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ABSTRACT
Unsupervised clustering of documents is challenging because documents can conceivably be
divided across multiple dimensions. Motivated by prior work incorporating expressive features
into unsupervised generative models, this paper presents an unsupervised model for categorizing
textual data which is capable of utilizing arbitrary features over a large context. Utilizing locally
normalized log-linear models in the generative process, we offer straightforward extensions
to the standard multinomial mixture model that allow us to effectively utilize automatically
derived complex linguistic, statistical, and metadata features to influence the learned cluster
structure for the desired task. We extensively evaluate and analyze the model’s capabilities
over four distinct clustering tasks: topic, perspective, sentiment analysis, and Congressional bill
survival, and show that this model outperforms strong baselines and state-of-the-art models.
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1 Introduction

Partitioning documents into categories based on some criterion is an essential research area
in language processing and machine learning (Sebastiani, 2002). However, documents are
inherently multidimensional, thus a given set of documents can be correctly partitioned along a
number of dimensions, depending on the criterion. For instance, given a set of movie reviews,
we may be interested in partitioning them by genre, with horror, comedy, drama, etc. in separate
categories, or we may want to partition by sentiment, with positive and negative reviews in
separate categories. However, it often proves difficult to adapt a model suited for one task, such
as topic analysis, to another, such as sentiment analysis.

Supervised generative and discriminative approaches for text classification have achieved
remarkable success across a variety of tasks (Joachims, 1998; Kotsiantis, 2007; Pang et al.,
2002). Since the partition criterion for a supervised model is encoded in the data via the class
labels, even the standard information retrieval representation of a document as a vector of
term frequencies is sufficient for many state-of-the-art classification models. Furthermore, for
tasks where term presence may not be adequate, discriminative models have the ability to
incorporate complex features, allowing them to generalize and adapt to the specific domain.

In unsupervised clustering of documents, we try to partition the documents such that those in
one partition are somehow more similar to each other than they are to documents in another
partition. Probabilistic clustering models internally assess the quality of clusters via an objective
function, L (θ), which is commonly maximizing the log-likelihood of generating the data D
under the current parameters of the model, θ . Clustering models rely almost exclusively on
a simple bag-of-words vector representation, and therefore achieve an optimum L (θ) when
grouping documents with similar terms together. This performs well for topic analysis, but,
unfortunately, since we do not inherently know the underlying distribution which generated
our data, maximizing L (θ) is not guaranteed to learn a posterior distribution that performs
well for a different task. One method for influencing the objective towards a desired outcome
is to include additional feature functions which are able to capture pertinent domain specific
information.

Berg-Kirkpatrick et al. (2010) presented an effective framework for learning unsupervised
models with expressive feature sets by re-parameterizing every local multinomial in a generative
model as a locally normalized log-linear model. They showed that this method allowed them
to incorporate arbitrary features of the observation and label pair, and led to competitive
performance with more complex models for unsupervised tasks like part-of-speech and grammar
induction.

Motivated by their work, we developed a feature-enhanced unsupervised model for clustering
in this framework by re-parameterizing the multinomial mixture model. The proposed model,
which will serve as our baseline, allows for the integration of arbitrary features of the observa-
tions within a document. While in generative models the observed context is usually a single
unigram, we extend our re-parametrized baseline model to enable the extraction of features
from a context of larger size and incorporate document-level information. After presenting the
model, we explore the use of automatically derived linguistic and statistical features, many of
which have not been applied to unsupervised clustering. We show that by introducing domain
relevant features, we can guide the model towards the task-specific partition we want to learn
across four practical tasks with different criterion: topic, perspective, sentiment analysis, and
Congressional bill survival. For each task, our feature-enhanced model is highly competitive
with or outperforms strong baselines.
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2 Related Work

