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ABSTRACT
This paper investigates the problem of distinguishing between original and rewritten text
materials, with focus on the application of plagiarism detection. The hypothesis is that original
texts and rewritten texts exhibit significant and measurable differences, and that these can be
captured through statistical and linguistic indicators. We propose and analyse a number of these
indicators (including language models, syntactic trees, etc.) using machine learning algorithms
in two main settings: (i) the classification of individual text segments as original or rewritten,
and (ii) the ranking of two or more versions of a text segment according to their “originality”,
thus rendering the rewriting direction. Different from standard plagiarism detection approaches,
our settings do not involve comparisons between supposedly rewritten text and (a large number
of) original texts. Instead, our work focuses on the sub-problem of finding segments that
exhibit rewriting traits. Identifying such segments has a number of potential applications,
from a first-stage filtering for standard plagiarism detection approaches, to intrinsic plagiarism
detection and authorship identification. The corpus used in the experiments was extracted from
the PAN-PC-10 plagiarism detection task, with two subsets containing manually and artificially
generated plagiarism cases. The accuracies achieved are well above a by chance baseline across
datasets and settings, with the statistical indicators being particularly effective.
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1 Introduction

Current studies in plagiarism detection are mostly focused on the detection of plagiarised
segments in a collection of documents or within a document. The direction of plagiarism is thus
predetermined. Original documents and plagiarised documents are provided separately and the
task is to determine which segments of plagiarised texts (if any) are copied or rewritten from
which segments of original texts. This is generally done through a large number of pairwise
comparisons: the “suspicious” text is compared against original texts using similarity metrics,
which are mostly based on word overlap.

To date, very superficial metrics such as n-gram matching achieve the state of the art per-
formance on verbatim plagiarism cases. While this is a perfectly reasonable approach for
plagiarism detection, it has some limitations. Firstly, pairwise comparisons in large collections
are computationally very expensive and in practice very simple filtering strategies are used to
rule out most of the original texts. Secondly, for real-world, open data collections such as the
web, pairwise comparisons may be less reliable. It is not uncommon to find multiple versions of
a plagiarised material on the web, and thus the concept of an “original” text becomes less clear.

This study looks at the plagiarism practice from a novel perspective: instead of measuring the
similarity between pairs of texts, the goal is to investigate traits that distinguish original from
rewritten texts based on examples of both types of texts. We make use of machine learning
algorithms and exploit a number of linguistically and statistically-motivated features – e.g.
statistical language models, syntactic trees and features from translationese studies – to (i)
determine whether an individual text segment is original or plagiarised, and (ii) determine the
direction of plagiarism, that is, rank a pair of texts according to their originality. This approach
requires observing patterns of features in individual texts, without any direct comparison
between texts.

2 Related Work

Research on distinguishing original from plagiarised texts is very limited. The only existing
work analyses character 16-grams on artificially generated plagiarised documents from the
PAN-PC-10 corpus (Grozea and Popescu, 2010). These plagiarism cases are generated via
automatic means with various obfuscation levels through the insertion, deletion, replacement of
words, and other simple operations. At document level, overall accuracies reached about 75%.
Tests on highly obfuscated artificial documents reached an accuracy of 69.77%. This analysis
has indicated that there seem to be significant differences between original and plagiarised
texts in the PAN corpus. However, given the way the artificial plagiarism cases were produced,
this finding is somehow trivial. To the best of the authors’ knowledge, no research has been
done on the more challenging cases of manually plagiarised documents, nor at the level of
segments, as opposed to documents.

