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 Abstract 

Non-literal expression recognition is a challenging task in natural language processing. An ironic expression 
implies the opposite of the literal meaning, causing problems in opinion mining and sentiment analysis. In this 
paper, ironic messages are collected from microblogs to form an irony corpus based on the use of emoticons, 
linguistic forms, and sentiment polarity. Five linguistic patterns are mined by using the proposed bootstrapping 
approach. We also analyze the linguistic structure and elements used to convey irony. Based on our observations, 
ironic words/phrases and contextual information are the necessary elements in irony, while the contextual infor-
mation can be hidden in linguistic forms. A rhetorical element, which is optional in irony, can also be used to 
help strengthen the effects and understandability of an ironic expression. The ironic elements in each instance of 
our irony corpus are labelled based on this structure. This corpus can be used to study the usage of ironic expres-
sions and the identification of ironic elements, and thus improve the performance of irony recognition. 

1 Introduction 

Dealing with non-literal meaning is a challenging task in natural language processing. Linguistic con-
text and background knowledge are required to interpret non-literal utterances properly. An ironic ex-
pression, where the meaning is the opposite of what is literally expressed, is one of the indirect and 
non-literal linguistic forms that cannot be easily processed and detected. One cannot capture the real 
meanings of opinions and sentiments expressed in a document or conversation if irony is not taken 
into account. 

The challenges of irony processing involve the following issues: (1) No comprehensive irony cor-
pus is available. (2) Irony analysis is related to semantics, pragmatics and discourse studies, which are 
the most challenging in natural language processing. (3) Contextual information and background 
knowledge are necessary, but they are hard to obtain and process. (4) Non-linguistic or non-verbal fac-
tors, e.g., intonations, gestures and talking speed in speech, and spaces, punctuations and typography 
in writing, have to be considered. 

This paper focuses on irony corpus construction, ironic pattern mining, and ironic structure analysis. 
Messages were collected from a microblogging platform based on emoticons, and ironic messages and 
patterns were extracted to build an irony corpus. The structure of ironic expressions and the clarifica-
tion of the uses of ironic elements were also analyzed. Labels representing the ironic elements are 
added to each message in the irony corpus. To the best of our knowledge, this is the first Chinese irony 
corpus available for research. 

This paper is organized as follows. Section 2 surveys the related work. Section 3 proposes a meth-
odology to construct an irony corpus. Section 4 presents the patterns mined from the corpus. Section 5 
discusses the results of ironic expressions collected from a different type of corpus. Section 6 makes 
the error analysis. Section 7 analyzes linguistic structure of Chinese irony. Section 8 concludes the 
remarks. 

This work is licensed under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer 
are added by the organizers. License details: http:// creativecommons.org/licenses/by/4.0/ 
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2 Related Work 

Sarcasm and irony have been studied by linguistics and cognitive scientists (Giora and Fein, 1999; 
Gibbs and Colston, 2007) for years, but there has been no concrete claim on the linguistic structure of 
irony. Some studies have started focusing on the processing of sarcasm and irony recently, but it is 
still not clear whether sarcasm and irony differ significantly or represent the same concept.  

The research of non-literal expression identification has drawn attention in recent years. Katz and 
Giesbrecht (2006) use meaning vectors for literal and non-literal expression classification. Li and 
Sporleder (2010) focus on distinguishing literal and non-literal usages of idioms. 

Filatova (2012) uses crowdsourcing to generate an irony and sarcasm corpus. Veale and Hao (2010) 
construct a corpus of ironic similes using the wildcarded query “as * as a *” on a search engine. Da-
vidov et al. (2010) collect messages from Twitter and product reviews from Amazon.com using the 
Mechanical Turk service. The #sarcasm hashtag is used as ground truth, and a k-nearest neighbor 
strategy is used for classification. González-Ibáñez et al. (2011) also make use of hashtags in Twitter 
as labels to build a sarcasm corpus. In their study, both human classification and automatic classifica-
tion achieve low accuracy in sarcasm detection. Reyes et al. (2012) analyze humor and irony based on 
the user-generated tags, such as “#humor” and “#irony”, in twitter. Lukin and Walker (2013) use a 
bootstrapping method to improve the performance of the classifiers for identifying sarcastic and nasty 
utterances in online dialogues. 

