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Preface

This volume contains papers from the 25th International Conference on Computational Linguistics
(Coling 2014) held in Dublin, Ireland. The conference is organized by the Centre for Global Intelligent
Content (CNGL) and held at the Helix Conference Centre at Dublin City University (DCU) from 25–29
August 2014, under the auspices of the International Committee on Computational Linguistics (ICCL).

COLING is almost 50 years old, its first gathering having taken place in New York in 1965. It has been
organized once every two years, initially in odd years and then in even years, after COLING 1976 in
Ottawa. Throughout its long history, COLING’s aspiration to provide an amicable forum for participants
with broad backgrounds to present and share their ideas remains the same. We believe that the inherent
complexity of language is worthy of study from diverse perspectives and that COLING provides a venue
for fruitful interdisciplinary interaction.

We accepted 217 papers (138 oral presentations and 79 poster presentations) from 685 effective
submissions, having received 705 submissions in total. Regardless of the format of presentation, all
of the accepted papers were allocated 12 pages in the proceedings.

The review process of a large conference such as COLING is always complex and occasionally
encounters difficulties. The program committee has to cope with the challenges of selecting which
papers to accept among a large quantity of high quality submissions. The task of choosing 217 papers
from 685 strong submissions covering the ever broadening fields of computational linguistics was not an
easy one.

To cope with the anticipated difficulties, we asked six senior colleagues to join the Scientific Advisory
Board (SAB) and help us through all stages of reviewing papers. They are: Ralph Grishman (New York
University, USA), Yuji Matsumoto (NAIST, Japan), Joakim Nivre (Uppsala Univ., Sweden), Michael
Picheny (IBM TJ Watson Research Center, USA), Donia Scott (Univ. of Sussex, UK), and Chengqing
Zong (CAS, China).

We had 20 thematic areas and each area was chaired by two or more area chairs. Thanks to over 800
responsive reviewers, the review process proceeded in a very smooth manner, and each paper was read
at least by three reviewers. In some cases, papers and their reviews were carefully assessed by Area
Co-Chairs, one of the SAB members and by us, in our roles as Program Committee Co-Chairs. We
are extremely happy with the very strong set of papers that has been accepted for presentation at the
conference. It is, however, with regret that we had no choice but to reject a large number of high quality
papers, due to the sheer volume of submissions received.

We would like to thank the SAB members and the Program Committee Area Chairs for their dedicated
and efficient review work, and our reviewers for their professionalism in delivering high quality reviews.
We also thank the authors of all the papers for submitting their fruits of labour to COLING. Although we
were only able to accept a small subset of the submitted papers, we do hope that all authors and reviewers
have benefited from this process of indirect dialogue.

Last but not least, we would like to thank the people who made COLING 2014 and this volume possible.
We thank General Chairs, Josef van Genabith (Universität des Saarlandes/DFKI) and Andy Way (CNGL,
DCU), and the chairs of the Local Organizing Committee, Cara Green (CNGL, DCU) and John Judge
(CNGL/NCLT, DCU), for their tireless work. We are especially grateful to the Publications Chairs,
Joachim Wagner (CNGL, DCU), Liadh Kelly (CNGL, DCU) and Lorraine Goeuriot (CNGL, DCU), for
their hard work in preparing the proceedings.

Prof. Jan Hajic (Charles University, Czech Republic)
Prof. Junichi Tsujii (Microsoft Research, China)
COLING 2014 Program Committee Co-Chairs
July 8, 2014
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Welcome from the General Chairs

We are very pleased indeed to welcome you all to COLING 2014, the 25th International Conference
on Computational Linguistics. We are particularly proud that the ICCL selected Dublin City University
(DCU) as the location of COLING 2014.

DCU and its National Centre for Language Technology (NCLT) have a long track record in NLP. Unlike
India, the previous COLING host country, Ireland is a very small country. A unique feature of the Irish
University landscape is that universities team up with industry partners and each other to pool expertise
to form large research centres. DCU is a founding member of CNGL, the Centre for Gobal Intelligent
Content. COLING 2014 is organised by DCU in partnership with the CNGL, and as General Chairs we
are proud to represent both DCU and CNGL.