Considering translation as a process of text rewriting (in a different language), studies on
translationese (i.e. on distinguishing original from translated texts in a given language) and
on detecting translation direction in a bilingual pair of texts are also relevant for this work.
Most work in this area follows the Translation Universals theory (Gellerstam, 1986), which
hypothesises that translated texts tend to exhibit characteristics that are different from non-
translated texts. The theory was further explored by (Baker, 1993, 1996) and based on such a
theory, research has been done for identifying specific properties that reflect these universals
and using them to automatically test these universals. For example, on a corpus of original (non-
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translated) and translated texts in Italian, (Baroni and Bernardini, 2006) finds that features
such as the distribution of function words, personal pronouns and adverbs are very relevant.
(Pastor et al., 2008) explored the existence of the simplification universal – which states that
translated texts are simpler than their source counterpart –, suggesting that this universal
does affect Spanish translated texts. Also focusing on the simplification universal, the studies
by (Ilisei et al., 2010; Ilisei and Inkpen, 2011) on Romanian and Spanish translationese use
morphological and simplification-based features.

A six-lingual study by (Halteren, 2008) using frequencies of word n-grams shows that it is
possible to distinguish between translated and non-translated texts down to their respective
original languages. This is followed by the work of (Lembersky et al., 2011, 2012) which uses
statistical language models for each language. Furthermore, a study by (Volansky et al., 2012)
explores the differences between original, manually translated and machine translated texts.

The experiments on translation direction identification suggest that translated texts have lower
lexical richness and higher number of frequent words. They point out that simplification-based
features are very helpful, but alone they are not sufficient to distinguish original from translated
texts. Although by nature plagiarised texts are very different from translated texts, we exploit
insights gained from these and other related studies in the features we use, including many of
the simplification-based features.

3 Methodology and Experimental Settings
A supervised machine learning approach is proposed to test the hypothesis that original and
plagiarised texts exhibit significant and measurable differences. We build models based on
various linguistically and statistically-motivated features. The models are tested on manually
simulated and artificially generated plagiarism cases. Each case consists of a segment of text.
Well-known machine learning algorithms are used for two tasks: binary classification and
ranking. These two variations of the approach are evaluated in the same way: computing the
accuracy of each algorithm in categorising segments as original or plagiarised.

3.1 Corpus
This study uses the PAN-PC-10 plagiarism detection task corpus (Potthast et al., 2010), which
comprises books from the Project Gutenberg.1 Two datasets were extracted from this corpus,
as shown in Table 1. The segments are extracted according to the annotation provided in the
corpus: pre-defined labels for manually simulated and artificial plagiarism sequences of words.

The Artificial Dataset is composed of a randomly selected subset of plagiarised texts that were
generated automatically by three types of edits: (i) a set of text operations, which include
replacing, shuffling, removing or inserting words at random, (ii) semantic word variations by
replacing words by similar or related words (such as synonyms), and (iii) POS-preserving word
shuffling, which shuffles words at random but keeps the same ordering of part-of-speech tags.
The Simulated Dataset is composed of all the manually simulated plagiarised segments available
in the corpus. The plagiarism cases were manually written using mechanical turks to simulate
plagiarism by paraphrasing the original texts.

Given the way the artificial dataset was created, it is expected that our approach will per-
form significantly better on this dataset, while the simulated dataset represents a much more
challenging, but more realistic, problem.

1http://www.gutenberg.org
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Statistics Simulated Dataset Artificial Dataset

Original texts

Number of segments 4067 4000
Minimum length 74 words 46 words
Maximum length 745 words 4506 words
Average length 409.5 words 2276 words

Plagiarised texts

Number of segments 4067 4000
Minimum length 21 words 38 words
Maximum length 1190 words 3917 words
Average length 605.5 words 1977.5 words

Table 1: Corpus statistics

3.2 Machine learning algorithms

In the binary classification task the goal is to assign each instance in the collection to one
of the two classes: original or plagiarised. In the ranking task, the goal is to sort two (or
potentially more) versions of a segment according to the order in which they were created, in
other words, to identify the plagiarism direction.