The hashtag-based approaches are not always suitable for irony corpus construction for all the lan-
guages. As of March 9, 2014, only 113 messages are found to contain the hashtag #反諷 (#irony) in 
Weibo, the largest Chinese language microblogging platform. This paper differs from the previous 
work in that we employ negative emoticons and positive words as clues to capture the irony. The lin-
guistic patterns mined from the irony corpus can be used to detect if a sentence is ironic.  

3 Irony Corpus Generation from Microblogs 

This section introduces a bootstrapping methodology to construct an irony corpus and mine irony pat-
terns. While Lukin and Walker (2013) also used a bootstrapping method to improve sarcasm and nas-
tiness classifiers, this paper, in contrast, focuses on irony pattern mining and corpus construction. 

3.1 An Emotion-Tagged Corpus 

The traditional definition of verbal irony is adopted, where the speaker says something that seems to 
be the opposite of what they mean (Gibbs and Colston, 2007). Under this definition, texts annotated 
with polarity information that expresses the actual meaning should be collected, and the literal mean-
ings of words in the texts should be identified. If any disagreement exists between the actual meaning 
and literal meaning, then we say the text contains irony. 

Nowadays, emoticons are used quite often in social media to express the feelings of the posters. The 
tagged emoticons specify their actual meanings in some sense. Based on this idea, messages were col-
lected from Plurk1, a microblogging platform similar to Twitter. It lets users post messages limited to 
140 characters, and allows them to use graphical emoticons in their messages.  

It was assumed that these emoticons can represent the poster’s sentiments, and, therefore, be re-
garded as sentiment labels of the messages. Among 35 emoticons, 23 are categorized into positive, and 
12 are categorized into negative. Collected messages are dated from Jun 21, 2008 to Nov 7, 2009, and 
all of them are in Traditional Chinese. 

On the other hand, the literal meanings of the posted messages need to be known. Many sentiment 
analysis algorithms (Liu, 2012) can be explored. A lexicon-based approach was adopted. The NTU 
Sentiment Dictionary, or NTUSD (Ku and Chen, 2007), was employed to determine the sentiment of a 
word. This dictionary provides 21,056 positive and 22,751 negative words. Most of these words are in 
Traditional Chinese.  

                                                 
1 http://www.plurk.com 
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3.2 Candidates Extraction 

Possible irony messages were extracted from the Plurk corpus by using NTUSD. Since the typical so-
cial function of irony is expressing negative meaning with positive words, as mentioned in Gibbs and 
Colston (2007), focus was directed on those messages with negative emoticons and positive words. A 
total of 3,178,372 messages was found containing at least one negative emoticon. Among them, 
304,754 messages with at least one positive word are found and form an irony candidate dataset. 

Discourse relation determines how two discourse units cohere to each other. Sentiment transition of 
two clausal arguments is identified based on their discourse relation (Zhou et al., 2011; Wang et al., 
2012; Huang et al., 2013). In the sentence “he is nice but not attractive,” positive opinion in the begin-
ning is transformed to a negative one by the discourse connective “but.” Both the positive word “nice” 
and the negative phrase “not attractive” are used literally. Thus, it was necessary to filter out messages 
containing such connectives.  

Messages are removed only when the positive word occurs earlier than the discourse connectives 
with a comparison function, due to Chinese grammatical structure. The Chinese discourse connectives 
used here include “但”, “但是”, “可是”, “只是”, “不過” (all the above are equivalent to the English 
word but), “然而” (however), “卻” (comparatively), “可惜” (unfortunately), “偏偏” (contrarily), “反

而” (oppositely), and “倒是” (on the contrary). A total of 254,836 messages remains after this process.  

3.3 Pattern Mining 

Although irony can be used without any customary linguistic patterns, some ironic expressions do ex-
hibit specific forms of language use. Colston and O’Brien (2000) suggest that both irony and hyperbo-
le create contrasts between expected and ensuing events. It was assumed that exaggerated expressions 
could be used with irony to strengthen the effects of the speech act. In the expression 我真是太幸運

啦！ (I am really and extremely lucky!), the adverbs really and extremely are used to strengthen the 
ironic effect. Thus, combinations of degree adverb phrases and a positive adjective are used as patterns 
to find possible irony expressions automatically in the candidate dataset. 

