
Proceedings of COLING 2012: Technical Papers, pages 545–560,
COLING 2012, Mumbai, December 2012.

A Simplification-Translation-Restoration Framework for 
Cross-Domain SMT Applications 

Han-Bin Chen1, Hen-Hsen Huang1, Hsin-Hsi Chen1, and Ching-Ting Tan2 

(1) Department of Computer Science and Information Engineering,  
National Taiwan University, Taipei, Taiwan 

(2) National Taiwan University Hospital, Taipei, Taiwan 
{hbchen, hhhuang}@nlg.csie.ntu.edu.tw,  

{hhchen, tanct5222}@ntu.edu.tw 

ABSTRACT 

Integration of domain specific knowledge into a general purpose statistical machine translation 
(SMT) system poses challenges due to insufficient bilingual corpora.  In this paper we propose a 
simplification-translation-restoration (STR) framework for domain adaptation in SMT by 
simplifying domain specific segments of a text.  For an in-domain text, we identify the critical 
segments and modify them to alleviate the data sparseness problem in the out-domain SMT 
system.  After we receive the translation result, these critical segments are then restored 
according to the provided in-domain knowledge.  We conduct experiments on an English-to-
Chinese translation task in the medical domain and evaluate each step of the STR framework.  
The translation results show significant improvement of our approach over the out-domain and 
the naïve in-domain SMT systems. 

 

用於跨領域統計式機器翻譯系統之簡化-翻譯-還原架構 

摘要 

因為雙語語料的不足，將特定領域知識整合到一般用途的統計式機器翻譯(SMT)系統具有
相當挑戰性。在本篇論文中，我們提出一個簡化-翻譯-還原(STR)的架構，藉由簡化特定領
域的片段來達成SMT的領域調適。對於一篇領域內的文字，我們首先辨識其中重要的片段
再做修改以減輕領域外SMT系統的資料稀疏問題。我們取得翻譯結果後，根據提供的領域
內知識將這些重要片段還原。最後我們進行了醫療領域的英中翻譯的實驗，並且評估STR
架構內的每一步驟。翻譯結果顯示我們的方法顯著地優於領域外的SMT系統，以及簡易型
的領域內SMT系統。 

KEYWORDS : Cross-Domain SMT, Domain Adaptation, Statistical Machine Translation 
關鍵詞 : 跨領域統計式機器翻譯, 領域調適, 統計式機器翻譯 
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1 Introduction 

Over the past decades, the rapid growth of available parallel corpus makes SMT development 
feasible, and SMT system has gradually moved toward practical use because of its relatively 
acceptable translation speed and quality.  A phrase-based SMT system (Koehn et al., 2003; 
Koehn, 2004), for example, trains a phrase table from a large bilingual corpus as its translation 
model, and decodes source language input in polynomial time with greedy algorithms such as 
beam search. It translates phrases as basic units, and thus captures short-range reordering 
phenomena between source and target languages.  Generally phrase-based SMT models 
outperform word-based ones (Koehn et al., 2003).  However, an SMT system fails to capture 
long-range contextual knowledge due to the limited horizon and the sparseness nature of lexical 
n-grams.  These drawbacks reduce the translation quality in terms of translation and reordering 
errors, especially when limited bilingual corpus is available for estimating translation model. 

The data sparseness problem may worsen when we build an SMT system for a specific domain 
but have small or no bilingual in-domain corpus.  The translation performance could be seriously 
degraded since the SMT system cannot gather the statistical evidence of a segment containing 
out-of-vocabulary (OOV) words.  For some domains, a bilingual dictionary containing source-
target term pairs is available.  With such in-domain knowledge, one can force an SMT system to 
translate OOV terms according to the dictionary.  In this way, we correctly translate in-domain 
terms.  However, translation quality may still be unsatisfying under this naïve integration because 
in-domain terms are rare or unseen in the background SMT model.  Hence the context of these 
in-domain terms can hardly be captured.  FIGURE 1 shows an incorrect English-Chinese 
translation of a sentence in a medical record by the online Google Translate service.  In this 
example, it correctly translates the diagnosis term "crystal induced arthritis".  However, it 
mistranslates its nearby phrasal verb "suffered from" by translating these two words separately.  
This example shows an SMT system may recognize the domain specific terms with either 
bilingual dictionary or its background SMT model, but still gives improper translations of the 
surrounding words due to insufficient context knowledge of these in-domain terms. 