The algorithms applied here are as follow: the rule-based learner Repeated Incremental Pruning
to Produce Error Reduction (RIPPER) for binary classification and Support Vector Machines
(SVM) for ranking. RIPPER2 was selected as a good representative of symbolic classifiers: the
rules produced can help identify relevant features for specific cases. SVM is one of the most
robust and best performing algorithms in many language processing tasks. For ranking, the
SVMrank algorithm3 (Joachims, 2006) is used with a linear kernel. Both classification and
ranking models are trained and tested using 4-fold cross-validation. In addition, a structured
prediction version of SVM was applied as an alternative binary classifier: SVM-light-TK4

(Moschitti, 2006), wich uses tree kernels with (partial) syntactic trees as features.

3.3 Feature extraction and selection

The datasets are pre-processed with sentence segmentation, tokenisation and lowercasing.
The part-of-speech (POS) tags and lemmas of words and the syntactic trees of sentences are
generated using the Stanford CoreNLP toolkit5 (Klein and Manning, 2003). Pre-defined lists of
function words (Koppel and Ordan, 2011) and stopwords6 are used.

N-gram language models (with n = 3 & 5) are built using the KenLM toolkit7 (Heafield, 2011).
The corpus used to build such models consisted in a random selection of 1.7M segments
extracted from the entire “original” collection of the PAN-PC-10 corpus, excluding all the
documents containing one or more segments present in our two datasets. We then use these
language models to calculate the scores for both plagiarised and original segments.

Features that capture simplification, morphological, statistical and syntactic aspects of texts are
investigated. Based on the simplification universal, we extract the following simplification-
based features:

2We used the Jrip Weka implementation of this algorithm: http://www.cs.waikato.ac.nz/ml/weka/
3http://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html
4http://disi.unitn.it/moschitti/Tree-Kernel.htm
5http://nlp.stanford.edu/software/corenlp.shtml
6http://nltk.org/
7http://kheafield.com/code/kenlm/
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1. Average token length: number of characters normalised by the number of tokens.

2. Average sentence length: average number of tokens in all sentences of the segment.

3. Information load: proportion of lexical words to tokens. Lexical words refer to nouns,
verbs, adjectives, adverbs and numerals.

4. Lexical variety: type/token ratio obtained by normalising the word types over all words.

5. Lexical richness: proportion of type lemmas per tokens. Different from lexical variety,
lexical richness considers the lemmatised word types normalised by all words.

6. Proportion of sentences without finite verbs.

7. Proportion of simple sentences: sentences that contain only one finite verb.

8. Proportion of complex sentences: sentences that contain more than one finite verb.

To capture plagiarism traits that may occur at the morphological level, the following features
are extracted:

9. Proportion of nouns over tokens.

10. Proportion of prepositions over tokens.

11. Proportion of pronouns over tokens.

12. Proportion of stopwords over tokens.

13. Proportion of finite verbs over tokens.

14. Grammatical cohesion rate: proportion of grammatical words over lexical words. Gram-
matical words are determiners, articles, prepositions, auxiliary verbs, pronouns, conjunc-
tions and interjections.

15. Individual function words: each function word in the pre-defined list is extracted as an
individual feature, such as "the", "of", "and", "to", "be", "someone", "self" etc.

16. Proportion of function words in texts: number of function words over word tokens.

The following shallow statistical features are proposed:

17. Number of sentences in the segment.

18. Number of tokens in the segment.

19. Number of characters in the segment.

20. Language model 3-gram log probability.

21. Language model 3-gram perplexity (all tokens).

22. Language model 3-gram perplexity (without end of sentence tags).

23. Language model 5-gram log probability.

24. Language model 5-gram perplexity (all tokens).

25. Language model 5-gram perplexity (without end of sentence tags).

Finally, from a more linguistically motivated perspective, (partial) syntactic trees are used with
the tree-kernel algorithm (the other algorithms do not allow structured features):

26. Syntactic trees: dependency-based parse trees for all sentences in the segments.
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4 Results and Discussion

The baseline results are defined according to the distribution of the two classes in the datasets,
which is 50:50. Therefore, the baseline accuracy is 50%. The machine learning algorithms
described in Section 3.2 are used with different feature sets as shown in Table 2, along with the
results for each combination of algorithm and feature set.