The conference is taking place at the Helix Conference Centre, a stunning building added to the DCU
campus in 2002. DCU is a young, dynamic and ambitious university; since admitting its first students in
1980, DCU has grown in both student numbers and size and now occupies a 72-acre site in Glasnevin, just
to the north of Dublin city centre. To date almost 50,000 students have graduated from DCU and are now
playing significant roles in enterprise and business globally. Today in 2014, DCU delivers more than 200
programmes to over 12,000 students across its four faculties — Humanities and Social Sciences, Science
and Health, Engineering and Computing and DCU Business School. DCU’s excellence is recognised
internationally and it is ranked among the top-50 young Universities worldwide (QS ’Top 50 under 50’
2013). In the last eight years, DCU has twice been named Sunday Times ‘University of the Year’.

At the time of writing, the total number of people registered to attend COLING has exceeded 675. With
delegates from 58 countries, COLING 2014 will witness a colourful diversity of language and culture,
which is appropriate given that Dublin is known as the localisation capital of the world. Some evidence
for this comes from our sponsors, to whom we are extremely grateful: Baidu, eBay, Microsoft, Symantec
and Google.

We are very pleased with the programme that has been assembled for you, comprising of four days
for the main conference with a total of 138 oral presentations, 79 posters and a special track with 28
demo presentations, two days of workshops and tutorials before the main conference, and other satellite
workshops immediately after. 18 topical workshops with a sharp focus on issues of key interest today
will be attended by about 191 delegates, and the 6 high-quality tutorials are sure to attract large crowds.
Social events include a welcome reception on the evening of 24th August, the conference banquet in the
Guinness Storehouse on 26th, and excursions to some beautiful places of interest on 27th.

When DCU was awarded COLING two years ago, our own personal situations were quite different. One
of us was away working in the translation industry in the UK, while the other was leading the Science
Foundation Ireland and Industry-funded CNGL research center. Over the past few months, we have
changed countries, and jobs: Andy is back as Deputy Director of the CNGL’s Centre for Intelligent
Content, while Josef has moved to Saarbrücken to take up a Chair and a Scientific Directorship at DFKI.

While these changes were taking place, we both had the backing of a remarkable team. The organization
of an event on the scale of COLING takes enormous energy, planning and commitment from a large
number of individuals. We have assembled a large, competent team of volunteers who are available to
assist you while you are here in Dublin. We are sure that all of you participating at COLING — at
tutorials, workshops, or the main conference — will enjoy the time you spend here in Ireland, and will
look back on the event as one of the most memorable that you attend. Finally, thanks to all of you for
coming. We hope you all enjoy the conference, that you benefit from the excellent programme that has
been assembled, and that you go away from here having made new friends.

Prof. Josef Van Genabith (Universität des Saarlandes/DFKI, Germany)
Prof. Andy Way (CNGL, DCU, Ireland)
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Introduction

Recent years have seen a rapid growth in the use of biomedical documents and narrative clinical records
for applications outside of direct patient care. Accordingly, recent years have also seen an increase in
the development of NLP technologies for concept and relation extraction, summarization, and question
answering on these data.

This tutorial will present an overview of the biomedical and clinical NLP data, tools, and methods
with the intent of providing the researchers with a jump-start into these domains. We will focus on the
demand for NLP in biomedical and clinical domains, the potential for impact, and the required NLP
tasks. We will introduce this information in the following categories:

Overview of biomedical/clinical NLP

Biomedical narratives are often dense with domain-specific jargon. Clinical narratives, in addition to be-
ing dense with domain-specific jargon, exhibit the complexities of a specialized sub-language. They are
written by the domain experts and for the domain experts. Their primary purpose is to assist in inform-
ing future decisions about the care of the patients. As a result, both biomedical and clinical narratives
present challenges for existing open-domain NLP technologies and require special considerations for
their accurate understanding and interpretation.

In this section, we will discuss the data sources currently available to researchers, as well as provide
an overview of the research questions both domains. On the clinical side, this includes using EHRs
for phenotyping and decision support systems. The biomedical side uses NLP to explore fields such as
literature-based discovery and literature searches.

Current research questions in biomedical and clinical NLP

NLP applications are generally built to answer specific questions about data. In this section, we will pro-
vide examples of the types of questions researchers are asking in the clinical and biomedical domains.
Additionally, we will discuss how different linguistic aspects of these data are addressed by looking at ex-
isting syntactic (part of speech tagging, parsing) and semantic (concept extraction, temporal information
extraction, coreference resolution) systems.