Not all degree adverbs in Chinese are used because some of them are mostly used in formal texts 
and not frequently present in microblogs. The degree adverb phrases used here include the combina-
tions of the adverbs “還” (hái), “也” (yĕ), “未免” (wèimĭan), “可” (kĕ) and “實在” (truly) and the de-
gree adverbs “真” (really), “太” (extremely) and “非常” (very).  

The following bootstrapping procedure was used to find more patterns. 
(1) Which patterns should be used is decided. At the very beginning of the bootstrapping procedure, 

the [degree adverb + positive adjective] pattern mentioned above is used. 
(2) Messages containing the patterns in step (1) are automatically retrieved from the candidates. 

NTUSD is used to determine sentiment polarity, and CKIP parser is used to get parts of speech2. 
(3) Messages retrieved in step (2) were reviewed by the annotator to decide which of them are 

actually ironic.  
(4) If the annotator finds new irony patterns in the reviewed messages, then the procedure starts 

again from step (1) and uses the patterns to repeat the process. 
This process was repeated for four times. After the fourth iteration, no more new patterns were 

found by the annotator. Finally, 2,825 messages are found to have any of the patterns, and 1,005 of 
them are confirmed to be ironic and make up the NTU Irony Corpus.3 Examples of these patterns and 
ironic messages are shown in Section 4. 

4 Irony Patterns 

All the patterns mined by the approach used in Section 3 are categorized into the following five groups.  

4.1 Degree Adverbs + Positive Adjective 

In this pattern, the following two components must exist: 
 

                                                 
2 http://ckipsvr.iis.sinica.edu.tw. 
3 The NTU Irony Corpus is available at http://nlg.csie.ntu.edu.tw/nlpresource/irony_corpus/. 
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(a) Degree adverb phrase + positive adjective phrase 
(b) Negative context 

 
The negative context can occur either before or after the component (a). For example, the following 
expression is used when someone has to wait for a long time to start ordering in a restaurant. In total, 
13.03% of all the messages in the corpus contain this pattern. 

 
(s1) 點餐都要等半小時，服務還真是好阿 

I have to wait for half an hour to order. The service is definitely really good. 
 

The underlined expression is the contextual information described in (b), and the double-underlined 
expression is the linguistic form described in (a). In the second clause the adverbs “還” (hái) and “真” 
(really) are combined to form a degree adverb phrase for intensification or hyperbole. Although the 
positive word good is used, the speaker means the opposite. The first clause indicates why they think 
the service is not good, and, therefore, provides the contextual information. 

4.2 The Use of Positive Adjective with High Intensity 

In this pattern, the following two components must exist: 
 

(a) Positive adjective with high intensity 
(b) Negative context 

 
Specific positive adjectives with high intensity are used to form ironic expressions with or without 
other rhetorical elements. Since the context is negative, the positive adjective is used to express non-
literal meanings. The adjectives we found in the corpus include “偉大” (great), “了不起” (remarkable) 
and “天才” (genius). Only 2.09% of the messages in the corpus contain this pattern. For example, the 
word great is used in the following message: 

 
(s2)  我的 plurk「又」發生不明錯誤了...這真是這世紀最偉大的發明啊 

My Plurk account encountered an unknown error ‘again’… This is indeed the greatest 
invention in the century. 

4.3 The Use of Positive Noun with High Intensity 

In this pattern, the following two components must exist: 
 

(a) Positive noun with high intensity 
(b) Negative context 

 
Specific nouns that represent highly positive meanings are also used to express irony. These nouns 
include “巨星” (superstar), “大禮” (big gift) and “境界” (wonderful state). When they are used with a 
negative context, an ironic expression is formed. This is pattern is not found frequently in the corpus. 
Only 2.00% of the messages in the corpus contain this pattern.  An example is listed below: 

 
(s3) 中秋節收到的大禮是.......長了一堆肉 

The big gift I received in the Mid Autumn Festival was…… a lot of fat in my body. 

4.4 The Use of “很好” (very good) 

In this pattern, the following two components must exist: 
 

(a) Sentence boundary + 很好 + punctuation 
(b) Negative context 
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A sentence boundary occurs before the word “很好” (very good) because there is no subject. Multiple 
punctuations, and particularly exclamation marks and ellipses, can be used after “很好” to increase the 
intensity. In the following example, exclamation marks are used: 

 
(s4) 感冒... 很好!! 我的假期飛了 

I caught a cold… Very good!! My vacation is gone. 