 

FIGURE 1 – Translating domain specific text with Google Translate.  The bold target phrases are 
the inappropriate translations. 

Our work originates from the following idea: modifying an in-domain segment in a source text 
such that the background SMT model not only recognizes it but also translates it together with its 
context words.  Based on the motivation, for example, we modify the complicated diagnosis term 
"crystal induced arthritis" in FIGURE 1 into a more general term that occurs more frequently in the 
background SMT model, such as "cancer", "pneumonia" or "hypertension".  Since these terms 
are more common in the general corpora, the general SMT system is able to better handle the 
modified text.  Take the common word "cancer" as an example, the Google Search engine shows 
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that Web pages containing "suffered from cancer" significantly outnumber those containing 
"suffered from crystal induced arthritis". 

In this paper, we propose a simplification-translation-restoration (STR) framework to address 
domain adaptation in SMT by modifying in-domain text in favour of the background SMT 
system.  The STR framework includes four steps to produce a cross-domain translation with 
higher quality than a general purpose SMT system.  More specifically, to translate an in-domain 
source text, we identify the domain-specific segments and simplify them into more general 
expressions.  The modified text is then translated by an out-domain SMT system.  After that, we 
manipulate the translation result by replacing the modified parts and their translations with the 
correct bilingual segments in our in-domain knowledge (e.g., bilingual dictionary).  Our 
framework is suited to the cross-domain SMT scenario where an out-domain SMT system and 
bilingual in-domain dictionaries are available.  We show the effectiveness of the framework 
through a case study by building an SMT system for the medical domain.  In this domain, OOV 
is a frequent problem if a general purpose SMT system is applied.  On the other hand, there are 
plenty of bilingual dictionaries in this area.  We implement the STR framework and report the 
experimental results of the translation tasks on medical summaries in a hospital.  The central 
issues in this framework include (1) collecting bilingual in-domain knowledge and identifying in-
domain segments in a source text, (2) replacing the in-domain segments with the proper 
simplified forms, (3) translating the modified text with a background SMT system and (4) 
restoring the original in-domain segments after receiving the translation results from the 
background SMT system. 

We are not the first to rephrase source language text in order to improve SMT output.  As a pilot 
study, Resnik et al. (2010) proposed a targeted paraphrasing approach which identifies the critical 
source segments difficult for the background SMT system to translate.  These segments are then 
manually paraphrased in many ways in order to provide the SMT system with more choices of 
decoding paths.  Different from their work, we automatically identify the critical segments with 
in-domain knowledge, simplify them with linguistic information, and restore these critical 
segments after receiving the SMT results. 

This paper is organized as follows.  In Section 2, we review the previous works on domain 
adaptation and related work of our approach in SMT.  In Section 3, we formally describe our 
simplification-translation-restoration framework to deal with domain adaptation in SMT.  In 
Section 4, we evaluate the effectiveness of our STR framework by conducting a case study of 
English-Chinese medical summary translation, and discuss the experimental results.  Section 5 
draws the conclusion, indicates the potentials of our method, and shows some future work. 

2 Related Work 

Building an SMT system from large scale bilingual data for a specific application has become a 
practical option today.  On the other hand, SMT model heavily relies on the statistical evidences 
in the training corpus.  As a result, it may learn a biased SMT model, and suffer from the data 
sparseness problem of the training corpus when dealing with the ambiguity nature of human 
language.  This drawback results in some typical issues such as translation disambiguation 
problem (Carpuat et al., 2007; Chan et al., 2007), in which a word has several senses, but the 
corpus is biased towards a particular subset of the senses.  The SMT model trained from such a 
corpus is therefore prone to give the wrong translation due to the wrong choice of sense. 
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When a cross-domain SMT application is concerned, data sparseness problem is worsened by 
limited in-domain bilingual corpus.  Domain adaptation techniques therefore play a key role in 
building an in-domain SMT system under a resource poor environment.  A number of adaptation 
approaches have been proposed by leveraging either bilingual or monolingual in-domain 
resources.  Foster and Kuhn (2007) proposed a mixture-model approach that divides and trains a 
bilingual corpus into several models.  Different models were then weighted by estimating the 
similarity between a model and the in-domain development data.  Matsoukas et al. (2009) 
devised sentence-level features and weighted the domain relevance to each sentence in the 
bilingual training corpus by optimizing an objective function.  Foster et al. (2010) further raised 
the granularity by weighting at the level of phrase pairs.  Similarly, a mixture-model approach 
was also applied in word-alignment task (Civera and Juan, 2007).  Zhao et al. (2004) applied 
information retrieval techniques to select in-domain documents from large monolingual text 
collections and enhanced the baseline language model.  Bertoldi and Federico (2009) exploited 
an in-domain monolingual corpus to synthesize a pseudo bilingual corpus and trained an in-
domain translation model from the synthesized corpus. 

