
Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: System Demonstrations,
pages 39–43, Dublin, Ireland, August 23-29 2014.

Lightweight Client-Side Chinese/Japanese
Morphological Analyzer Based on Online Learning

Masato Hagiwara Satoshi Sekine
Rakuten Institute of Technology, New York
215 Park Avenue South, New York, NY

{masato.hagiwara, satoshi.b.sekine}@mail.rakuten.com

Abstract

As mobile devices and Web applications become popular, lightweight, client-side language
analysis is more important than ever. We propose Rakuten MA, a Chinese/Japanese
morphological analyzer written in JavaScript. It employs an online learning algorithm
SCW, which enables client-side model update and domain adaptation. We have achieved
a compact model size (5MB) while maintaining the state-of-the-art performance, via
techniques such as feature hashing, FOBOS, and feature quantization.

1 Introduction
Word segmentation (WS) and part-of-speech (PoS) tagging, often jointly called morphological

analysis (MA), are the essential component for processing Chinese and Japanese, where words
are not explicitly separated by whitespaces. There have been many word segmentater and PoS
taggers proposed in both Chinese and Japanese, such as Stanford Segmenter (Tseng et al.,
2005), zpar (Zhang and Clark, 2011), MeCab (Kudo et al., 2004), JUMAN (Kurohashi and
Nagao, 1994), to name a few. Most of them are intended for server-side use and provide limited
capability to extend or re-train models. However, as mobile devices such as smartphones and
tablets become popular, there is a growing need for client based, lightweight language analysis,
and a growing number of applications are built upon lightweight languages such as HTML, CSS,
and JavaScript. Techniques such as domain adaptation and model extension are also becoming
more important than ever.

In this paper, we present Rakuten MA, a morphological analyzer entirely written in JavaScript
based on online learning. We will be releasing the software as open source before the COLING
2014 conference at https://github.com/rakuten-nlp/rakutenma, under Apache License, ver-
sion 2.0. It relies on general, character-based sequential tagging, which is applicable to any
languages and tasks which can be processed in a character-by-character basis, including WS and
PoS tagging for Chinese and Japanese. Notable features include:

1. JavaScript based — Rakuten MA works as a JavaScript library, the de facto “lingua franca”
of the Web. It works on popular Web browsers as well as node.js, which enables a wide range
of adoption such as smartphones and Web browser extensions. Note that TinySegmenter1

is also entirely written in JavaScript, but it does not support model re-training or any
languages other than Japanese. It doesn’t output PoS tags, either.

2. Compact — JavaScript-based analyzers pose a difficult technical challenge, that is, the
compactness of the model. Modern language analyzers often rely on a large number of
features and/or dictionary entries, which is impractical on JavaScript runtime environments.
In order to address this issue, Rakuten MA implements some notable techniques. First, the
features are character-based and don’t rely on dictionaries. Therefore, while it is inherently
incapable of dealing with words which are longer than features can capture, it may be robust

This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and
proceedings footer are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/

1http://chasen.org/~taku/software/TinySegmenter/

39

S-N-nc S-P-k

!! "!

B-V-c E-V-c

#! $!

S-P-sj

%!

tags

characters

x
1
:!

c
1
:C

x
2
:"

c
2
:H

x
3
:#

c
3
:C

x
4
:$

c
4
:H

x
5
:%

c
5
:H

…

Figure 1: Character-based tagging model

Feature Description
xi−2, xi−1, xi, xi+1, xi+2 char. unigrams
xi−2xi−1, xi−1xi, xixi+1, xi+1xi+2 char. bigrams
ci−2, ci−1, ci, ci+1, ci+2 type unigrams
ci−2ci−1, ci−1ci, cici+1, ci+1ci+2 type bigrams

Table 1: Feature Templates Used for Tagging
xi and ci are the character and the character type at ia.

aEach feature template is instantiated and concate-
nated with possible tags. Character type bigram features
were only used for JA. In CN, we built a character type
dictionary, where character types are simply all the possi-
ble tags in the training corpus for a particular character.

to unknown words compared with purely dictionary-based systems. Second, it employs
techniques such as feature hashing (Weinberger et al., 2009), FOBOS (Duchi and Singer,
2009), and feature quantization, to make the model compact while maintaining the same
level of analysis performance.

3. Online Learning — it employs a modern online learning algorithm called SCW (Wang et al.,
2012), and the model can be incrementally updated by feeding new instances. This enables
users to update the model if errors are found, without even leaving the Web browser or
node.js. Domain adaptation is also straightforward. Note that MeCab (Kudo et al., 2004),
also supports model re-training using a small re-training corpus. However, the training is
inherently a batch, iterative algorithm (CRF) thus it is hard to predict when it finishes.

