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ABSTRACT
Extracting biomedical named entities is one of the major challenges in automatic processing of
biomedical literature. This paper proposes a machine learning approach for finding phenotype
names in text. Features are included in a machine learning infrastructure to implement the
rules found in our previously developed rule-based system. The system also uses two available
resources: MetaMap and HPO. As we are not aware of any available corpus for phenotype
names, a corpus has been constructed. Since manual tagging of the corpus was not possible for
us, we started tagging only HPO phenotypes in the corpus and then using a semi-supervised
learning method, the tagging process improved. The evaluation results (F-Score 92.25) suggest
that the system achieved good performance and it outperforms the rule-based system.
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1 Introduction

A large amount of biomedical knowledge is available in the biomedical literature. So, automatic
processing of biomedical literature to capture and formalize this embedded information is
very demanding. Current Natural Language Processing (NLP) systems try to extract from the
biomedical literature different types of knowledge such as, protein–protein interactions (Leroy
et al., 2003) (He and DiMarco, 2005) (Fundel et al., 2007) (kiong Ng and Wong, 1999) (Yu
et al., 2005) (Bui et al., 2011), new hypotheses(Swanson, 1986) (Hristovski et al., 2005)
(Hristovski et al., 2006), relations between drugs, genes, and cells (Rindflesch et al., 2000)
(Friedman et al., 2001) (Tanabe et al., 1999), relations between genes and diseases (Rindflesch
et al., 2003) (Coulet et al., 2010), protein structure (Humphreys et al., 2000) (Gaizauskas et al.,
2003), and protein function (Andrade and Valencia, 1998) (Valencia, 2005).

Fundamental to each of these applications is the Named Entity Recognition and Classification
(NERC) task. Research over the past years has shown that recognizing the names of biomedical
objects is not a simple task. Factors that preclude a straightforward procedure include the
existence of an ever-increasing large (millions) set of entity names, a penchant for the use of
abbreviations, the use of synonyms, and the fact that some biological entities have complex
names consisting of many words, like “increased erythrocyte adenosine deaminase activity”,
and lacking agreement on the name boundaries, even among biologists (Leser and Hakenberg,
2005).

Named Entity Recognition and Classification in the biomedical domain has been extensively
studied. As a consequence, many methods have been proposed. Generic methods, like MetaMap
(Aronson, 2001) and mgrep (Dai et al., 2008) recognize and classify many kinds of entities in
text. Some methods, however, are specialized to recognize particular types of entities like gene
or protein names (Krauthammer et al., 2000) (Gaizauskas et al., 2003), diseases and drugs
(Rindflesch et al., 2000) (Xu et al., 2008) (Segura-Bedmar et al., 2008), mutations (Horn et al.,
2004), and properties of protein structures (Gaizauskas et al., 2003). Each method employs
one or more of the following techniques (Leser and Hakenberg, 2005): (1) dictionary-based
techniques (like (Krauthammer et al., 2000)) which match phrases from the text against existing
dictionary entries, (2) rule-based techniques ((Fukuda et al., 1998), for instance) which make
use of lexical and linguistic rules to find entity names in the text, and (3) machine learning
techniques (for example, (Nobata et al., 1999)) which treat the NER task as a classification
problem. Some methods use hybrid approaches to find named entities: ChemSpot (Rocktäschel
et al., 2012) blends Conditional Random Fields with dictionary matching to identify chemicals
in texts, a biomedical name entity recognizer (Gong et al., 2009) uses POS tagging, rules and a
dictionary, and a protein name recognizer (Seki and Mostafa, 2005) uses rules, a probabilistic
model and a dictionary to find protein names in biomedical text.

Every day many research experiments are performed to discover the role of DNA sequence
variants in human health and disease and the results of these experiments are published in the
biomedical literature. Because of the large quantity of information, a reliable automatic system
to extract this information for future organization is desirable. Human phenotypes comprise a
very important part of this knowledge. Phenotypes are the observable characteristics of a cell or
organism, including its appearance, its morphology, physiology and ways of life. A phenotype
of an organism is determined by the interaction of its genetic constitution and the environment.
Skin colour, height and behaviour are some examples of phenotypes.