While previous works concentrated on model and parameter estimation to achieve domain 
adaptation, they worked on the data sets with similar lexicons.  Few studies dealt with large 
domain gap, which is a practical issue for a cross-domain SMT system.  In the medical domain, 
for example, a term may not even appear in training corpus and therefore SMT system gives no 
translation to it.  This OOV problem is common when translating domain specific terms such as 
diagnosis and surgical names in biomedical literature or medical records using a general purpose 
SMT system.  Different from the previous works, we address cross-domain issues in SMT across 
two largely distinct domains by simplifying in-domain segments to the ones that can be 
recognized by the out-domain or the background SMT system, and restoring the in-domain 
segments after receiving the SMT results. 

Text simplification (Zhu et al., 2010; Woodsend and Lapata, 2011; Wubben et al., 2012) itself 
has some straightforward NLP applications.  For example, we produce a simpler version of a text 
by modifying the lexical contents and shortening the grammatical structures without changing the 
original text at the semantic level.  Such simplified contents are beneficial for language learners 
and people with lower levels of literacy.  One of the real world applications is Simple English 
Wikipedia (http://simple.wikipedia.org), which uses simple English words and grammar, and thus 
English language learners can benefit from it.  In this paper we apply sentence simplification 
techniques to improve machine translation quality. The source language input is simplified into 
the version that makes it easier for the SMT system to translate.  This simplification step serves 
as a pre-processing module of the out-domain SMT model which has poor in-domain knowledge.   

The simplification approach can be viewed as a variant of paraphrasing, which expresses the 
same meaning in different ways.  Paraphrasing is employed for various NLP tasks, such as 
machine translation, natural language generation and computer assisted language learning.  For 
SMT task, paraphrasing is often used to alleviate the data sparseness problem in translation 
model.  For example, we paraphrase a source language text so that the paraphrased parts are 
easier for the background SMT system to translate.  Callison-Burch et al. (2006) pioneered a 
pivoting approach through parallel corpus to improve phrase-based SMT model.  Marton et al. 
(2009) proposed a monolingual framework to select paraphrases of a term by comparing its 
context with those of candidate paraphrases.  Aziz et al. (2010) proposed a semi-automatic 
approach to mine paraphrases from hypernyms and hyponyms in ontology.  Resnik et al. (2010) 
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                                       (a)                                                                            (b) 

 

(c) 

FIGURE 2 – The idea behind our STR framework applied to the bold phrases. We (a) simplify the 
source diagnosis term before translation, (b) translate the simplified sentence with an SMT 
system, and (c) restore the original diagnosis term and produce the translation result. 

conducted a pilot study of targeted paraphrasing in which monolingual speakers on both sides 
collaborate to improve SMT output by paraphrasing the critical segments of source text. 

Different from previous studies that applied paraphrasing to SMT in the general domain, our 
work focuses on addressing cross-domain issues.  We aim at adapting in-domain knowledge into 
the out-domain SMT system in a more smooth fashion than the naïve integration approach.  
While other works paraphrase general segments to provide more decoding options, we 
concentrate on domain specific segments which account for the performance degradation of a 
cross-domain SMT system.  We try to identify these in-domain segments and simplify them to 
better fit the background out-domain SMT model. 