 
Sometimes this pattern is followed by an exclamation word, such as “啊” (a), “呀” (ya), and “嘛” 

(ma). These exclamations, like punctuations, can help strengthen the level of the speaker’s feelings. In 
our irony corpus, this pattern is used in 50.84% of all ironic messages. Obviously, this is a common 
way when people want to express their negative feelings with an ironic expression. 

4.5 “可以再…一點” (It’s okay to be worse) 

In this pattern, the following expression must exist: 
 
可以再 + negative adjective + 一點 

(It is okay to be more + negative adjective) 
 

This pattern literally states that it is okay for something to become worse and is a commonly used pat-
tern to express irony in our corpus. It can be found in 33.53% of the messages in the corpus. In most 
cases, even when no proper contextual information is present, the listener can tell the literal meaning is 
not meant because it violates most people’s inclinations. Thus, the use of this pattern is usually non-
literal and ironic. An example is shown below. 

 
(s5) 零下十一度...你可以再冷一點 

It's -11°C…It is okay to be colder 
 

A message can contain more than one pattern, causing the sum of the percentages of the above five 
patterns to be greater than 100%. For example, both patterns 4.4 and 4.5 are used in the following 
message: 

 
(s6)很好!!!!我可以再笨一點 再笨一點阿... 

Very Good!!!! It is okay for me to be more idiotic… 
 
The patterns in Sections 4.4 and 4.5 are mainly based on their linguistic forms and frequently used 

in ironic expressions. We argue that these patterns are more static than the others, and we call them the 
customary patterns. On the other hand, the patterns in Sections 4.1, 4.2 and 4.3 are called non-
customary patterns. 

5 Collecting Ironic Expressions from Blogs 

In order to understand how irony is conveyed in different types of media, we use the methodology and 
mined patterns described in Sections 3 and 4 to collect irony expressions from the Yahoo Kimo Blogs 
corpus. 

5.1 The Yahoo Blog Corpus 

The Yahoo Kimo Blog corpus, referred to the Yahoo corpus in the following sections, contains blog 
articles from November 1, 2005 to August 20, 2007 (Yang, Lin and Chen, 2009). Out of all the posts 
in the dataset, 2,764,202 posts have at least one emoticon. The articles posted in July 2006 are used 
here, and they are divided into 341,932 smaller units by the full stop symbol. All articles are in Tradi-
tional Chinese.  

Since the Plurk platform can be used as an instant messaging system, and readers of the message are 
usually on the author’s friend list, these messages are usually conversational. On the other hand, Ya-
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hoo blogs are not limited in length and a blog article itself is not part of the conversation. Thus, the 
blog articles are usually more formal compared to microblog messages. 

Although the articles are separated by a full stop into shorter units, these units are not necessarily 
identical to sentences due to the conventional usage of the Chinese period symbol. They can consist of 
multiple sentences and thus contain a discourse structure, which makes them suitable for this corpus 
study. 

5.2 Extract Ironic Expressions  

A similar approach to the steps described in Section 3.3, is used to collect ironic expressions from the 
Yahoo corpus, but four patterns of irony found in Plurk are used to perform step (1). These patterns, as 
listed below, are adopted because they are the most frequently used ones in our Plurk irony corpus. 
They can also reflect the uses of customary and non-customary irony patterns as the first two patterns 
are customary, and the last two are non-customary. Pattern 1 and Pattern 2 are the same patterns as 
mentioned in Section 4.4 and Section 4.5, respectively. Pattern 3 and Pattern 4 are two forms from the 
pattern described in Section 4.1. Only step (1) to step (3) are performed, and step (4) is bypassed; that 
is, the process is not repeated. 

 
 Pattern 1: 

(a) Sentence boundary + 很好 + punctuation 
(b) Negative context 

 Pattern 2: 
  可以再 + negative adjective + 一點 

 Pattern 3: 
(a) 還真 + positive adjective 
(b) Negative context 

 Pattern 4: 
(a) 真是 + positive expression 
(b) Negative context 

5.3 Results and Discussion 

A total of 36 ironic texts is obtained. All the four irony patterns seen in Plurk can be found in Yahoo. 
The final results are shown in Table 1. 
 

