examples of top topic words are listed in Table 2. Overall, we see that the topics of MvTM seem more
coherent than those of baseline models. The topics of LDA contain some noise words, e,g., “mr” and
“don”; and G-LDA contains some less relevant words, e.g., the second topic of G-LDA is incoherent.
In contrast, the topics of MvTM are more precise and clean. Besides, for MvTMo we measure topic
correlation by computing the cosine between vMF weights of topics in the same group. Some topic pairs
with high cosine similarity scores, such as 〈patients, treatments, therapy, treatment, diabetes〉 and
〈blood, skin, heart, stomach, breathing〉, seem semantically correlated.

7In previous experiments, we found that using mixtures of vMFs with 2 bases is able to better represent topics.
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Figure 2: Classification performance on NG: (a) original test documents and (b) test documents with
new words.

4.3 Evaluation on Classification
We compare the classification performance of MvTM with baseline topic models across NG. Two new
baselines are used, i.e., topical word embedding (TWE) (Liu et al., 2015) and infvoc (Zhai and Boyd-
Graber, 2013). For all models, we learn the topic proportions (K=50) as features of documents, and then
use the SVM classifier implemented by LibSVM8.

The results of original test documents are shown in Figure 2(a). Clearly, MvTM achieves better
performance than LDA, G-LDA and TWE. MvTM can handle absent words in training data. To examine
this ability, we compare MvTM with G-LDA and infvoc9, where the two also can handle unseen words.
We replace a number of words in test documents with synonyms by using WordNet as in (Das et al.,
2015). The classification results are shown in Figure 2(b). It can be seen that MvTM outperforms G-
LDA and infvoc. The results imply that MvTM works well even future documents containing new words.
This may be insignificant in practice.

5 Related Work

Some early works have attempted to combine topic modeling with embeddings. (Hu et al., 2012) pro-
posed a model to describe indexing representations for audio retrieval, which is similar with G-LDA.
Another work (Wan et al., 2012) jointly estimates parameters of a topic model and a neural network to
represent topics of images.

Recently, (Liu et al., 2015) proposed a straightforward TWE model. This model separately trains
a topic model and word embeddings on the same corpus, and then uses the average of embeddings
assigned to the same topic as the topic embedding. A limitation of TWE is that it lacks statistical
foundations. Another modification latent feature topic modeling (LFTM) (Nguyen et al., 2015) extends
LDA and Dirichlet multinomial mixture by incorporating word embeddings as latent features. However,
LFTM may be infeasible for large-scale data sets, since it, i.e., the code provided by its authors, is time-
consuming. A most recent nonparametric model (Batmanghelich et al., 2016) also uses vMF to describe
the topic over word embeddings, where a topic is represented by a single vMF on the embedding space.
By contrast, it may be less effective to capture complex topic structure.

6 Conclusion and Discussion

In this paper, we investigate how to improve topic modeling with word embeddings. A previous art G-
LDA defines Gaussian topics over word embeddings, however, the word weights of topics are measured
by the Euclidean similarity. To address this problem and further capture complex topic structure, we
use mixtures of vMFs to model topics, and then propose a novel MvTM algorithm. The vMF bases of
topics in MvTM can be either disjoint or overlapping, leading to two versions of MvTM. The overlapping
MvTM can describe topic correlation in some degree. In empirical evaluations, we use the per-trained
GloVe word embeddings, and then compare MvTM with LDA and G-LDA on three real-world data

8https://www.csie.ntu.edu.tw/∼cjlin/libsvm/
9For fair comparison, we train infvoc by a batch optimization procedure.
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sets. The experimental results indicate that compared to the state-of-the-art baseline models MvTM can
discover more coherent topics measured by PMI, and achieve competitive classification performance. In
the future, we are interested in supervised versions of MvTM, directly applying to basic document tasks
such as sentiment analysis.
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