3 A Simplification-Translation-Restoration (STR) Framework 

We express the basic idea behind our STR framework through the example of the incorrect 
translation result shown in FIGURE 1.  In order to fit the in-domain term to its general context, we 
change the obscure medical term to a more general one.  In this example, the rare source medical 
term "crystal induced arthritis" in FIGURE 1 is thus simplified to the more public diagnosis term 
"hypertension", as illustrated in FIGURE 2(a).  This simplified sentence is then sent to Google 
Translate.  FIGURE 2(b) shows the translation result, which gives not only the correct translation 
of the diagnosis term "高血壓", but also the nearby context "患有".  Moreover, the phrase 
"suffered from hypertension" is translated as a unit, implying that the translation model capture 
the context distribution of the simple diagnosis term "hypertension".  Finally, to acquire the 
actual translation rather than the simplified one, the simplified parts are then cut out and the 
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original bilingual in-domain terms are restored as illustrated in FIGURE 2(c). The final translation 
result is correct and fluent in contrast with the one in FIGURE 1. 

The proposed STR framework is composed of four steps as follows. 

1. Identifying in-domain segments s1, s2, …, sn from an input sentence S. 
2. Simplifying s1, s2, …, sn in S and deriving a new source sentence S’. 
3. Translating the source sentence S’ into a target sentence T’. 
4. Restoring the bilingual in-domain segments s1-t1, s2-t2, …, sn-tn back to S’-T’ and deriving 

the final translation result T. 

The following subsections describe each of them in detail. 

3.1 Identification 

An SMT system performs worse when translating segments which are rare in the background 
model.  Therefore, in the first step of our framework, we identify the in-domain segments in an 
input source text for the next simplification step.  To this end, we collect bilingual in-domain 
resources which include source-target string pairs. 

Although a parallel corpus may not be available in a special domain, there are various ways to 
collect bilingual in-domain knowledge.  For example, bilingual dictionaries can be found in the 
specific areas with long histories, such as medicine, physics and economics.  They provide in-
domain terminology with high quality and less noise.  Not limited to the hand-crafted dictionaries, 
the bilingual in-domain knowledge may include phrase pairs or synchronous grammar rules, 
depending on the translation model and the decoding style of our background SMT system.  Such 
bilingual knowledge can be collected by using automatic approaches (Wu and Chang, 2007; 
Haghighi et al., 2008) or semi-automatic approaches (Morin et al., 2007; Chen et al., 2011). 

3.2 Simplification 

In the simplification step, the identified in-domain segments of a text are transformed into the 
more general expressions.  The modified text is then ready to be translated by the background 
SMT system.  The simplification step serves as a pre-processing step before translation.  We 
simplify an in-domain segment according to its type – say, terminological unit and syntactic 
unit, in this study. 

Terminological units refer to terms that appear in domain specific dictionaries and glossaries 
without specifiers and modifiers.  For these in-domain terms, we simplify them by finding the 
related terms such as hypernyms or synonyms which have relatively more occurrences and 
contextual information in the background SMT model.  Syntactic units are linguistically 
meaningful segments which constitute special writing styles of a domain.  These units usually 
bear syntactic categories at clausal or phrase levels such as S, NP, VP, PP, etc. They contain 
heads along with their modifiers.  These syntactic categories can be derived from the parsed or 
the chunked results.  We simplify a syntactic unit based on the rule corresponding to its syntactic 
category shown as follows. 

(a) NP (Noun Phrase) 

We keep the head of an NP and remove its specifier and modifier.  If the head noun is a 
domain specific term, then it is further treated by the simplification rule to a terminological unit.  
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FIGURE 3 shows a parsing tree of a string as an example.  The string is labelled as NP at the root 
node which contains two sub-trees with categories NP and PP, respectively. According to this 
simplification rule, we therefore remove its PP modifier. As a result, the string "a patient of skin 
rash with multiple erythematous papules" is simplified to only its head "a patient". 

(b) VP (Verb Phrase) 

VP  V + NP: We keep V untouched and simplify NP according to the simplification rule 
(a).  For example, we simplify "had underlying diseases of ventricular tachycardia and 
dyslipidemia" to "had diseases". 

VP  V + PP: We keep V untouched and remove PP if PP is a modifier.  If PP is mandatory, 
it is further simplified based on the simplification rule (c).  Whether PP is optional or mandatory 
is determined by the subcategory of V.  For example, we simplify the sentence "he was 
discharged on the morning of 6/30" to "he was discharged". 