 Number of Ironic Expressions Percentage 
Pattern 1 14 38.89% 
Pattern 2 10 27.78% 
Pattern 3 5 13.89% 
Pattern 4 7 19.44% 

Table 1: Ironic texts found for the four Patterns in Yahoo. 
 

The proportions of the four patterns in Plurk and Yahoo are also compared. The percentages are 
calculated by dividing the occurrence of each pattern by the occurrence of all four patterns in the same 
datasets. As can be seen in Figure 1, the proportions of patterns (1) and (2) in Plurk are significantly 
higher than in Yahoo, and the proportions of patterns (3) and (4) in Plurk are significantly lower than 
in Yahoo (p<0.05 according to the t-test). This suggests that patterns (1) and (2) tend to be used in 
informal and conversational texts while patterns (3) and (4) tend to be used in formal articles to 
convey irony. Also, this may suggest that customary patterns are more likely to be used in 
conversations, and authors of formal articles prefer an indirect way to express irony, although more 
data are required for further studies in the future. 
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Figure 1: Comparison of the proportion of the four patterns in Plurk and Yahoo. 

6 Error Analysis 

In this section, we analyze why non-ironic messages were retrieved by the automatic processes. The 
1,820 wrong messages specified in Section 3.3 are classified into the following two categories. 

 
(1) Sentiment identification 

Using the patterns to find possible ironic messages involves the correct sentiment identification. 
NTUSD does not cover some new words used on Internet informal conversations. The sentiment of a 
word can also be changed depending on its context. For example, “太強” (so strong) is listed as a posi-
tive term in NTUSD. However, it is used to indicate a negative condition in the example (s7). 

 
(s7) 止痛藥的副作用也太強了吧，昏睡一整晚 

 The side effect of the pain reliever was so strong, making me sleep through the whole night. 
 
(2) Opinion targets 

In a Plurk message, even though the message poster is talking about the same topic, more than 
one entity with associated opinions can be present. For example: 

 
(s8) 最近公司生意很好，好累ㄛ 

 The business of our company is running so well. I am so tired. 
 
The poster expresses negative sentiment by using the word “tired.” Although the positive word “很

好” (very good) is also used, it modifies the word “business” rather than the poster’s condition. That is, 
the opinion targets of the two words are different, and this causes problems when automatically re-
trieving ironic messages.  

7 Linguistic Structure of Irony 

In this section, the linguistic structure of irony is analyzed based on our observations on the corpus. 

7.1 Ironic Word 

As described, the literal meaning of an ironic word or phrase is opposite to the actual meaning. An 
ironic word/phrase is necessary to separate irony from regular utterances. If the ironic word of an 
utterance is reverted, the speaker’s actual sentiment or intention is reconstructed. 

However, it is not easy to identify the ironic word in an utterance. Sometimes more than one word 
can be an ironic word. In our corpus, 94.93% of the ironic words are adjectives, while others are used 
as adverbs, verbs or nouns. The recognition of ironic word/phrase is a challenging task, but other iron-
ic elements described in Sections 7.2 and 7.3 can be analyzed side by side to help improve the perfor-
mance. 

7.2 Contextual Information 

Contextual information is usually provided as part of ironic utterances to help convey irony. For 
example, the underlined sentence in the following utterance is crucial for irony interpretation: 
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(s9) 我掛彩了，真是太好運了 
 I was injured. I was really lucky. 

 
Without the first sentence, it is hard to tell if lucky is actually meant. Although a speaker can still 

use ironic words/phrases without providing contextual information, this can be an ineffective way to 
communicate the actual meanings of irony. According to the cooperative principle proposed by Grice 
(1975), the speaker must give enough information in order to enable successful communication and 
implicatures. The four maxims of the cooperative principle include: 

(1) Maxim of Quantity: The speaker should make their contribution as informative as is required. 
Do not make the contribution more informative than is required. 

(2) Maxim of Quality: The speaker should not say what they believe to be false, and should not 
say that for which they lack adequate evidence. 