Datasets and the annotation process

Building annotated corpora for any task can be challenging, but the biomedical and clinical domains have
additional barriers that make creating these corpora difficult. In this section, we will discuss available
annotated resources in both domains, and discuss challenges in biomedical and clinical corpus building,
such as restrictions on data access and the need for domain experts to be part of the annotation process.

This work is licensed under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer
are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/
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Clinical Annotation Case Study
The 2014 i2b2 NLP Shared Task1 involved two NLP challenges: 1) de-identification of medical records,
and 2) identification of risk factors for coronary artery disease in diabetic patients. Each of these tracks
required a separate annotation effort, and in this portion of the tutorial we will describe the end-to-end
process of creating this annotated resource, from data selection to writing the annotation guidelines to
creating the final gold standards.

NLP Methods
Just as there are many research questions in the biomedical and clinical domains, there are many existing
NLP systems that address these questions. In this portion of the tutorial, we will describe the three main
approaches (rule-based, statistical, and hybrid) commonly used to process biomedical and clinical text.
Additionally, we will present on-going research projects from our research labs including (1) extracting
structure and semantics from clinical text through section segmentation and assertion analysis and (2)
clinical applications such as phenotype modeling and specific examples of information extraction in the
radiology domain.

Open questions and future directions

Research in the fields of biomedical and clinical NLP is far from complete; the end of this tutorial will
look at current unsolved problems in these fields, as well as look ahead towards potential future research
questions.

Acknowledgements

This tutorial was supported in part by Informatics for Integrating Biology and the Bedside (i2b2) award
No. 2U54LM008748 from the National Institutes of Health (NIH)/National Q5 Library of Medicine
(NLM), by award No. 1R13LM01141101 from the NIH NLM, by award No. 1R21EB016872 from NIH
NIBIB, and by Institute of Translational Health Sciences award No. UL1TR000423 from NIH NCATS.

1https://www.i2b2.org/NLP/HeartDisease/
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Natural Languages

Tomas Mikolov
Facebook A.I. Research

One Hacker Way, Menlo Park
California, US
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Artificial neural networks are powerful statistical models that have been shown to provide excellent re-
sults in a number of domains. In the last few years, the computer vision and automatic speech recognition
communities have been heavily influenced by these techniques. Applications to problems that involve
natural language, such as machine translation or computational semantics, are becoming mainstream in
the NLP research.

This tutorial aims to introduce the basic concepts and provide intuitive understanding of neural net-
works, including the very popular field of deep learning. This should help the researchers who are
entering this field to quickly understand the major tricks of the trade.

The structure of the tutorial is as follows:

Basic machine learning applied to natural language

• n-grams and bag-of-words representations

• logistic regression, support vector machines

Introduction to neural networks

• architecture of neural networks: neurons, layers, synapses

• activation function

• objective function

• training: stochastic gradient descent, backpropagation, learning rate, regularization

• multiple hidden layers and intuitive explanation of deep learning

Distributed representations of words

• basic application of neural networks for obtaining vector representation of words

• linguistic regularities in the word vector space

• word analogy tasks with vector representations

• representations of phrases and sentences

• simple application to machine translation of words and phrases

This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer
are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/
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Neural network based language models
• feedforward and recurrent neural net architectures for language modeling

• class based softmax, hierarchical softmax

• joint training with maximum entropy model

• recurrent model with slow features

• application to language modeling, speech recognition, machine translation

Tips for future research
• understanding the current research culture

• hints how to recognize good papers and ideas

• promising future directions

Resources
• introduction to open-source software: RNNLM toolkit, word2vec and other tools

• links to large text corpora, pre-trained models

• benchmark datasets for advancing the state of the art
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Tutorial Motivation and Description

Nowadays the textual information available online is provided in an increasingly wide range of lan-
guages. This language explosion clearly forces researchers to focus on the challenging problem of being
able to analyze and understand text written in any language. At the core of this problem lies the lexical
ambiguity of language, an issue which is addressed by two key tasks in computational lexical semantics:
multilingual Word Sense Disambiguation (WSD) and Entity Linking (EL).