(c) PP (Prepositional Phrase) 

PP  P + NP: We keep P and simplify NP according to the simplification rule (a).  For 
example, we simplify "with underlying diseases of ventricular tachycardia and dyslipidemia" to 
"with diseases". 

(d) S (Clause) 

We simplify a clause by simplifying its children recursively according to the above 
simplification rules.  

 

FIGURE 3 – A parse tree of a syntactic unit. A bracketed string at each non-terminal node is the 
head of the corresponding syntactic category. 

The rule-based simplification approach is straightforward, but can be effectively applied to most 
of the syntactic units as discussed in Section 4.  Applying transformation or rewriting rules on 
source sentences based on their syntactic structures has been adopted in other works.  Wang et al. 
(2007) listed a set of prominent syntactic reordering rules that systematically describe the word 
order difference between the source and target languages.  Based on these rules, they parsed a 
source language input and reordered its structure to match the target language grammar for 
training a better translation model and improving a phrase-based SMT system.  In their work, 
source side syntactic reordering also serves as a pre-processing module of the SMT system.  
Different from their work, we simplify a source language input in favour of the background SMT 
system instead of changing the order of its structure. 
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3.3 Translation 

In the translation step, the background SMT system translates the simplified in-domain text and 
produces its translation result.  Since the input source text is simplified in favour of the 
translation system, the contextual distributions of the phrases can be estimated better than those 
of the original text, as demonstrated in FIGURE 2(b). 

Our STR framework performs domain adaptation under the scenarios where bilingual in-domain 
segments are available.  It is possible to be combined with other domain adaptation approaches 
that exploit monolingual or bilingual in-domain corpus to help further improve the translation 
quality.  For example, if a parallel in-domain corpus is available, we can perform learning-based 
domain adaptation approaches described in Section 2, and tune the background translation model 
toward the specific domain.  In this way, we may receive better translation results from the 
background SMT system and facilitate the next restoration step. 

For a phrase-based SMT system and its variations (Chiang, 2005; Xiong et al., 2006; Huang and 
Chiang, 2007), we can further customize the decoder to produce the translation with higher 
quality and facilitate the next restoration step of our framework.  For example, the in-domain 
segments in a text are either terminological or syntactic units in our experiments, and therefore 
their translations are continuous without other interleaving translations.  However, an out-domain 
SMT system may give wrong ordering without in-domain knowledge.  For instance, the 
translation of the medical term "bone lesion" is separated as illustrated in FIGURE 4.  In our work, 
we set up a Moses (Koehn et al., 2007) SMT system and apply its advanced feature of specifying 
reordering constraint to each of the simplified phrases.  Under the constraint, a simplified phrase 
is translated as a block and its translation is continuous on the target side. 

 

FIGURE 4 – The incorrect reordering of the in-domain segments "bone lesion". 

3.4 Restoration 

In the restoration step, we receive the translation result from the background SMT system and 
perform post-processing steps.  We locate the simplified phrase pairs and replace them with their 
corresponding bilingual in-domain segments as illustrated in FIGURE 2(c).  The resulting parallel 
text is the final output of our framework and its target side is the translation of the in-domain text. 

To successfully restore the bilingual in-domain segments, we need the internal alignment 
information between the source and the target sides.  Depending on the difficulty of extracting 
the simplified phrase pairs, different levels of granularity including phrase alignment, word 
alignment and word alignment score are needed.  The restoration methods under different 
situations are summarized in FIGURE 5.  We apply these restoration approaches one by one in the 
order of increasing granularity: phrase alignment, word alignment and probability-based 
extraction.  As will be discussed in the later section, the empirical results show that these 
approaches are simple but can be effective to deal with most of the cases. 
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FIGURE 5 – Three restoration methods: phrase alignment, word alignment and probability-based 
extraction. The thick lines are phrase alignments and the thin lines are word alignments. 