Currently, many systems which use phenotypes to find information like phenotype-genotype re-
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lations (for instance, (Coulet et al., 2010)) use only dictionary-based techniques to recognize the
phenotypes in the text. Although many biomedical-term-specialized dictionaries are available,
we are not aware of a dictionary which is both comprehensive and ideally suited for phenotype
name recognition. For example, the Unified Medical Language System (UMLS) Metathesaurus
(Humphreys et al., 1998) is a very large, multi-purpose, and multi-lingual vocabulary database
that contains more than 1.8 million concepts. All concepts in the Metathesaurus are assigned to
at least one semantic type, but Phenotype is not one of them. So, it alone is not adequate to
distinguish between phenotypes and other objects in text. In addition, some phenotype names
do not exist in the UMLS MetaThesaurus. The Pharmacogenetics Knowledge Base (PharmGKB)
(Klein et al., 2001) attempts to collect all knowledge of how human genetic variation impacts
drug–response phenotypes. It is a high quality database queried by clinicians and bioinfor-
maticians. It is a manually curated database that summarizes published gene–drug–phenotype
relationships. Nevertheless this manual curation process is not sustainable considering the
growth of the scientific literature in this domain. The Online Mendelian Inheritance in Man
(OMIM) (McKusick, 2007) is the most important single information source about human genes
and genetic phenotypes (Robinson and Mundlos, 2010). Nonetheless, OMIM does not use a
controlled vocabulary to describe the phenotypic features in its clinical synopsis section making
it inappropriate for data mining purposes (Robinson and Mundlos, 2010). And, it is manually
curated. The Human Phenotype Ontology (HPO) (Robinson and Mundlos, 2010) has been
developed using information from OMIM. Although it contains approximately 10,000 terms, it
is incomplete. Also, new phenotypes are being constantly introduced to the biomedical world
and HPO currently is being refined, corrected, and expanded manually, meaning that it will
have difficulty keeping pace with all the new phenotypes.

To our knowledge the only method to extract phenotype names automatically from text is the
rule-based system we proposed in (Khordad et al., 2011). In the current paper we discuss
a machine-learning-and-dictionary-based NER system that recognizes the human phenotype
names in molecular biology literature which has been inspired by the rule-based method
mentioned above. We have integrated existing databases (UMLS Metathesaurus(Humphreys
et al., 1998) and the Human Phenotype Ontology (HPO) (Robinson and Mundlos, 2010)) and
tools (MetaMap (Aronson, 2001) and BANNER (Leaman and Gonzalez, 2008)) to achieve our
goal.

2 Background

2.1 MetaMap

MetaMap, a program developed by the National Library of Medicine (NLM) (Aronson, 2001),
provides a link between biomedical text and the structured knowledge in the Unified Medical
Language System (UMLS) Metathesaurus. To map phrases in the text to concepts in the UMLS
Metathesaurus, MetaMap analyzes the input text lexically and semantically. First, MetaMap
tokenizes the input text. In the tokenization process the input text is broken into meaningful
elements, like words. After part of speech tagging and shallow parsing using the Specialist
Lexicon, the text has been broken into phrases. Phrases then undergo further analysis: Each
phrase is mapped to a set of candidate UMLS concepts, each candidate being given a score that
represents how well the phrase matches the candidates. An optional last step is word sense
disambiguation (WSD) which chooses the best candidate with respect to the surrounding text
(Aronson, 2001).

MetaMap is configurable with options for vocabularies and data models in use, output format
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Figure 1: MetaMap output for “at diagnosis.”

and algorithmic computations. An example of the human-readable output format for the text
“at diagnosis.” is shown in Figure 1. MetaMap finds 6 candidates for this phrase and after WSD
it maps the phrase to the “diagnosis aspect” concept. In UMLS each Metathesaurus concept is
assigned to at least one semantic type. In Figure 1 the semantic type of each concept is given in
the square brackets. Semantic types are categorized into groups, called Semantic Groups (SG),
that are subdomains of biomedicine such as Anatomy, Living Beings and Disorders (McCray
et al., 2001). Each semantic type belongs to exactly one SG.