2 Analysis Model and Compact Model Representation

Base Model Rakuten MA employs the standard character-based sequential tagging model.
It assigns combination of position tags2 and PoS tags to each character (Figure 1). The optimal
tag sequence y∗ for an input string x is inferred based on the features ϕ(y) and the weight vector
w as y∗ = arg maxy∈Y (x) w · ϕ(y), where Y (x) denotes all the possible tag sequences for x, via
standard Viterbi decoding. Table 1 shows the feature template sets.

For training, we used soft confidence weighted (SCW) (Wang et al., 2012). SCW is an online
learning scheme based on Confidence Weighted (CW), which maintains “confidence” of each
parameter as variance Σ in order to better control the updates. Since SCW itself is a general
classification model, we employed the structured prediction model (Collins, 2002) for WS.

The code snippet in Figure 2 shows typical usage of Rakuten MA in an interactive way. Lines
starting with “//” and “>” are comments and user input, and the next lines are returned results.
Notice that the analysis ofバラクオバマ大統領 “President Barak Obama” get better as the model
observes more instances. The analyzer can only segment it into individual characters when the
model is empty ((1) in the code), whereas WS is partially correct after observing the first 10
sentences of the corpus ((2) in the code). After directly providing the gold standard, the result
(3) becomes perfect.

We used and compared the following three techniques for compact model representations:

Feature Hashing (Weinberger et al., 2009) applies hashing functions h which turn an arbi-
trary feature ϕi(y) into a bounded integer value v, i.e., v = h(ϕi(y)) ∈ R, where 0 ≤ v < 2N ,
(N = hash size). This technique is especially useful for online learning, where a large, growing
number of features such as character/word n-grams could be observed on the fly, which the
model would otherwise need to keep track of using flexible data structures such as trie, which
could make training slower as the model observes more training instances. The negative effect of
hash collisions to the performance is negligible because most collisions are between rare features.

2As for the position tags, we employed the SBIEO scheme, where S stands for a single character word, BIE
for beginning, middle, and end of a word, respectively, and O for other positions.

40

// initialize with empty model
> var r = new RakutenMA({});

// (1) first attempt, failed with separate chars.
> r.tokenize("バラクオバマ大統領").toString()
"バ,,ラ,,ク,,オ,,バ,,マ,,大,,統,,領,"

// train with first 10 sentences in a corpus
> for (var i = 0; i < 10; i ++)
> r.train_one(rcorpus[i]);

// the model is no longer empty
> r.model
Object {mu: Object, sigma: Object}

// (2) second attempt -> getting closer
> r.tokenize("バラクオバマ大統領").toString()
"バラク,N-nc,オバマ,N-pn,大,,統,,領,Q-n"

// retrain with an answer
// return object suggests there was an update
> r.train_one([["バラク","N-np"],
... ["オバマ","N-np"],["大統領","N-nc"]]);
Object {ans: Array[3], sys: Array[5], updated: true}

// (3) third attempt
> r.tokenize("バラクオバマ大統領").toString()
"バラク,N-np,オバマ,N-np,大統領,N-nc"

Figure 2: Rakuten MA usage example
Chinese Prec. Rec. F Japanese Prec. Rec. F
Stanford Parser 97.37 93.54 95.42 MeCab+UniDic 99.15 99.61 99.38
zpar 91.18 92.36 91.77 JUMAN **88.55 **83.06 **85.72
Rakuten MA 92.61 92.64 92.62 KyTea *80.57 *85.02 *82.73

TinySegmenter *86.93 *85.19 *86.05
Rakuten MA 96.76 97.30 97.03

Table 2: Segmentation Performance Comparison with Different Systems
* These systems use different WS criteria and their performance is shown simply for reference. ** We

postprocessed JUMAN’s WS result so that the WS criteria are closer to Rakuten MA’s.

Forward-Backward Splitting (FOBOS) (Duchi and Singer, 2009) is a framework to intro-
duce regularization to online learning algorithms. For each training instance, it runs uncon-
strained parameter update of the original algorithm as the first phase, then solves an instan-
taneous optimization problem to minimize a regularization term while keeping the parameter
close to the first phrase. Specifically, letting wt+ 1

2
,j the j-th parameter after the first phrase of

iteration t and λ the regularization coefficient, parameter update of FOBOS with L1 regulariza-
tion is done by: wt+1,j = sign

(
wt+ 1

2
,j

) [∣∣∣wt+ 1
2
,j

∣∣∣− λ
]
+

. The strength of regularization can be
adjusted by the coefficient λ. In combining SCW and FOBOS, we retained the confidence value
Σ of SCW unchanged.