WSD (Navigli, 2009) is a historical task in Computational Linguistics aimed at explicitly assigning
meanings to word occurrences within text, while EL (Erbs et al., 2011; Rao et al., 2013; Cornolti et al.,
2013) is a recent task focused on finding mentions of entities within a text and linking them to the most
suitable entry in a knowledge base, if one exists. The two main differences between WSD and EL are
in the kind of inventory used, i.e. dictionary vs. encyclopedia, and the assumption that the mention is
complete or potentially incomplete, respectively. Notwithstanding these differences, the tasks are pretty
similar in nature, in that they both involve the disambiguation of textual fragments in a given language
according to a reference inventory. Nevertheless, the research community has tackled the two tasks
separately, often duplicating efforts and solutions. Moreover, the vast majority of the state-of-the-art
approaches only marginally take into account languages different from English.

In this tutorial, we present the two tasks of multilingual WSD and EL, by surveying the challenges
involved and the most effective solutions, both in isolation by illustrating the state of the art in the two
fields, and when the tasks are addressed in a unified, multilingual way.

In particular, this tutorial covers three key aspects of the multilingual WSD and EL tasks:

1. Multilingual inventories of word senses and named entities;

2. State-of-the-art methods to perform disambiguation and linking;

3. Evaluation of the systems: gold standard datasets and performance measures.

The tutorial is aimed at stressing the key challenges of the tasks of WSD and EL when moving from a
monolingual to a multilingual setup. The tutorial includes examples and discussions intended to illustrate
and clarify the major challenges of the tasks and which solutions are most appropriate to which problem.

Organization of the tutorial

The half-day tutorial contains sessions on the following topics:

1. Introduction (30 mins) This first session will provide the necessary background, definitions and
examples for the two considered tasks: multilingual WSD and EL.

2. The multilingual inventory for word senses and named entities (45 mins) In this session we will
overview the definitions of the inventories used in state-of-the-art approaches both for WSD and

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Page numbers and proceedings footer
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EL. We will then discuss the key aspects of partial matching for EL and, finally, we will describe
multilingual inventories of word senses and named entities, among which Open Multilingual Word-
Net (Bond and Foster, 2013), Wikipedia1, DBpedia (Auer et al., 2007), BabelNet (Navigli and
Ponzetto, 2012).

3. State of the art in WSD and EL (75 mins) This session will introduce the key challenges to the tasks
of WSD and EL and the well-known approaches, such as IMS (Zhong and Ng, 2010) and UKB
(Agirre et al., 2013) for WSD, and Babelfy (Moro et al., 2014), AIDA (Hoffart et al., 2011; Hoffart
et al., 2012), Tagme (Ferragina and Scaiella, 2010; Ferragina and Scaiella, 2012), Illinois Wikifier
(Cheng and Roth, 2013) and DBpedia Spotlight (Mendes et al., 2011; Daiber et al., 2013), that can
partially address them. Challenges include: the lack of training data for non-English languages,
the granularity of the sense inventory, the high level of ambiguity in EL, the most frequent sense
baseline challenge, etc.

4. Evaluation measures and gold standard datasets (30 mins) We will conclude the tutorial by describ-
ing the standard performance measures for these tasks and well-known datasets for multilingual
WSD and EL together with a discussion of the results.

Speakers

Roberto Navigli is an associate professor in the Department of Computer Science at the Sapienza Uni-
versity of Rome. He is the recipient of an ERC Starting Grant in computer science and informatics on
multilingual word sense disambiguation (2011-2016) and a co-PI of a Google Focused Research Award
on Natural Language Understanding. His research interests lie in the field of Word Sense Disambiguation
and Induction, multilingual knowledge acquisition and applications of lexical semantics.
Andrea Moro is a PhD student in the Department of Computer Science at the Sapienza University of
Rome. His research interests focus on Natural Language Understanding with an emphasis on Unsuper-
vised Relation Extraction, Word Sense Disambiguation and Entity Linking.
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Tutorial Description

A fast growing area in Natural Language Processing is the use of automated tools for identifying and
correcting grammatical errors made by language learners. This growth, in part, has been fueled by
the needs of a large number of people in the world who are learning and using a second or foreign
language. For example, it is estimated that there are currently over one billion people who are non-native
writers of English. These numbers drive the demand for accurate tools that can help learners to write
and speak proficiently in another language. Such demand also makes this an exciting time for those in
the NLP community who are developing automated methods for grammatical error correction (GEC).
Our motivation for the COLING tutorial is to make others more aware of this field and its particular set
of challenges. For these reasons, we believe that the tutorial will potentially benefit a broad range of
conference attendees.