(3) Maxim of Relation: The speaker should be relevant. 
(4) Maxim of Manner: The speaker should avoid obscurity of expression, avoid ambiguity, be 

brief and be orderly. 
Based on Grice’s maxims, it is assumed enough, correct, relevant, and understandable contextual 

information should be provided with ironic expressions. However, the speaker sometimes assumes the 
listener already knows about the conditions where the irony takes place and has the required 
background knowledge; thus the contextual information is hidden in the ironic utterance. 

Four types of context can be used to interpret irony: 
(1) Linguistic context: The linguistic context refers to the words that are expressed before and/or 

after the irony words in a sentence or discourse. It is easier to obtain and analyze than the other 
three types of context. 

(2) Physical context: Physical context refers to what is actually present and/or happening in the 
environment or circumstance where the conversation is taking place. It is also related to the 
timing. In online conversations, participants are not usually in the same location, but they can 
be aware of the same ongoing events and situations. It is not necessary for the speaker to 
provide physical context information if they assume the objects or situations are noticeable to 
the listeners.  

(3) Epistemic context: The background knowledge shared by the participants in a conversion can 
also be used to interpret the irony. This type of context does not change over time. For example, 
people know rocks are hard, so they can understand the expression the bed is as soft as a rock is 
not literal. 

(4) Social context: Social relationship can be important for expressing and interpreting irony, 
especially in online messages.  

We argue that at least one type of contextual information must exist, but it can be hidden if the 
speaker thinks the listener is already aware of it. Physical, epistemic and social context can be hidden, 
while linguistic contextual information must be present. 

7.3 Rhetoric 

As shown in Section 4, degree adverbs, punctuations and exclamations can be used to convey irony. 
Some of them can even be repeated to intensify the effects. These elements increase contradiction and 
strengthen the degree of negative opinions. Unlike ironic words and context, rhetoric elements are not 
necessary to convey irony. 

Liebrecht et al. (2013) call the words used to strengthen evaluative utterances intensifiers. In their 
experiments, non-hyperbolic sarcastic messages often contain an explicit marker on Twitter. They ar-
gue that sarcasm is often signaled by hyperbolic words, including intensifiers and exclamations, and 
sarcastic utterances with hyperbolic words are easier to identify by listeners/readers than sarcastic ut-
terances without hyperbolic words. It can be seen that adverbs, adjectives, punctuations and exclama-
tions with high intensity observed in our irony patterns have very similar effects. 

Among the 113 messages containing the #反諷 (#irony) hashtag in Weibo, which was mentioned in 
Section 2, 83.19% do not exhibit hyperbole or uses of intensifiers. This observation is similar to the 
argument suggested in Liebrecht et al. (2013) and is one of the reasons why the hashtag is not suitable 
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for the irony pattern mining task in this study. In comparison, this methodology helps find more clues 
of irony that can be seen from their linguistic forms. 

7.4 Corpus Labeling 

To increase the usefulness of the corpus, ironic element tags are added to each message. An example 
is shown in Figure 2. 

Figure 2: An example message with ironic element tags. 
 

As can be seen in the example, “好” (good) is the word that is used in the opposite way, so it is 
marked with the ironic word/phrase label <ironic>. The preceding sentence states what actually hap-
pened, and is marked with the label <context>. The message poster also uses the degree adverb “太” 
(extremely) and used the exclamation “吧” (ba, a sentence-final partical). These two words are marked 
with the <rhetoric> label. The sentiment polarity marks of the ironic word and contextual information, 
shown as either pos or neg, are also added.  

8 Conclusion 

In this paper, five types of irony patterns are mined, and an irony corpus is constructed based on 
linguistic forms and sentiment classification. Four verbal forms in Plurk and Yahoo were further 
examined. The former platform restricts short text conversation, and the latter platform allows for the 
long text description. The experimental results show that the customary forms tend to be used in 
informal and conversational texts while the non-customary forms tend to be used in formal articles to 
convey irony. The three basic elements that form a successful ironic speech act were also analyzed. 
These elements, including the words/phrases with reversed meanings, contextual information and 
rhetorical words, should be identified first in order to properly process ironic expressions and perform 
linguistic analysis. In the mined patterns, it was found that hyperbole was frequently present. In future 
work, we will explore other opinion mining and sentiment analysis algorithms, and focus on automatic 
recognition of hyperbole and the ironic elements. 
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