2.2 The Human Phenotype Ontology (HPO)

The Human Phenotype Ontology (HPO) (Robinson and Mundlos, 2010) provides a standard-
ized vocabulary of phenotypic abnormalities encountered in human disease. The HPO was
constructed using information initially obtained from the Online Mendelian Inheritance in Man
(OMIM) (McKusick, 2007) expanded with synonym terms. The hierarchical structure in the
HPO represents the subclass relationship. The HPO currently contains over 9500 terms.

2.3 The Rule-Based Method

In (Khordad et al., 2011) we proposed a rule-enhanced dictionary-based named entity recog-
nition system based on MetaMap. The block diagram of the system is shown in Figure 2. In
this system the input text is processed and each Noun Phrase is tagged by MetaMap. The
UMLS semantic types are categorized into 15 more general and comprehensive categories called
Semantic Groups (SG) (McCray et al., 2001). The definition of the SG Disorders is close to
the meaning of Phenotype. SG Disorders contains 12 semantic types. (Khordad et al., 2011)
categorized these semantic types into two categories : Phenotypes and Phenotype Candidates.
Using the MetaMap output, Disorder Recognizer considers noun phrases in the Phenotype
category as phenotypes and searches for the Phenotype Candidates in HPO to see whether they
are phenotypes or not. OBO-Edit (an open source Java program) (Day-Richter et al., 2007)
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Figure 2: Rule-Based System Block Diagram.

has been used for searching in HPO. To improve the results 5 stylistic and linguistic rules are
employed. These rules include:

• Rule 1: Resolve the acronym referencing problem by making and using a list of acronyms
occurring in a paper.
Often the names of phenotypes are used in acronym form. This makes it difficult to
recognise them. However we can find the full form of them in their first usage.
• Rule 2: The semantic type of a noun phrase is the semantic type assigned by Metamap to

its head.
Sometimes MetaMap breaks a noun phrase to different parts with different Semantic
Types. Using this rule it is possible to assign one semantic type to the whole noun phrase.
• Rule 3: If a phrase is “modifier (from the list of special modifiers (Burgun et al., 2009)) +
[Anatomy] or [Physiology]” it is a phenotype.
Some phenotypes follow a special pattern. There is a list of special modifiers (Burgun
et al., 2009) which if come before a Noun Phrase in the SG Anatomy or Physiology make
a phenotype.
• Rule 4: If the single form of a phrase is a phenotype, the plural form is a phenotype, too.

This rule applies while searching in HPO, when the phenotype number in HPO is not in
agreement with the noun phrase number in text.
• Rule 5: If the head of a phenotype candidate phrase is a phenotype, the whole phrase is a

phenotype.
This rule is also useful for searching in HPO. Sometimes a noun phrase in text contains a
word in HPO but it is surronding with adjective and adverbs.

2.4 BANNER

BANNER (Leaman and Gonzalez, 2008) is an open-source biomedical named entity recognition
system implemented using second order conditional random fields (CRF), a machine learning
technique. The BANNER architecture is illustrated in Figure 3. A BANNER input file contains
a text which has been separated into sentences. Each sentence is taken individually and is
tokenized. The tokenization process in BANNER breaks tokens into either a contiguous block of

1429



Figure 3: BANNER Architecture (Leaman and Gonzalez, 2008)

letters and/or digits or a single punctuation mark. As an example, the string “Bub2p-dependent”
is broken into 3 tokens: “Bub2p”, “-”, and “dependent”. In the next step features are assigned
to each individual token. Each feature is a name/value pair for use by the machine learning
algorithm. And finally in the labeling process, each feature gets exactly one label. BANNER
makes use of the Mallet CRF (McCallum, 2002) in both feature generation and labeling. The
set of machine learning features used in BANNNER is listed in Table 1.

Feature set definition Description
The part of speech which the token
plays in the sentence

Provided by the Dragon toolkit imple-
mentation of the Hepple tagger.

The lemma for the word represented
by the token, if any

Provided by the Dragon toolkit.

A set of regular expression features Includes variations on capitalization
and letter/digit combinations.

2, 3 and 4-character prefixes and suf-
fixes
2 and 3 character n-grams Including start-of-token and end-of-

token Indicators
Word class Convert upper-case letters to “A”, lowercase let-

ters to “a”, digits to “0” and other char-
acters to “x”

Numeric normalization Convert digits to “0”
Roman numerals
The names of the Greek letters

Table 1: Set of features in BANNER (Leaman and Gonzalez, 2008)

BANNER considers a token window of 2 to make features, meaning that the features of each
token contains the features of the two previous and the two following tokens.