In general, there has been a surge in interest in using NLP to address educational needs, which in turn,
has spawned the recurring ACL/NAACL workshop “Innovative Use of Natural Language Processing
for Building Educational Applications” that had its 9th edition at ACL 2014. The last three years, in
particular, have been pivotal for GEC. Papers on the topic have become more commonplace at main
conferences such as ACL, NAACL and EMNLP, as well as two editions of a Morgan Claypool Synthesis
Series book on the topic (Leacock et al., 2010; Leacock et al., 2014). In 2011 and 2012, the first shared
tasks in GEC (Dale and Kilgarriff, 2011; Dale et al., 2012) were created, and dozens of teams from all
over the world participated. This was followed by two successful CoNLL Shared Tasks on the topic in
2013 and 2014 (Ng et al., 2013; Ng et al., 2014).

While there have been many exciting developments in GEC over the last few years, there is still
considerable room for improvement as state-of-the-art performance in detecting and correcting several
important error types is still inadequate for real world applications. We hope to engage researchers from
other NLP fields to develop novel and effective approaches to these problems. Our tutorial is specifically
designed to:

• Introduce an NLP audience to the challenges that language learners face and thus the challenges of
designing NLP tools to assist in language acquisition

• Provide a history of GEC and the state-of-the-art approaches for different error types

• Show the need for multi-lingual error correction approaches and discuss novel methods for achiev-
ing this

• Discuss ways in which error correction techniques can have an impact on other NLP tasks

This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer
are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/
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Outline

1. Introduction

2. Special Problems of Language Learners

• Errors made by English Language Learners (ELLs)
• Influence of L1

3. Heuristic and Data Driven Approaches to Error Correction

(a) Early heuristic rule-based methods
(b) Methods for detection and correction
(c) Types of training data
(d) Features
(e) Web-based methods

4. Annotation and Evaluation

(a) Annotation schemes
(b) Proposals for efficient annotation
(c) Evaluation Measures
(d) Crowdsourcing for annotation and evaluation

5. Current Trends in Error Correction

(a) Detection of ungrammatical sentences and Other error types
(b) Shared tasks
(c) Going beyond the classification methodology
(d) Error correction in other languages

6. Conclusions

Organizers

Joel Tetreault is a Senior Research Scientist at Yahoo Labs in New York City. His research focus is
Natural Language Processing with specific interests in anaphora, dialogue and discourse processing,
machine learning, and applying these techniques to the analysis of English language learning and au-
tomated essay scoring. Previously he was Principal Manager of the Core Natural Language group at
Nuance Communications, Inc. where he worked on the research and development of NLP tools and
components for the next generation of intelligent dialogue systems. Prior to Nuance, he worked at Ed-
ucational Testing Service for six years as a Managing Senior Research Scientist where he researched
automated methods for detecting grammatical errors by non-native speakers, plagiarism detection, and
content scoring. Tetreault received his B.A. in Computer Science from Harvard University (1998) and
his M.S. and Ph.D. in Computer Science from the University of Rochester (2004). He was also a post-
doctoral research scientist at the University of Pittsburgh’s Learning Research and Development Center
(2004-2007), where he worked on developing spoken dialogue tutoring systems. In addition he has co-
organized the Building Educational Application workshop series for 7 years, the CoNLL 2013 Shared
Task on Grammatical Error Correction, and is currently NAACL Treasurer.

Claudia Leacock is a Research Scientist at McGraw-Hill Education CTB who has been working on
using NLP in educational applications for 20 years focusing on automated scoring and grammatical er-
ror detection. She was previously a consultant for Microsoft Research where she collaborated on the
development of ESL Assistant: a web-based prototype tool for detecting and correcting grammatical er-
rors of English language learners. As a Distinguished Member of Technical Staff at Pearson Knowledge
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Technologies, and previously as a Principal Development Scientist at Educational Testing Service, she
developed tools for automated assessment of short-response content-based questions and for grammati-
cal error detection. As a member of the WordNet group at Princeton University’s Cognitive Science Lab,
her research focused on word sense disambiguation. Dr. Leacock received a B.A. in English from NYU,
a Ph.D. in Linguistics from the City University of New York, Graduate Center and was a post-doctoral
fellow at IBM, T.J. Watson Research Center.
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Selection Bias, Label Bias, and Bias in Ground Truth