Research on selecting which dimension of the data to cluster can broadly be categorized into
approaches which constrain the clustering via external information, and those which cluster
along multiple dimensions and then select an appropriate one. Druck (2011) presented a
semi-supervised approach that uses domain knowledge in the form of labeled features, which
encode affinities between features and classes, to constrain a log-linear model on unlabeled
data using generalized expectation criteria (GE-FL). Andrzejewski et al. (2009) and Mimno and
McCallum (2008) both attempt to incorporate generalized domain knowledge into generative
topic models using priors. The Latent Semantic Model (LSM) (Lin et al., 2010) is a Bayesian
model for unsupervised sentiment classification, similar to LDA, but only modeling a mixture
of three sentiment labels, positive, negative, and neutral. Another recent approach to guide
clustering for sentiment analysis was introduced by Dasgupta and Ng (2009), where they
incorporate user feedback into a spectral clustering algorithm (DN). Generalized Weighted
Cluster Aggregation (GWCA) (Wang et al., 2009) is a consensus clustering method for topic
analysis which utilizes a set of different K-Means clusterings of the same data to construct
a similarity matrix, on which spectral clustering is performed to create a single consensus
clustering. Iterative Double Clustering (El-Yaniv and Souroujon, 2001) (IDC) is an extension of
the Double Clustering approach based on the Information Bottleneck method for topic analysis.

3 Model Description
In our probabilistic generative model for categorizing documents, we assume documents are
generated according to a mixture model. The generative process begins by first selecting a
class for each document according to the class prior probabilities, θ j . Each class corresponds
to a mixture component, and θ j are the mixture weights. Next, we generate the contents of
the document conditioned on the class according to the class-conditional density, Pθ (di |c j).
Following the Naive Bayes (NB) assumption, we treat all words in a document as conditionally
independent given the class, and break Pθ (di |c j) into its constituent word probabilities θk j .
Under this model, the objective we would like to maximize is the marginal log-likelihood of
generating the documents, given by: L (θ) =∑di∈D log Pθ (di) =

∑
di∈D log
∑

c j∈C θ j

∏
wk∈di

θ
cki
k j

where θk j is the probability of observing word wk in class c j , and cki is the frequency of wk
in document di . Thus, there are two sets of parameters we need to estimate: θ j for each
class and θk j for each mixture component. The standard instantiation of this model is known
as the Multinomial Mixture (MM) model, which is a generalization of the NB classifier for
unsupervised learning where θk j and θ j are computed using multinomial distributions.

3.1 Unsupervised Feature-Rich (UFR) Model

In order to incorporate features beyond those of term frequency, we can follow the procedure
presented in Berg-Kirkpatrick et al. (2010) and re-parameterize the multinomial distribution
as a log-linear model based on a feature weight vector ψw . In this light, θk j is the output of a
locally normalized logistic regression function that scores the word probability according to
the active feature functions and weights for that context. Similarly, we can re-parameterize the
class prior probability θ j with a log-linear model with weights ψc:

θk j(ψw) =
exp〈ψw , f(wk, c j)〉∑

wp∈V exp〈ψw , f(wp, c j)〉
(1) θ j(ψc) =

exp〈ψc j
〉∑

cm∈C exp〈ψcm
〉 (2)

Combining ψw and ψc into a single vector ψ, the objective function for this model remains the
marginal log-likelihood, L (ψ) =∑di∈D log Pψ(di)− κ||ψ||2, to which we also incorporate a
`2-norm regularization term.
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Conveniently, exactly the same generative story as before applies. Thus, optimizing this
objective remains straightforward with the Expectation-Maximization (EM) (Dempster et al.,
1977) algorithm. The E-step remains the same as the MM model, with the exception that the
multinomial probabilities are now being computed with a log-linear model. In the M-step
however, instead of simply normalizing, we need to perform an optimization procedure to
recompute the weight vectorψ to optimize the complete log-likelihood objective. However, Berg-
Kirkpatrick et al. (2010) suggest an alternative method of optimization, the direct gradient
approach, which directly optimizes the regularized marginal log-likelihood using L-BFGS (Liu
and Nocedal, 1989). The gradient of L (ψ) with respect to ψ has the form:

∇L (ψ) =
∑

wk∈V ,c j∈C
ek j ·∆k j(ψ)− 2κ ·ψ (3) ∆k j(ψ) = f(wk, c j)−

∑
wp∈V

θp jf(wp, c j) (4)

3.2 Event Context Expansion

As mentioned earlier, the observation, or event, for most generative models has predominantly
been restricted to a single word; the one whose probability is being estimated. Due to the
independence assumptions imposed by the naive structure of our UFR model, when computing
θk j , we are only able to look at wk. So although features can be shared among different
observation and label pairs, such as a suffix ‘ing’ feature activating for both ‘going’ and ‘trying’,
we are restricted to features of a single word. Thus, without modifying the model, we could
not introduce a feature that considered a larger context around wk, such as wk−1 and wk+1.
Intuitively, since we want to guide the model towards the partition of the data which we
consider relevant for a specific task, it should be beneficial to utilize a larger context than a
single word for feature extraction when estimating θk j . Therefore, we want to weaken the
independence assumptions imposed by NB by introducing feature dependence - assuming
independence between fewer words - while concurrently taking advantage of the tractable
learning and inference that NB offers.

There has been a considerable amount of work in alleviating the independence assumptions of
NB model by explicitly representing dependencies between attributes (i.e. words in our case),
such as Lazy Bayesian Rules and Tree-Augmented NB (Friedman et al., 1997; Zheng and Webb,
2000). These approaches can be generally characterized as utilizing a less restrictive set of
assumptions. First, they select a set of words b ∈ Nx(wk) and then, wk is allowed to depend on
the words in b; such that θk j → θk j|b = p(wk|c j , b).

Our proposed extension to UFR, E-UFR, is similar in spirit to these approaches, as we will
let each observation encompass the set of surrounding context words. At each position k in
the document, instead of generating a single word event, wk, according to θk j , we propose

generating the entire context as the event, according to θbk+q
k−r j . Here, bk+q

k−r ∈ Nr+q(wk) is the
context: the set of words centered at and including wk, going q positions forward, and r
positions back, and Nr+q(wk) is the set of all possible contexts of size (r + q) for all k. In
another light, instead of having a single θk j , we now have a θk j for every different context of wk.
Since we now generate wk along with its context, we modify the log-linear model from Eq. 1
to Eq. 5 and marginalize over the contexts, enabling feature extraction from its entirety. This
will allow features to be active for more observations, thus tying more probability estimates
together.

θbk+q
k−r j(ψw) =

exp〈ψw , f(bk+q
k−r , c j)〉∑

bp∈Nr+q(wk)
exp〈ψw , f(bp+q

p−r , c j)〉
(5)
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Table 1 shows an example of context generation. Crucially, the context is not treated as a
bag-of-words, and by preserving word order, we are able to extract linguistic features that
depend on structure. This method of computing θbk+q

k−r j can be viewed as a form of contrastive

estimation (Smith and Eisner, 2005), where we condition the probability on N (wk), the
neighborhood of possible contexts. In practice, to make parameter estimation tractable for
increased context size, we restrict N (wk) to observed contexts.

The United States is failing in its mission to implement the roadmap
the united states, the united states is, the united states is failing, united states is failing in,

states is failing in its, is failing in its mission, failing in its mission to,
in its mission to implement, its mission to implement the, mission to implement the roadmap

Table 1: Contexts generated when producing the sentence above with a 5-word context; r=q=2.
Bold indicates the wk being generated, with surrounding context available for feature extraction.