BANNER has been used for NER in the Gene names and the disease names domains, and it has
achieved results comparable with other NER systems in these domains.
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Figure 4: System Block Diagram

3 Proposed Method

The rule-based system described in Section 2.3 achieves good results. However, it, like other
rule-based methods, has some shortcomings. As the rules are extracted from a small corpus,
they may be overfitted to that corpus and cannot cover new phenotypes in other texts. And if
we wish to use it on a larger corpus, we may need to add extra rules. It is not easy to analyse
the errors manually to generate the new rules. So, we decided to extend the capabilities of our
rule-based system using machine learning methods.

BANNER is open-source and it provides a good infrastructure for NER. Its results are convincing
and features can be easily added. Therefore starting with BANNER and its CRF method, the
rule-based method was incorporated to it.

The block diagram of the system is illustrated in Figure 4. The first phase in this system is finding
acronyms in the input text and resolving them. Usually, papers indicate the local unambiguous
reference for each acronym used at its first usage. So acronym resolution is done, making a
list of local full forms for acronyms (according to rule 1 of the rule-based method). Then the
output which does not contain any acronym is processed by MetaMap. According to our settings,
MetaMap finds composite noun phrases with up to 3 simple phrases and prints out the syntax of
each noun phrase. Each noun phrase is also tagged with a semantic type. The Analyzer analyses
the MetaMap output and changes it to BANNER input format. Our feature-enhanced BANNER
takes each sentence separately and using the features, finds some phenotypes. In the last step
the system searches for the HPO phenotypes in the text and found phenotypes are added to
our list of phenotypes. The details of how we made use of rules and features in our machine
learning method are explained in the following sections.

3.1 Incorporating the rules

Rule 1 Acronym Resolution implements Rule 1. It finds the full forms of acronyms using their
local unambiguous reference in the text and replaces acronyms with their unabbreviated
forms. BioText (Schwartz and Hearst, 2003) has been used to make a list of acronyms
and their full forms in the text.

Rule 2 This rule is implemented in Analyzer. Analyzer finds the noun phrases and their heads
from the MetaMap output. If Metamap breaks a noun phrase into different parts and
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assigns different semantic types to them, the Analyzer assigns the semantic type of the
head to the whole phrase. An example of such a phrase and the Analyzer output is shown
in Figure 5. The phrase “of Diamond-Blackfan anemia patients” is broken into two noun
phrases “Diamond-Blackfan anemia” and “patients”, each with a different semantic type.
MetaMap output shows that the head of the whole phrase is “patients” so analyzer assigns
its semantic type, i.e. Patient or Disabled Group, to the whole phrase.

Rule 3 To help our machine learning method learn this rule, three binary features were added
to the system: Special Modifier, Anatomy and Physiology to indicate whether a noun phrase
is in the Special Modifier, Anatomy or Physiology classes. Furthermore, some sentences
containing this class of phenotypes (Special Modifier + [Anatomy] Or [Physiology]) were
added to our training set.

Rule 4 When the Result Merger searches for HPO phenotypes in the text, it searches for their
singular and plural forms.

Rule 5 This rule is considered in Result Merger: if the head of a noun phrase is found in HPO
the whole noun phrase is tagged as a phenotype.

3.2 Adding features

To implement the rule-based system completely, Rule 3 was added as three features to the CRF,
in addition to the features already possessed by BANNER. Finally, some other features which
seemed to be helpful were added to the system. These features were tested several times and
finally the best set of features were selected. These features include:

1. Phenotype: This feature comes from the rule-based method (see Section 2.3). In this
method semantic types in SG Disorders are categorized into two categories. This feature
is a binary feature that indicates whether a noun phrase is in the Phenotypes category.

2. Phenotype Candidates: This feature is a binary feature that indicates whether a noun
phrase is in the Phenotype Candidates category of SG Disorders.

3. Special Modifier: A binary feature that indicates whether a noun phrase is in the list of
special modifiers (Burgun et al., 2009).