Anders Søgaard, Barbara Plank, and Dirk Hovy
Center for Language Technology

University of Copenhagen
soegaard@hum.ku.dk, {bplank|dhovy}@cst.dk

Introduction

Language technology is biased toward English newswire. In POS tagging, we get 97–98 words right out
of a 100 in English newswire, but results drop to about 8 out of 10 when running the same technology
on Twitter data. In dependency parsing, we are able to identify the syntactic head of 9 out of 10 words
in English newswire, but only 6–7 out of 10 in tweets. Replace references to Twitter with references to a
low-resource language of your choice, and the above sentence is still likely to hold true.

The reason for this bias is obviously that mainstream language technology is data-driven, based on
supervised statistical learning techniques, and annotated data resources are widely available for English
newswire. The situation that arises when applying off-the-shelf language technology, induced from
annotated newswire corpora, to something like Twitter, is a bit like when trying to predict elections from
Xbox surveys (Wang et al., 2013). Our induced models suffer from a data selection bias.

This is actually not the only way our data is biased. The available resources for English newswire
are the result of human annotators following specific guidelines. Humans err, leading to label bias, but
more importantly, annotation guidelines typically make debatable linguistic choices. Linguistics is not
an exact science, and we call the influence of annotation guidelines bias in ground truth.

In the tutorial, we present various case studies for each kind of bias, and show several methods that
can be used to deal with bias. This results in improved performance of NLP systems.

Selection Bias

The situation that arises when applying off-the-shelf language technology, induced from annotated
newswire corpora, to something like Twitter, is, as mentioned, a bit like when trying to predict elec-
tions from Xbox surveys. In the case of elections, however, we can correct most of the selection bias by
post-stratification or instance weighting (Wang et al., 2013). In language technology, the bias correction
problem is harder.

In the case of elections, you have a single output variable and various demographic observed variables.
All values taken by discrete variables at test time can be assumed to have been observed, and all values
observed at training time can be assumed to be seen at test time. In language technology, we typically
have several features only seen in training data and several features only seen in test data.

The latter observation has led to interest in bridging unseen words to known ones (Blitzer et al.,
2006; Turian et al., 2010), while the former has led to the development of learning algorithms that
prevent feature swamping (Sutton et al., 2006), i.e., that very predictive features prevents weights associ-
ated with less predictive, correlated features from being updated. Note, however, that post-stratification
(Smith, 1988) may prevent feature swamping, and that predictive approaches to bias correction (Roy-
all, 1988) may solve both problems. Instance weighting (Shimodaira, 2000), which is a generalization
of post-stratificiation, has received some interest in language technology (Jiang and Zhai, 2007; Foster
et al., 2011), but most work on domain adaptation in language technology has focused on predictive

This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer
are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/
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approaches, i.e., semi-supervised learning (Reichart and Rappoport, 2007; Sagae and Tsujii, 2007; Mc-
Closky et al., 2010; Chen et al., 2011).

Selection bias introduces a bias in P (X). Note that, in theory, this should not hurt discriminative algo-
rithms trying to estimate P (Y |X), without estimating P (X), but in practice it still does. The inductive
bias of our algorithms and the size our samples make our models sensitive to selection bias (Zadrozny,
2004). Predictive approaches try to correct this bias by adding more (pseudo-labeled) data to the training
sample, while post-stratification and instance weighting reweigh the data to make P (X) similar to the
distribution observed in the population. As mentioned, this will never solve the problem with unseen
features, since you cannot up-weigh a null feature.

Semi-supervised learning can correct modest selection bias, but if the domain gap is too wide, our
initial predictions in the target domain will be poor, and semi-supervised learning is likely to increase
bias rather than decrease it. However, recent work has shown that semi-supervised learning can be
combined with distant supervision and correct bias in cases where semi-supervised learning algorithms
typically fail (Plank et al., 2014).

In the tutorial we illustrate these different approaches to selection bias correction, with discriminative
learning of POS taggers for English Twitter as our running example.