4 Experiments

To measure the effectiveness of the E-UFR clustering model, we applied it to text corpora with
known labels used in supervised classification. Specifically, to topic, perspective, and sentiment
analysis, as well as Congressional bill survival. The details of the datasets are summarized
in Table 2. All data is preprocessed by performing tokenization, downcasing, and removing
non alpha-numeric characters, and stopwords, unless otherwise noted. We compare E-UFR
performance on each task with three baselines, UFR, MM and LDA, and where applicable, results
taken from related work. The UFR and E-UFR baseline models incorporate only word indicator
features, making their feature set identical to the MM model. As the observation context in the
E-UFR model, we utilize a 5-word context with q=2 and r=2. The θk j parameters in the MM
model are initialized with uniform MAP estimates across classes from the data, all weights in
ψ are initialized to 0, and θ j is slightly perturbed using a random seed in both cases to allow
for learning. To evaluate the accuracy of our approach we compute the cluster purity (Zhao
and Karypis, 2002). Since each document can only be assigned one label, and we have the
same number of clusters as classes, the measure is directly comparable with micro-averaged
precision, accuracy, and F1 (Xue and Zhou, 2009; Bekkerman et al., 2006). All results reported
are averaged over 5 runs. Results in bold are statistically significant improvements over the
other models and indistinguishable from each other at the p <0.05 level, according to the
p-test (Yang and Liu, 1999).

4.1 Topic Analysis

For topic analysis, we use several subsets of the 20-Newsgroup (NG20) (Lang, 1995), and
WebKB (Craven et al., 1998) datasets. The NG20 corpus consists of messages posted to various
Usenet newsgroups, of which we utilize the Politics, Sport, and Computer splits. The WebKB
corpus consists of web pages from university computer science department websites, and has
a skewed distribution of examples from each class. We use the WebKB4 split. We present
two methods of introducing automatically derived features from LDA. In the first, LDA-A, we
introduce a feature representing the per-word topic assignment for every term in the document.
In the second, LDA-K, for each topic t i , we sort terms wk by P(wk|t i) and introduce features
for the top 100 terms. For example, given a context generate14 a7 larger7 set3 of7 data18 with
subscripts representing the per-word topic assignments, possible features are f (w=data,t=18)
or f (#(t=7)=3). We also incorporate linguistic features in the form of part-of-speech (POS)
tags in the same manner, produced using a latent-variable POS tagger (Huang et al., 2009).
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The results are presented in Table 3. On the NG20 set, the MM and UFR models exhibit strong
performance, mostly outperforming the E-UFR model. With the addition of LDA-A features,
however, the E-UFR becomes highly competitive. On WebKB4, the baseline E-UFR model is
significantly better than the others. The introduction of LDA features does not enhance its
performance, however, POS features reduce the error by 10% over the baseline. Also note, that
in comparison to GE-FL, which is semi-supervised and uses LDA features, we achieve better
performance. Interestingly, across all the sets, introducing either form of LDA feature results in
significantly higher accuracies for the E-UFR model than the original LDA model from which
the features are derived. In addition, the LDA-A features always outperform LDA-K.

Set Task Docs Words
WebKB(4) To 4199 1.3m
Pol(3) To 2625 1.4m
Sprt(2) To 1993 670k
Comp(2) To 1943 480k
Mov(2) Se 2000 1.5m
BL(2) Pe 594 510k
Bills(2) Su 1000 2.5m

Table 2: Description of datasets for
Topic (To), Sentiment (Se), Perspec-
tive (Pe) analysis and Congressional
bill survival (Su) tasks.

Model Pol Sprt Comp WebKB
MM 69.7 98 83.9 68.1
LDA 77.5 89.1 72.8 64.8
IDC 78 89 - -
GWCA - - - 67
UFR 71 97.4 69.2 60.6
GE-FL - 91.5 81.7 61.5
E-UFR 69.3 93.9 63.4 71.2
+LDA-A 84.1 96.7 82.7 70.7
+LDA-K 77.3 95.7 76.3 68.3
+POS 74.5

Table 3: Results on Politics, Sport, Computer
newsgroups and WebKB. Table cells marked with
“-” for models from related work indicate result
for that setting was not available in the literature
for that model.