With respect to the algorithms, the comparison shows that the rule-based classification (RIPPER)
and the ranking (SVM-rank) algorithms using pre-selected features perform very similarly, and
well above the by chance classifier, with the rule-based algorithm doing slightly better. The
precision, recall and f-score of the feature sets with RIPPER are given in Table 3.

The pre-selected feature set contains the top 12 features ranked according to their Information
Gain computed on the training set: F2, F3, F6, F13, F14, F19, F20, F21, F22, F23, F24, F25.
These features include some morphological, statistical and simplification indicators, showing
that these feature families are complementary. The improvement using these features over the
set of all features is not consistent across datasets.

Algorithm Feature set Simulated Artificial
Baseline: by chance - 50% 50%
RIPPER All 74.67% 98.15%
RIPPER Pre-selected 75.66% 97.94%
RIPPER Simplification-based 59.81% 70.24%
RIPPER Morphological 59.53% 68.08%
RIPPER Statistical 74.17% 97.78%
SVM-rank Pre-selected 74% 95%
SVM-tree kernels Syntactic 56.17% 79.9%

Table 2: Accuracy of algorithms and feature sets in classifying cases as “original” or “plagiarised”

Dataset Class Feature set Precision Recall F-score

Simulated

Original

Pre-selected 75.8% 75.4% 75.6%
Statistical 73.6% 75.5% 74.5%
Simplification-based 59.9% 59.4% 59.7%
Morphological 59.8% 58.2% 59%

Plagiarised

Pre-selected 75.5% 75.9% 75.7%
Statistical 74.8% 72.9% 73.8%
Simplification-based 59.7% 60.2% 60%
Morphological 59.3% 60.8% 60%

Artificial

Original

Pre-selected 98.4% 97.5% 97.9%
Statistical 97.8% 97.7% 97.8%
Simplification-bases 67.8% 72.2% 72.2%
Morphological 66.1% 74.1% 69.9%

Plagiarised

Pre-selected 97.5% 98.4% 97.9%
Statistical 97.7% 97.8% 97.8%
Simplification-based 73.5% 63.3% 68%
Morphological 70.5% 62.1% 66%

Table 3: Precision, recall and f-score of various feature sets using RIPPER

On the comparison between the features sets, it was observed that using statistical features
alone yields nearly the same performance as using all features. Features involving language
models are amongst the best performing. Statistical features performed significantly better
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in the Artificial Dataset. The relative improvement of these features in the Simulated Dataset
over simplification or morphological features is 14%. In the Artificial Dataset, the relative
improvement over the other features is 27%. Morphological, simplification and syntactic
features are not as discriminative on their own, but their performance is well above the baseline.
Interestingly, tree kernels on the Artificial Dataset performs significantly better than tree kernels
on the Simulated Dataset with respect to the baseline. This may be a consequence of the fact
that artificial cases consistently exhibit malformed syntax, which makes it easier for syntactic
features to capture relevant distinctions.

4.1 Discussion and examples

Across all experiments with different algorithms and feature sets, the problem of identifying
artificially generated plagiarism cases proved significantly easier than that of identifying manu-
ally plagiarised cases. Given the nature of the operations applied to generate artificial cases,
this result is not surprising. Nevertheless, the near-100% performance for these cases is a very
positive result. It shows that this approach can be used for the filtering of candidates in a real
plagiarism detection system, one of the applications suggested in this paper.

It is arguable that the experiments above show only a marginal gain from using a combination
of simplification, morphological and statistical methods with respect using simple statistical
features. Although previous studies have also pointed out that statistical features are generally
relevant for related problems, confirming this finding for the specific problem we address is an
interesting contribution of this study.

With respect to the novel, linguistically motivated features suggested here, they perform well
on artificially generated texts, which exhibit a considerable proportion of ungrammatical
constructions. Along with statistical features, these may help future work in identifying not
only the existence and direction of plagiarism, but also several types or levels of plagiarism.