Feature Quantization simply multiplies float numbers (e.g., 0.0165725659236262) by M
(e.g., 1,000) and round it to obtain a short integer (e.g., 16). The multiple M determines the
strength of quantization, i.e., the larger the finer grained, but the larger model size.

3 Experiments

We used CTB 7.0 (Xue et al., 2005) for Chinese (CN), and BCCWJ (Maekawa, 2008) for
Japanese (JA), with 50,805 and 60,374 sentences, respectively. We used the top two levels of
BCCWJ’s PoS tag hierarchy (38 unique tags) and all the CTB PoS tags (38 unique tags). The
average decoding time was 250 millisecond per sentence on Intel Xeon 2.13GHz, measured on
node.js. We used precision (Prec.), recall (Rec.), and F-value (F) of WS as the evaluation metrics,
averaged over 5-fold cross validation. We ignored the PoS tags in the evaluation because they
are especially difficult to compare across different systems with different PoS tag hierarchies.

Comparison with Other Analyzers First, we compare the performance of Rakuten MA
with other word segmenters. In CN, we compared with Stanford Segmenter (Tseng et al., 2005)
and zpar (Zhang and Clark, 2011). In JA, we compared with MeCab (Kudo et al., 2004),
JUMAN (Kurohashi and Nagao, 1994), KyTea (Neubig et al., 2011), and TinySegmenter.

Table 2 shows the result. Note that, some of the systems (e.g., Stanford Parser for CN and
MeCab+UniDic for JA) use the same corpus as the training data and their performance is
unfairly high. Also, other systems such as JUMAN and KyTea employ different WS criteria,
and their performance is unfairly low, although JUMAN’s WS result was postprocessed so that

41

!"#$

%"#$

&"#$

'"#$

($)$ *$ +$,$!$ %$ &$ '$ ("$

!
"
#
$%
#
&
'
(
)
"
*

+',)-*./&0"#*

-./01$

2/01$

3$

Figure 3: Domain Adaptation Result for CN

!"#$

%"#$

&"#$

'""#$

'$ ($)$ *$ +$,$!$ %$ &$ '"$

!
"
#
$%
#
&
'
(
)
"
*

+',)-*./&0"#*

-./01$

2/01$

3$

Figure 4: Domain Adaptation Result for JA

!"#"""$

%&'($

%&')$
%&'*$

%&'+$

,&'-"./($

,&*-"./($

,&'-"./)$

,&*-"./)$

,&'-"./*$

012$0'2$

"-(*$

"-3"$

"-3*$

"-4"$

"-4*$

*""$ *#"""$

!
"

#$%&'"()*&"+),"-./"

56789:;8$

<86=-$>67?:;@$

<A5AB$

<86=-$>67?:;@C<A5AB$

DE6;=-$

<86=-$>67?:;@CDE6;=-$

<A5ABCDE6;=-$

F99$

Figure 5: Model Comparison

it gives a better idea how it compares with Rakuten MA. We can see that Rakuten MA can
achieve WS performance comparable with the state-of-the-art even without using dictionaries.

Domain Adaptation Second, we tested Rakuten MA’s domain adaptation ability. We chose
e-commerce as the target domain, since it is a rich source of out-of-vocabulary words and poses
a challenge to analyzers trained on newswire text. We sampled product titles and descriptions
from Rakuten Taiwan3 (for CN, 2,786 sentences) and Rakuten Ichiba4 (for JA, 13,268 sentences).
These collections were then annotated by human native speakers in each language, following the
tagging guidelines of CTB (for CN) and BCCWJ (for JA).

We divided the corpus into 5 folds, then used four of them for re-training and one for testing.
The re-training data is divided into “batches,” consisting of mutually exclusive 50 sentences,
which were fed to the pre-trained model on CTB (for CN) and BCCWJ (for JA) one by one.

Figure 3 and 4 show the results. The performance quickly levels off after five batches for JA,
which gives an approximated number of re-training instances needed (200 to 300) for adaptation.
Note that adaptation took longer on CN, which may be attributed to the fact that Chinese WS
itself is a harder problem, and to the disparity between CTB (mainly news articles in mainland
China) and the adaptation corpus (e-commerce text in Taiwan).

3http://www.rakuten.com.tw/. Note that Rakuten Taiwan is written in Taiwanese traditional Chinese. It
was converted to simplified Chinese by using Wikipedia’s traditional-simplified conversion table http://svn.
wikimedia.org/viewvc/mediawiki/trunk/phase3/includes/ZhConversion.php. Still, having large Taiwan spe-
cific vocabulary poses additional challenges for domain adaptation.