Label Bias

In most annotation projects, there is an initial stage, where the project managers compare annotators’
performance, compute agreement scores, select reliable annotators, adjudicate, and elaborate on anno-
tation guidelines, if necessary. Such procedures are considered necessary to correct for the individual
biases of the annotators (label bias). However, this is typically only for the first batches of data, and it
is well-known that even some of the most widely used annotated corpora (such as the Penn Treebank)
contain many errors (Dickinson and Meurers, 2003) in the form of inconsistent annotations of the same
n-grams.

Obviously, using non-expert annotators, e.g., through crowd-sourcing platforms, increase the label
bias considerably. One way to reduce this bias involves collecting several annotations for each datapoint
and averaging over them, which is often feasible because of the low cost of non-expert annotation. This
is called majority voting and is analogous to using ensembles of models to obtain more robust systems.

In the tutorial we discuss alternatives to averaging over annotators, incl., using EM to estimate anno-
tator confidence (Hovy et al., 2013), and joint learning of annotator competence and model parameters
(Raykar and Yu, 2012).

Bias in Ground Truth

In annotation projects, we use inter-annotator agreement measures and annotation guidelines to ensure
consistent annotations. However, annotation guidelines often make linguistically debatable and even
somewhat arbitrary decisions, and inter-annotator agreement is often less than perfect. Some annotators,
for example, may annotate socialin social media as a noun, others may annotate it as an adjective. In
this part of the tutorial, we discuss how to correct for the bias introduced by annotation guidelines. For
both label bias and bias in ground truth, we, again, use POS tagging for English Twitter as our running
example.

Evaluation

Once we accept our data is biased in different ways, we need to reconsider model evaluation. If our data
was selected in a biased way, say from a few editions of the Wall Street Journal, does significance over
data points make much sense? If our annotators have individual biases, can we no longer evaluate our
models on the data of one or two annotators? If the annotation guidelines introduce biases in ground truth,
can we somehow correct for that? In practice we typically do not have hundreds of datasets annotated by
different annotators using different annotation guidelines, but in the tutorial we present various ways of,
nevertheless, correcting for some of these biases.
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Dependency Parsing: Past, Present, and Future

Wenliang Chen and Zhenghua Li and Min Zhang
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Dependency parsing has gained more and more interest in natural language processing in recent years
due to its simplicity and general applicability for diverse languages. The international conference of
computational natural language learning (CoNLL) has organized shared tasks on multilingual dependen-
cy parsing successively from 2006 to 2009, which leads to extensive progress on dependency parsing
in both theoretical and practical perspectives. Meanwhile, dependency parsing has been successfully
applied to machine translation, question answering, text mining, etc.

To date, research on dependency parsing mainly focuses on data-driven supervised approaches and
results show that the supervised models can achieve reasonable performance on in-domain texts for a
variety of languages when manually labeled data is provided. However, relatively less effort is devoted to
parsing out-domain texts and resource-poor languages, and few successful techniques are bought up for
such scenario. This tutorial will cover all these research topics of dependency parsing and is composed of
four major parts. Especially, we will survey the present progress of semi-supervised dependency parsing,
web data parsing, and multilingual text parsing, and show some directions for future work.

In the first part, we will introduce the fundamentals and supervised approaches for dependency pars-
ing. The fundamentals include examples of dependency trees, annotated treebanks, evaluation metrics,
and comparisons with other syntactic formulations like constituent parsing. Then we will introduce a few
mainstream supervised approaches, i.e., transition-based, graph-based, easy-first, constituent-based de-
pendency parsing. These approaches study dependency parsing from different perspectives, and achieve
comparable and state-of-the-art performance for a wide range of languages. Then we will move to the
hybrid models that combine the advantages of the above approaches. We will also introduce recent
work on efficient parsing techniques, joint lexical analysis and dependency parsing, multiple treebank
exploitation, etc.

In the second part, we will survey the work on semi-supervised dependency parsing techniques. Such
work aims to explore unlabeled data so that the parser can achieve higher performance. This tutorial
will present several successful techniques that utilize information from different levels: whole tree level,
partial tree level, and lexical level. We will discuss the advantages and limitations of these existing
techniques.