4. Anatomy: A binary feature which means a noun phrase is in SG Anatomy or not.
5. Physiology: A binary feature which means a noun phrase is in SG Physiology or not.
6. List Separator: We found out that usually in biomedical literature when a number of

elements in a list are phenotypes, there is a good chance that the other elements are
phenotypes too. The List Separator feature was added to designate the availability of list
indicators (and or comma) in the sentence.

7. Semantic type: The semantic type which is assigned by MetaMap to noun phrases. This
feature is null for other phrases.

8. NP: A binary feature which indicates whether a token is a part of a noun phrase.
9. POS: The part of speech of a token. This feature is available in BANNER.

10. Lemma: The lemma of each token. This is available in BANNER.
11. NPstart: A binary feature to indicate whether a token is the first token in a noun phrase.
12. NPend: A binary feature to designate whether a token is the last token in a noun phrase.
13. 2, 3 and 4-character prefixes and suffixes: This is a part of BANNER.
14. 2 and 3 character n-grams: This is a part of BANNER.
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Figure 5: Analyzer Example

Also, it should be remembered that BANNER makes a window of size 2 for each token, i.e.
features of each token contain features of the 2 tokens before and the 2 tokens after it. We used
the default configuration of BANNER. The NP feature comes from the MetaMap results and the
POS feature is provided by BANNER. They do not align perfectly, but it is the task of the CRF to
find a solution using these conflicting features.

3.3 Corpus

The most significant problem for us in using the machine learning method was the lack of an
annotated specialized corpus of sufficient size. As no one before has used machine learning on
phenotype name recognition, no corpus was available for us to train and test our system with.
Therefore we had to make our own corpus with a sufficient number of sentences. However,
making a large corpus is a very difficult and time consuming task. So we decided to use
semi-supervised learning to make our corpus.

3.3.1 Collecting the papers

To find the papers which are relevant to phenotypes, we started with two available databases:
PubMed (2009) and BioMedCentral (2004). All HPO phenotypes were searched for in these
databases and every paper which contained at least three different phenotypes was added to
our collection. In this way we found 100 papers which were used to train the system. We had
another 13 papers which had been collected for the development of the rule-based method (see
Section 2.3) and were annotated manually. These 13 papers were used to test the system.
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3.3.2 Annotating the corpus

As it was not possible for us to annotate the 100 papers manually, we used a semi-supervised
learning method starting with the information provided by HPO. First, HPO phenotypes were
searched for in the set of papers and were tagged as phenotypes. These papers along with
their tags made our initial training corpus. When annotating the corpus, it should be noted
that the last phase of the system (the Result Merger) was omitted because all HPO-annotated
phenotypes were already annotated.

The trained model was used to annotate the training set again. The newly found phenotypes
were analysed manually and the correct ones were added as annotations to the training set.
Also, on each iteration, the system was tested using the test set to find out how many iterations
would be sufficient for training the system. This process was repeated several times until we
reached the results that we were satisfied with when testing the last model on the test set.

One important point to mention is that we only included positive sentences (sentences with
at least one phenotype) in our training set, because the number of negative sentences was far
greater than positive sentences and it prevented the system from training efficiently. Therefore,
whenever new phenotype names were found, the number of sentences in the training set
increased for the next iteration.

4 Evaluation
We compared the performance of our system against the rule-based system (Khordad et al.,
2011), which is the only specialized system for phenotype name recognition that we are aware
of. The final training corpus which is made from 100 papers contains 2755 sentences and 4233
annotated phenotypes. All sentences in this corpus include at least one phenotype. A test set is
collected from 13 papers and includes 216 sentences and 373 phenotypes.

To evaluate the system, 10-fold cross validation has been used. Also the system has been tested
using a separate test set. Table 2 gives the details of the results. The base system is our machine
learning method ignoring the Result Merger. Result Merger finds HPO phenotypes in text and
adds them to the list of phenotypes. The results after using Result Merger are mentioned in
the column labelled HPO added. The rule-based system has been tested using the test set and
the results are displayed in Table 3. To calculate these results, a returned phrase is considered
to be a true phenotype if its head contains a phenotype. For example, in the phrase “acute
myloid leukemia” the head is “leukemia”, a phenotype that is confirmed by its inclusion in
HPO. However, in the phrase“Diamond-Blackfan anemia patients” the correct phenotype is:
“Diamond-Blackfan anemia”. If the system returns “Diamond-Blackfan anemia patients” as the
phenotype, it is deemed false.