If a simplified source phrase is translated alone without its nearby context, phrase-level alignment 
information is sufficient to perform the restoration: we replace the simplified phrase pairs with 
the original bilingual in-domain segments.  FIGURE 5(a) illustrates the phrase alignment method.  
The shaded blocks and thick lines denote simplified phrase pairs.  By checking the phrase 
alignments provided by the decoder, the simplified phrase pairs can be replaced without further 
processing.  The method is exemplified in FIGURE 6(a).  In this example, the simplified term 
"surgery" is translated as a single phrase.  Based on the phrase alignments, the simplified phrase 
pair "surgery-手術" is replaced with its original form "abdominal tapping-腹部穿刺". 

 
(a) Restoration with phrase alignment. 

 

 
(b) Restoration with word alignment. 

 

 
(c) Restoration with probability-based extraction. 

FIGURE 6 – Three restoration methods applied with different levels of alignment information.  
The thick lines are phrase alignments and the thin lines are word alignments. 

In some cases, a simplified phrase is translated together with its nearby context, and therefore we 
need to determine the translation of the simplified phrase before we can restore its original form, 
such as the term "hypertension" in FIGURE 2(b).  Phrase level alignments are insufficient now and 
higher granularity is needed, such as word-level alignments, to separate a simplified phrase from 
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its contexts.  With word alignment information, we may extract a simplified phrase pair without 
violating the consistency judgment of a phrase pair (Och et al., 1999).  We then replace the 
simplified phrase pair with its original bilingual in-domain segment.  Our word alignment method 
is illustrated in FIGURE 5(b).  The hollow blocks denote the context f2f3, which is translated 
together with its nearby simplified term f1.  The thin lines and the thick lines are word alignments 
and phrase alignments, respectively.  Compliant with the consistency of phrase extraction, we 
separate the phrase pair f1-e1 from the phrase pair f1f2f3-e1e2e3, and perform the restoration.  The 
method is exemplified in FIGURE 6(b).  Based on the word alignments, the simplified term 
"hypertension" can be separated from its context "suffered from" without violating the 
consistency.  Therefore, we can successfully restore the original form "crystal induced arthritis". 

There are still cases in which word alignment method fails due to the fertility feature between 
source and target languages under IBM models (Brown et al., 1993).  For a simplified term, 
which is usually a content word, its translation may be aligned to non-content words on the 
source side.  In this case, extracting simplified phrase pairs would violate the consistency of 
phrase extraction.  Here we apply a probability-based extraction of simplified phrases.  This 
approach deletes weak word alignments based on alignment probabilities.  For a source 
simplified phrase fi,j spanning from word fi to fj which is aligned to its target translation ei,j, we 
examine each word in ei,j.  If there exists an ek (i<=k<=j) which is aligned to two source words 
within fi,j and outside fi,j respectively, we try to delete one of the alignments by comparing their 
word alignment probabilities.  FIGURE 5(c) illustrates the probability-based extraction method.  
The word e1 is aligned to both f1 and f2.  The fuzzy alignment causes the unsuccessful separation 
of f1-e1 from its context f2f3-e2e3.  If the word alignment probabilities show P(f1|e1) > P(f2|e1), we 
can delete the weak word alignment f2-e1, and meet the consistency judgment.  The method is 
exemplified in FIGURE 6(c) where the word alignment method is unsuccessful.  In this case, we 
fail to determine the translation of the simplified syntactic unit "he was admitted" because the 
target word "承認" is aligned to both "admitted" and "in".  With the probability-based extraction 
approach, we delete the alignment (the dashed line) "in-承認", because P(in|承認) < P(admitted |
承認).  After that, we are able to extract the phrase pair "admitted-承認".  By determining the 
translation of "he was admitted" with two consecutive phrase pairs, the restoration of the original 
form "he was admitted for scheduled Trabeculectomy" can be done easily. 

4 Experiments 

We experiment our STR framework on an English-Chinese SMT application in the medical 
domain.  Moses is built as our general domain SMT system.  The translation model is trained on 
6.8M sentence pairs collected from Hong Kong corpus (LDC2004T08) and UN corpus 
(LDC2004E12). We train the trigram language model on the Chinese part of the above parallel 
corpus and the Central News Agency part of the Tagged Chinese Gigaword (LDC2007T03). 