4http://www.rakuten.co.jp/

42

Compact Model Representation Third, we consider the three techniques, and investigate
how these techniques affect the trade-off between WS performance and the model size, which is
measured by the feature trie byte size in raw JSON format5.

Figure 5 shows the scatter plot of F-value vs model size in KB, since we are rather interested
in the trade-off between the model size and the performance. The baseline is the raw model
without any techniques mentioned above. Notice that the figure’s x-axis is in log scale, and the
upper left corner in the figure corresponds to better trade-off (higher performance with smaller
model size). We can observe that all the three techniques can reduce the model size to some
extent while keeping the performance at the same level. In fact, these three techniques are
independent from each other and can be freely combined to achieve better trade-off. If we limit
strictly the same level of performance compared to the baseline, feature hashing (17bit hash
size) with quantization (Point (1) in the figure) seems to achieve the best trade-off, slightly
outperforming the baseline (F = 0.9457 vs F = 0.9455 of the baseline) with the model size of
as little as one fourth (5.2MB vs 20.6MB of the baseline). It is somewhat surprising to see that
feature quantization, which is a very simple method, achieves relatively good performance-size
trade-off (Point (2) in the figure).

4 Conclusion
In this paper, we proposed Rakuten MA, a lightweight, client-side morphological analyzer

entirely written in JavaScript. It supports online learning based on the SCW algorithm, which
enables quick domain adaptation, as shown in the experiments. We successfully achieved a
compact model size of as little as 5MB while maintaining the state-of-the-art performance, using
feature hashing, FOBOS, and feature quantization. We are planning to achieve even smaller
model size by adopting succinct data structure such as wavelet tree (Grossi et al., 2003).

Acknowledgements
The authors thank Satoko Marumoto, Keiji Shinzato, Keita Yaegashi, and Soh Masuko for

their contribution to this project.

References
Michael Collins. 2002. Discriminative training methods for hidden Markov models: theory and experiments with

perceptron algorithms. In Proc. of the EMNLP 2002, pages 1–8.
John Duchi and Yoram Singer. 2009. Efficient online and batch learning using forward backward splitting.

Journal of Machine Learning Research, 10:2899–2934.
Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. 2003. High-order entropy-compressed text indexes. In

Prof. of SODA 2003, pages 841–850.
Taku Kudo, Kaoru Yamamoto, and Yuji Matsumoto. 2004. Applying conditional random fields to Japanese

morphological analysis. In Proceedings of EMNLP, pages 230–237.
Sadao Kurohashi and Makoto Nagao. 1994. Improvements of Japanese morphological analyzer JUMAN. In

Proceedings of the International Workshop on Sharable Natural Language Resources, pages 22–38.
Kikuo Maekawa. 2008. Compilation of the Kotonoha-BCCWJ corpus (in Japanese). Nihongo no kenkyu (Studies

in Japanese), 4(1):82–95.
Graham Neubig, Yosuke Nakata, and Shinsuke Mori. 2011. Pointwise prediction for robust, adaptable japanese

morphological analysis. In Proceedings of ACL-HLT, pages 529–533.
Huihsin Tseng, Pichuan Chang, Galen Andrew, Daniel Jurafsky, and Christopher Manning. 2005. A conditional

random field word segmenter. In Fourth SIGHAN Workshop on Chinese Language Processing.
Jialei Wang, Peilin Zhao, and Steven C. Hoi. 2012. Exact soft confidence-weighted learning. In Proc. of ICML

2012, pages 121–128.
Kilian Weinberger, Anirban Dasgupta, Josh Attenberg, John Langford, and Alex Smola. 2009. Feature hashing

for large scale multitask learning. In Proc. of ICML 2009, pages 1113–1120.
Naiwen Xue, Fei Xia, Fu-dong Chiou, and Marta Palmer. 2005. The penn Chinese treebank: Phrase structure

annotation of a large corpus. Natural Language Engineering, 11(2):207–238.
Yue Zhang and Stephen Clark. 2011. Syntactic processing using the generalized perceptron and beam search.

Computational Linguistics, 37(1):105–151.

5We used one fifth of the Japanese corpus BCCWJ for this experiment. Parameter λ of FOBOS was varied
over {1.0× 10−7, 5.0× 10−7, 1.0× 10−6, 5.0× 10−6, 1.0× 10−5}. The hash size of feature hashing was varied over
14, 15, 16, 176. The multiple of feature quantization M is set to M = 1000.

43