As this table demonstrates, the results are comparable with other named entity recognition
systems which are specialized for finding other biomedical entities even though they may have
larger training corpora. For example BANNER has been trained and tested for finding gene
names, using BioCreative 2 GM corpus containing 15,000 sentences (7500 for training and 7500
for testing) which is much larger than our current corpus. However our results are really better
than Banner’s (Precision 85.09, Recall 79.06 and F-measure 81.96)(Leaman and Gonzalez,
2008). Although our task is different these results mean that our system is performing well.

In addition the machine learning method outperformed the rule-based method, even though
the corpus is not fully annotated. We believe that if we had a fully annotated corpus the system
would achieve an even better performance.
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Base system HPO Added
Precision Recall F-measure Precision Recall F-measure

10-Fold 82.83 68.13 74.35 86.89 98.33 92.25
Test Set 93.44 57.37 71.09 95.76 90.88 93.25

Table 2: System Evaluation Results

Precision Recall F-measure
Machine Learning Method 95.76 90.88 93.25
Rule-Based Method 88.34 73.19 80.05

Table 3: Comparing the system with the Rule-Based Method

To have an idea of how well our annotation process works, we selected 100 random sentences
from our corpus. Then, we tagged these sentences manually. There were 157 phenotypes in
these 100 sentences. Our semi-supervised machine learning method found 142 phenotypes
and 1 of its phenotypes was incorrect, i.e. it missed 16 phenotypes. So, the annotation process
misses about 10 percent of the phenotypes.

5 Discussion

Finding the best set of features is one of the most important parts of developing the system.
Tables 4 and 5 show the role and importance of each feature. To illustrate the contribution of
each feature in Table 4 we considered a small set of features as the basic set of features for our
system. These features came from the rule-based system and are very important in signifying
phenotype names in the text. Then, in each line a feature is added to the basic feature set until
we have the complete feature set in the last line. Adding some features (Phenotype candidates,
List separators, Semantic Types, and Lemma) drops the results slightly but the results of the last
feature set is better than the previous feature sets.

Analysing Table 4, it may seem that including some features is not necessary. Table 5 illustrates
the role of each feature in a different way. In each line of Table 5 only one feature is ignored
from the feature set and the system is tested using the separate test set. Note that the results are
calculated without adding the HPO. As one can see, removing each feature reduces the results
slightly. The exception to this modest reduction in performance is the removal of the NP feature
which causes a significant drop in precision and recall, because not having NP information
causes errors in finding NP end and NP start. In some cases (Lemma, Phenotype candidates, NP
start and NP end, and Physiology) ignoring the feature causes small improvement in precision
or recall. However the F-score is always less than the F-score of final results.

Reviewing the results, it has been found that both the rule-based and machine learning methods
are dependent on MetaMap. MetaMap does make mistakes. MetaMap makes some errors
in finding the boundaries of NPs and in determining the semantic types. NP boundaries and
semantic types are features used by both methodologies, so the errors made by MetaMap have
effects on the performance of each system. However the rule-based system is more dependent
on MetaMap output and errors in MetaMap output changes the results completely. But the
machine learning system is more robust and it sometimes finds the correct phenotype names
despite Metamap errors. For example consider the sentence “Diamond-Blackfan anemia is a rare
inherited bone marrow failure syndrome.”. The phrase Diamond-Blackfan anemia is a phenotype
but MetaMap assigns the [Gene or Genome] semantic type to it, which is not in the SG Disorders.
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Features Precision Recall F-Score
Phenotype, Anatomy, Physiology, Special Modifier 89.89 47.72 62.34
+Phenotype candidates 90.72 47.18 62.07
+List Separator 90.41 40.48 55.92
+Semantic type 90.24 49.59 64
+NP 90.24 49.59 64
+POS 91.15 55.22 68.77
+Lemma 92.72 54.69 68.79
+NP start, NP end 93.44 57.37 71.09