4.2 Perspective Analysis

The BitterLemons corpus Lin et al. (2006) is comprised of essays representing contrasting
perspectives on the Israeli-Palestinian conflict, written by Editors and Guests. There are two
clear partitions in this data. The first, IP, commonly applied and referred to as determining
implicit sentiment, is the task of determining whether a document is written from the Israeli or
Palestinian perspective. The second, EG, is whether the author of the article is a permanent
Editor or Guest1. We extract complex linguistic information, in the form of OPUS (observable
proxies for underlying semantics) features, which were shown to improve performance for
supervised classification. OPUS features are meant to address implicit sentiment by focusing on
syntactic framing in the form of grammatically relevant semantic properties (Greene and Resnik,
2009). We extracted these relations for a set of domain relevant verbs from parses of the corpus
obtained with the Stanford parser (Klein and Manning, 2003). For example, sample features
from the context officially endorse the creation would include f (w=endorse,transitive), f (dobj,
w=creation), and f (w=endorse,dobj). Table 4 presents the results on these two tasks. As can
be seen, the high performance of the UFR and MM models on topic analysis does not carry to
the perspective task. The E-UFR model, on the other hand, achieves very impressive results on
both tasks. Although the results are not directly comparable to supervised classifiers due to the
training-test split, it is interesting to note that our unsupervised results are competitive with
those of supervised classifiers on IP (Greene and Resnik, 2009). Unfortunately, the gain from
OPUS features did not transfer to clustering. On the other hand, the fact that the performance

1As we are interested in differences in author writing style, we did not remove stopwords for this task.
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did not degrade with the introduction is itself enticing, as the model was able to incorporate
many complex linguistic features and not become obstructed by them. We further explored the
use of POS information in EG, which led to a slight improvement. Table 5 presents the most
highly weighted OPUS features.

Model IP EG
MM 51.4 55.1
LDA 54.4 62
UFR 51.1 52.3
E-UFR 90.4 69.4
+OPUS 90.4 68.6
+POS 70.2

Table 4: Results on IP and EG split of
the BitterLemons dataset.

Weight Feature
0.594 dobj(abandoned,n)/0
0.582 dobj(oppose,initiative)/0
0.574 subj(accept,israel)/1
0.525 dobj-failure/0
0.488 maintaining-subj/1
0.482 dobj-initiative/0
0.477 dobj(confront,them)/0

Table 5: Top OPUS features/class for IP split.
Palestinian perspective class is 0, Israeli perspec-
tive is 1.4.3 Sentiment Analysis

For sentiment analysis we use the Polarity v2.0 dataset (Pang and Lee, 2004), where we cluster
movie reviews as negative or positive. We utilize the MPQA subjectivity lexicon (Wiebe and
Cardie, 2005), where words which occur in the lexicon are associated with their prescribed
polarity. For instance, result is tepid and dull would produce f (w=dull,neg) and f (w=tepid,neg),
as well as total counts of negative and positive polarity carrying words. The results are presented
in Table 6. As can be seen, the baseline UFR model is quite bad, but E-UFR outperforms MM, LDA,
and LSM, and is comparable to DN, which uses user interaction. Incorporating the subjectivity
lexicon provides a further significant gain. Table 7 presents the most highly weighted sentiment
lexicon features. Examining the reviews alongside the lexicon, we noticed that terms that may
generally be considered to convey a certain sentiment are inaccurate in their correlation with
this domain. For instance, “war” is considered negative, but positive reviews are almost three
times as likely to mention it. Thus, we created an alternative version of the lexicon, SUBJR,
where we automatically filtered the lexicon to only include domain relevant terms. Impressively,
the accuracy achieved with SUBJR is competitive with supervised approaches on this task.