In the third part, we will survey the work on dependency parsing techniques for domain adaptation
and web data. To advance research on out-domain parsing, researchers have organized two shared tasks,
i.e., the CoNLL 2007 shared task and the shared task of syntactic analysis of non-canonical languages
(SANCL 2012). Both two shared tasks attracted many participants. These participants tried different
techniques to adapt the parser trained on WSJ texts to out-domain texts with the help of large-scale
unlabeled data. Especially, we will present a brief survey on text normalization, which is proven to be
very useful for parsing web data.

In the fourth part, we will introduce the recent work on exploiting multilingual texts for dependency
parsing, which falls into two lines of research. The first line is to improve supervised dependency parser
with multilingual texts. The intuition behind is that ambiguities in the target language may be unam-
biguous in the source language. The other line is multilingual transfer learning which aims to project the
syntactic knowledge from the source language to the target language.

This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer
are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/

14



In the fifth part, we will conclude our talk by discussing some new directions for future work.

Outline

• Part A: Dependency parsing and supervised approaches

– A.1 Introduction to dependency parsing
– A.2 Supervised methods
– A.3 Non-projective dependency parsing
– A.4 Probabilistic and generative models for dependency parsing
– A.5 Other work

• Part B: Semi-supervised dependency parsing

– B.1 Lexical level
– B.2 Partial tree level
– B.3 Whole tree level
– B.4 Other work

• Part C: Parsing the web and domain adaptation

– C.1 CoNLL 2007 shared task (domain adaptation subtask)
– C.2 Works on domain adaptation
– C.3 SANCL 2012 (parsing the web)
– C.4 Text normalization
– C.5 Attempts and challenges for parsing the web

• Part D: Multilingual dependency parsing

– D.1 Dependency parsing on bilingual text
– D.2 Multilingual transfer learning for resource-poor languages
– D.3 Other work

• Part E: Conclusion and open problems

Instructors

Wenliang Chen received his Bachelor degree in Mechanical Engineering and Ph.D. degree in comput-
er science from Northeastern University (Shenyang, China) in 1999 and 2005, respectively. He joined
Soochow University since 2013 and is currently a professor in the university. Prior to joining Soochow
University, he was a research scientist in the Institute for Infocomm Research of Singapore from 2011
to 2013. From 2005 to 2010, he worked as an expert researcher in NICT, Japan. His current research
interests include parsing, machine translation, and machine learning. He is currently working on a syn-
tactic parsing project where he applies semi-supervised learning techniques to explore the information
from large-scale data to improve Dependency parsing. Based on the semi-supervised techniques, he de-
veloped a dependency parser, named DuDuPlus (http://code.google.com/p/duduplus/), for the research
and industry communities.

Zhenghua Li is currently an assistant professor in Soochow University. He received his PhD in Com-
puter Science and Technology from Harbin Institute of Technology (HIT) in April 2013. Zhenghuas
research interests include natural language processing and machine learning. More specifically, his
PhD research focuses on the dependency parsing of the Chinese language using discriminative machine-
learning approaches. He has been working on joint POS tagging and dependency parsing (EMNLP 2011,
COLING 2012), and multiple treebank exploitation for dependency parsing (ACL 2012).

Min Zhang, a distinguished professor and Director of the Research Center of Human Language Tech-
nology at Soochow University (China), received his Bachelor degree and Ph.D. degree in computer
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science from Harbin Institute of Technology in 1991 and 1997, respectively. From 1997 to 1999, he
worked as a postdoctoral research fellow in Korean Advanced Institute of Science and Technology in
South Korea. He began his academic and industrial career as a researcher at Lernout & Hauspie Asia
Pacific (Singapore) in Sep. 1999. He joined Infotalk Technology (Singapore) as a researcher in 2001
and became a senior research manager in 2002. He joined the Institute for Infocomm Research (Singa-
pore) as a research scientist in Dec. 2003. His current research interests include machine translation,
natural language processing, information extraction, social network computing and Internet intelligence.
He has co-authored more than 150 papers in leading journals and conferences, and co-edited 10 book-
s/proceedings published by Springer and IEEE. He was the recipient of several awards in China and
oversea. He is the vice president of COLIPS (2011-2013), the elected vice chair of SIGHAN/ACL
(2014-2015), a steering committee member of PACLIC (2011-now), an executive member of AFNLP
(2013-2014) and a member of ACL (since 2006). He supervises Ph.D students at National University of
Singapore, Harbin Institute of Technology and Soochow University.
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