Table 4: Contribution of each additional feature
Ignored Feature Precision Recall F-Score
Anatomy 92.82 55.49 69.45
Lemma 93.57 54.69 69.03
List Separator 91.66 56.03 69.54
Phenotype 92.54 56.56 70.20
NP 81.81 38.6 52.45
Phenotype Candidate 92.64 57.37 70.85
NP start and NP end 93.18 54.95 69.13
Physiology 93.21 55.22 69.35
POS 92.05 52.81 67.11
Semantic Type 91.89 54.69 68.56
Special Modifier 92.44 55.76 69.56

Table 5: Contribution of each feature

So the rule-based system does not tag it as a phenotype. The phrase missing vertebrae is another
example of MetaMap errors. MetaMap does not consider this phenotype name as one NP. It
separates this phenotype name into two phrases missing and vertebrae.

In addition determining the boundary of an NP is very important in the rule-based system.
MetaMap has an option to make larger NPs by merging simpler NPs. If we only use simple NPs,
we cannot get larger phenotype names as one NP and the system will miss them. The phrase
Partial hypoplasia of the corpus callosum is an example of a phenotype name with composite
NPs. On the other hand if we use composite NPs, the head of the NP may change and the
semantic type of the NP may change as a result. This is problematic for the rule-based system.
The phrase the associations of facial dysmorphism is an example. The word “associations” is the
head of this phrase, so the semantic type [Mental Process] is assigned to it and it is not tagged
as a phenotype name by the rule-based system.

On the other hand, there are some cases in which MetaMap assigns the correct semantic type to
a phrase and found a good boundary for a phenotype name but the machine learning method
does not mark it as a phenotype. For example “arhinia” is not tagged as a phenotype by the
machine learning method in the following sentence “These phenotypes may resemble that of the
only confirmed case of an individual with a lethal compound heterozygous PAX6 mutation and
may include anophthalmia, arhinia and severe central nervous system defects” although MetaMap
assigns the semantic type [Congenital Abnormality] (which is in the category of Phenotypes) to
it.
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Table 6 shows how many false negatives and true positives are available in the final results for
both the machine learning and the rule-based methods. And Table 7 illustrates the percent of
these errors caused by MetaMap or the boundary of noun phrases.

Rule-based Machine Learning
True positives 273 339
False negatives 100 34

Table 6: number of TPs and FNs in each method

Rule-based Machine Learning
MetaMap errors 37% 11.76%
NP boundary errors 26% 8.82%

Table 7: Analysis of NPs

Comparing the precision errors gave interesting observations. There are no common errors
between the two systems. False positive errors in the rule-based system were caused by the
rules not being discriminating enough. For each returned phrase, one of the rules produced
that phrase. But there are exceptions to each rule that can cause these false positive errors. The
exceptions to the rules do not cause any problem for the machine learning system. The machine
learning system was able to learn all of these exceptions. For the false phenotypes returned
by the machine learning system, analysis indicates that none of these would be suggested by
application of a rule in the rule-based system, explainging why there are no common errors.

Conclusion

In this paper we discussed the development of a named entity recognition system which is
specialized to find phenotype names in biomedical literature. The system has been generated
using machine learning. Some of its features are based on the rules found in our previous
rule-based method (Khordad et al., 2011). We added some other features. The system makes
use of MetaMap and HPO.

As there was no annotated corpus available for training the machine learning system, a corpus
was annotated using a semi-supervised learning method and HPO. The corpus does not fully
annotate all phenotype names. About 10 percent of the phenotype names are missed.

The system has been evaluated using both a 10-fold cross validation and a separate test set and
the results are really promising.

The current system is extremely dependent on MetaMap output, although it is less dependent
than the rule-based system. Still, when MetaMap gives erroneous output, it makes it difficult
for our system to work correctly. In addition the corpus is not completely annotated and its
annotation has some errors.

Despite these problems, the system achieved an F-Score of 92.25 and its performance is
comparable to other NER systems which are specialized for finding other entities in biomedical
literature.

To improve the system performance, it is imperative to overcome the phenotype name recogni-
tion errors initiated by MetaMap parsing errors. Using a more reliable partial parser to provide
the NPs for MetaMap’s mapping to UMLS concepts, instead of using the Metamap embedded
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parser, may fix this problem. Furthermore, adding more features to the machine learning system
can be considered. Finally, a machine learning method other than CRF might achieve better
results.
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