We test our method with the English-Chinese translation task on the medical summaries from the 
National Taiwan University Hospital (NTUH).  The dataset comprises 1,077 parallel sentences 
within 18 medical summaries.  In our SMT application, the gap between in-domain and out-
domain corpora is very large in terms of vocabulary and writing styles.  In our test set, the 
average length of a sentence in a medical summary is short (12.58 words) compared to the 
background general corpus (29 words).  TABLE 1 shows some interesting statistics of the domain 
specific segments in the test set, including the average number of terminological units, syntactic 
units and OOV words per sentence, and the percentages of words they account for in the test data.  
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On the average, the in-domain segments (terminological and syntactic units) constitute over 36% 
of the experimental dataset.  Nearly 21% of OOV words including surgical, diagnosis and drug 
terms occur in a sentence and most of them are parts of terminological and syntactic units.  This 
justifies our motivation to alleviate the OOV problem in our cross-domain SMT system by 
simplifying the text in this special domain before sending it to the background SMT system. 

 Occurrence Percentage 

Terminological Unit 2.04/sentence 18.37% 

Syntactic   Unit 0.65/sentence 17.86% 

OOV Word 2.93/sentence 21.18% 

TABLE 1 – Statistics of the in-domain segments and the OOV words in the test set. 

To identify the in-domain segments in a text, we collect bilingual terminological and syntactic 
units from the medical domain.  Section 3.1 describes the identification step and discusses 
various ways to collect the bilingual in-domain knowledge with automatic and semi-automatic 
approaches.  In our experimental domain (i.e., English medical summaries), bilingual medical 
dictionaries are available from plenty of resources and thus they are sufficient for collecting 
bilingual terminological units.  On the other hand, bilingual syntactic units are relatively hard to 
obtain.  Only monolingual corpus can be obtained in this domain, and obtaining parallel text by 
manual translation incurs high cost due to the involvements of domain experts (e.g., doctors).  
Therefore we collect the bilingual syntactic units by taking a semi-automatic approach in order to 
make the best of manual efforts.  The collection of terminological and syntactic units is briefly 
described below, and readers can refer to Chen et al. (2011) for more details. 

The terminological units are collected from both public and non-public resources. They include 
public medical dictionaries from domestic medical colleges and Department of Health.  We are 
also provided with frequent bilingual term pairs used by NTUH staff.  Merging these bilingual 
dictionaries causes ambiguity in which a medical term has multiple translations with similar 
meanings but in different styles.  Since consistent translation of terminology is desired in this 
application, ambiguous translations are reviewed and edited by the staff at NTUH.  So far nearly 
70,000 bilingual terminological units are collected and stored in our database. 

The syntactic units are semi-automatically collected with a pattern mining algorithm and 
annotations by the in-domain experts.  Since we choose phrase-based SMT as our background 
SMT system, the n-gram based syntactic units are preferred for easier integration.  We first 
automatically extract the candidate n-grams from the experimental medical summary corpus with 
medical entity recognition (Ben Abacha and Zweigenbaum, 2009) and NLP techniques.  These 
source language n-grams are then reviewed and fast translated by doctors with the help of a user-
friendly annotation tool.  The resulting bilingual n-grams are then collected and organized into 
the bilingual syntactic units.  The NLP techniques aim to reduce the cost of annotations by 
doctors, and increase the coverage of bilingual syntactic units.  TABLE 2 gives some samples of 
these n-gram based syntactic units in this domain.  Both source and target n-grams are listed for 
each bilingual syntactic unit.  The words in bold denote the medical categories which represent 
diseases or symptoms (DIAGNOSIS), medical tests (TEST), surgical or non-surgical treatments 
(TREATMENT), etc.  These syntactic units capture in-domain writing styles and local 
reorderings (note the different orders of medical categories between source and target sides). 
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Source Syntactic Unit 
Syntactic Label 

Target Syntactic Unit 

underwent  TEST  on  DATE 

VP 於  DATE  接受      TEST    檢查 

yu               jie-shou                jian-cha 

DRUG  was  given  for  DIAGNOSIS 

S 使用          DRUG          用於治療              DIAGNOSIS 
shi-yong                          yong-yu-zhi-liao 

received  TREATMENT  with  DRUG 

VP 接受       TREATMENT    及    DRUG    治療 

jie-shou                                ji                     zhi-liao 

DIAGNOSIS  at  the  right  REGION 

NP 在右側        REGION    之    DIAGNOSIS 
zai-you-ce                       zhi 

TREATMENT  of  the  right  REGION 

NP 右側      REGION     的      TREATMENT 
you-ce                        de 

TABLE 2 – Samples of bilingual syntactic units. 