We found no strong evidence that the simplification universal applies to plagiarism. Although
some simplification-based features do seem relevant, they could be interpreted from different
perspectives, which are not necessarily related to simplification.

A closer inspection on some examples of pairs of segments is given below.

Example 1: Correctly classified pair of cases by SVM-rank and SVM-tree kernels from the
Simulated Dataset

Original: But a better idea of the journal can perhaps be given, by stating what it lacked than
what it then contained. It had no leaders, no parliamentary reports, and very little indeed, in
any shape, that could be termed political news.

Plagiarised: The journal could better be described by what was missing than what it contained.
It lacked leaders, had no parliamentary reports and in no way could be described as political
news.

In this example, we speculate that in addition to the strong features throughout all instances
(the language model features), others contributed to classify this pair. They include the average
sentence length, number of characters, and independent clause rate. For example, the average
sentence length for the plagiarised text is lower than the original text. Also, the proportion
of nouns is higher in the original text and the lexical richness is lower in the plagiarised text.
These clues suggest that the simplification traits were good indicators in this particular case.
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Example 2: Incorrectly classified pair of cases by SVM-rank and SVM-tree kernels from the
Simulated Dataset

Original: There is a great gain in time of acceleration and for stopping, and for the Boston
terminal it was estimated that with electricity 50 per cent, more traffic could be handled, as the
headway could be reduced from three to two minutes.

Plagiarised: There is a huge profit in time of speeding up and for slowing down, and for the
Boston extremity it was guessed that with current 50 percent, more movement could be lifted,
as the headway could be minimised from three to two minutes.

Example 2 does not contain any simplification traits but only synonym substitution. The shallow
statistical features failed to identify any differences between the two segments. The length of
both texts is virtually the same and they are both equally fluent. Morphological and syntactic
features did not perform well either. The proportion of grammatical and lexical words remains
the same, and the word order and syntactic structure in both texts is the same.

Example 3: Incorrectly classified pair of cases by SVM-rank, but correctly classified by SVM-
tree kernels from the Artificial Dataset

Original: "Giulietta," at last said the young man, earnestly, when he found her accidentally
standing alone by the parapet, "I must be going to-morrow." "Well, what is that to me?" said
Giulietta, looking wickedly from under her eyelashes.

Plagiarised: "well, what is that to me?" said Giulietta, standing alone under the parapet,
earnestly, when he found her were accidentally looking wickedly from by her eyelashes. "Giuli-
etta," at last young the man, "I must be going to-morrow.

Example 3 involves shuffling of sequences of words. As both texts kept the same words and
length, none of the statistical, morphological and simplification features were able to distinguish
the two. On the other hand, SVM-tree kernels correctly classified these cases according to their
subtrees structure. This suggests that syntactic clues should be considered especially when all
other features fail.

Conclusions
This paper presented a study on the underexplored area of distinguishing original from reused
text segments, with application to plagiarism detection. A number of statistical and linguistic
indicators were explored using a supervised machine learning approach to distinguish between
original and plagiarised texts, as well as to rank pairs of original-plagiarised texts according to
the order in which they were created. Overall, the study showed that original and reused texts
exhibit distinguishable traits. It thus confirms our hypothesis that original texts and plagiarised
texts exhibit significant differences and that these are measurable via computational means.

The findings of this study can be directly used to improve the filtering performed prior to
more complex comparisons in plagiarism detection approaches. It can also be used to improve
intrinsic plagiarism detection and authorship attribution. In addition, this study lays the
foundation for further research on text reuse, as it can be expanded to cover multiple versions
of the same text, as well as cross-lingual text reuse.

We plan to further investigate this problem in a number of directions, including the use of other
types of rewritten texts, such as news, with potentially more than one version for each original
text, as well as different levels of text reuse (as in (Clough et al., 2002)).
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