Model Movie
MM 68.1
LDA 66.6
UFR 51.1
DN 70.9
LSM 61.7
+MPQA 74.1
E-UFR 70.5
+MPQA 72.4
+SUBJR 79.7

Table 6: Results on Movie Review dataset.

Weight Feature
0.2077 (pos,great)/1
0.168 (pos,love)/0
0.121 (neg,waste)/0
0.108 (neg,dull)/0
0.105 (neg,bland)/0
0.101 (pos,master/1
0.093 (neg,emotional)/1

Table 7: Top polarity features/class for
Movie collection. Positive polarity class is
1, negative is 0.

4.4 Congressional Bill Survival
The recently introduced Congressional Bill Corpus (Yano et al., 2012) contains Congressional
bills from the 103rd to 111th Congresses. The task is to predict whether a bill survived, i.e., was
recommended by the Congressional committee, or died in committee. We randomly selected
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1000 bills from the collection to evaluate our model. While features for the previous tasks
are extracted from the content, for Congressional bill survival we incorporate document-level
information, both from observable metadata and automatic predictions. The feature set is
the one presented in Yano et al. (2012), and includes observable information about the bill
(when it was proposed), the bill’s sponsor (their party, etc.), the committee (is the sponsor
on the committee, etc.), and automatically predicted urgency (trivial, recurring, and critical).
Interestingly, our model replicates the results found in the supervised setting, where they found
that the sponsor affiliations have the highest impact scores (Yano et al., 2012). The second
set, Spon, is restricted to the highest weighted observable features describing the bill sponsor,
namely, if the sponsor is on the committee and/or in the majority party. The restricted Spon set
further outperforms all other models.

Model Bills
MM 58.2
LDA 52.7
UFR 56.2
E-UFR 54.9
+All 60.4
+Spon 64.1

Table 8: Results on Congres-
sional bill survival dataset.

Weight Feature
2.051 sponsor-in-committee-majority/1
1.516 bill-cat4-function-CQ2-00/0
1.478 bill-cat4-function-RECUR-00/0
1.064 sponsor-in-committee/1
1.056 sponsor-in-majority/1

Table 9: Top features/class for Congressional bill survival.
Bills which survived are class 1, those that died are class 0.
bill-cat features indicate that the bill is not in the category
of bills classified as CQ (critical) or RECUR (recurring).

5 Discussion
The results show that the E-UFR model is able to achieve strong performance across the four
tasks. We believe this is due both to the increased context and additional features that can be
leveraged. Both POS and LDA are a form of dimensionality reduction which can be viewed
as categorizing words into distributional categories. As such, using them as features in our
model allows us to incorporate information about a possible partition of the data. Since LDA is
geared toward discovering topics, LDA features guide the E-UFR model into the correct space.
Likewise, POS features assist with authorship because they relate to writing style. Extrapolating
from this, any previous clustering of the data can be used as features within our model. In
this work, we focused on using unsupervised learning to predict a certain externally imposed
partition on the data. However, unsupervised learning is also useful as an exploratory technique
for describing a document collection. In this setup, we can incorporate various features in
our model to determine not whether they lead to a better accuracy, but what dimensions of
the data we can discover. Previous studies on the use of linguistic features for supervised text
classification have achieved mostly negative results (Moschitti and Basili, 2004), oftentimes
finding that linguistic features do not improve classification accuracy. However, to the best of
our knowledge no such analysis exists for the unsupervised treatment of text categorization. In
this work, we have shown that linguistic features can be useful for clustering, while questions
remain as to how best to incorporate these features.

6 Conclusion
We presented a feature-rich generative model for clustering. By extending the model to handle
a wider context, we were able to utilize a rich set of automatically derived linguistic and
statistical features, many of which have previously only been explored in supervised learning.
We extensively analyzed and evaluated this model, showing that it is stable with respect to
many arbitrary features. Applying the model to several challenging categorization domains, we
showed that our model is able to adapt and achieve high clustering performance.
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