In the simplification step, we simplify the identified in-domain segments of a text.  For runtime 
efficiency, we perform the simplification on all of the collected terminological and syntactic units 
in advance and store the results to avoid redundant work.  The terminological units are simplified 
based on the ontology provided by Unified Medical Language System (UMLS).  For a medical 
term, we search for its hypernyms and find the most frequent one in the background translation 
model and designate it as the simplified form. 

The syntactic units are parsed with Stanford parser (Klein and Manning, 2003) and simplified 
with the rules described in Section 3.2.  TABLE 3 gives the number of syntactic units for each 
syntactic label.  There are parsing errors for few n-grams and they are manually corrected.  As 
shown in TABLE 3, more than 70% of the n-grams are correctly simplified.  Most of the errors 
come from the unexpected syntactic labels which can be processed with new simplification rules.  
For example, the common syntactic unit "was admitted due to DIAGNOSIS" can be simplified 
to "was admitted".  However, the syntactic label ADJP which covers "due to DIAGNOSIS" is 
not considered in our rules and therefore remains unchanged after the simplification step.  We 
plan to devise a more robust method beyond the rule-based one for future work. 

In the restoration step, we receive and post-process the SMT results as described in Section 3.4.  
In our experiments, phrase level alignments are provided by the Moses decoder, and word level 
alignments are obtained as the intermediate results after training the phrase table.  Our methods 
successfully perform the restorations on most of the test data.  Total 1,004 (93.22%) of the 1,077 
sentences can be successfully restored with the three proposed restoration methods.  For the other 
73 sentences, most of these failure cases result from translation errors of the simplified phrases 
by Moses, which in turn affect the word alignments and introduce difficulties.  TABLE 4 shows 
the performance of each restoration method. The second column counts the number of 
applications of each restoration method on the test set, and the third column counts how many  
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Syntactic Unit Count Parsing Error Simplification Error 
NP 697 4.85% 28.15% 

VP 287 2.94% 27.12% 

PP 228 1.85% 8.89% 

S 342 1.23% 9.59% 

Other 12 33.33%  

TABLE 3 – Parsing and simplification performances on syntactic units.  We manually simplify the 
12 syntactic units with minority labels. 

 Total Count Sentence Count

Phrase Alignment 1,767 (60.93%) 865 (86.16%) 

Word Alignment 981 (33.83%) 657 (65.44%) 

Probability-based Extraction 152 (5.24%) 137 (13.65%) 

TABLE 4 – Various restoration methods. 

sentences include the application of each restoration method.  Total 2,900 applications of the 
restoration methods have been done in the testing.  With phrase alignments, we can deal with 
over 60% of the simplified phrases.  For the remaining simplified phrases, the background SMT 
model captures their contexts with higher confidence, and therefore they are translated with the 
surrounding words.  For these cases, we use word alignment information, and perform the word 
alignment and the probability-based extraction methods.  Although the probability-based 
extraction accounts for only 5.24% of the restorations, it is applied on 13.65% of the sentences, 
as shown in the third column.  This confirms that the approach of deleting weak word alignment 
is simple but effective in handling the inconsistency during phrase extraction. 

We compare our STR framework against three baselines.  These four SMT systems share the 
same background translation and language models which are trained from the corpus described in 
the beginning of this section.  The Moses system is trained with its default scripts without any in-
domain prior knowledge.  We choose Moses' default behaviour to handle OOV words, i.e., they 
are copied to translation results.  We also use an advanced feature of Moses to build another 
setting (Moses+Terminology) by adding an in-domain phrase table with the terminological units.  
It serves as the back-off model during the runtime decoding.  That is, Moses searches the back-
off model only when no translation for a phrase is found in the background model.  In the naïve 
integration system, we apply the identification step to a source sentence and mark the in-domain 
segments.  Rather than simplifying these segments, we use the XML markup function of Moses 
to force the translations of these terminological and syntactic units. 

TABLE 5 shows 4-gram BLEU (Papineni et al., 2002) and TER (Snover et al., 2006) scores of 
these systems.  With poor in-domain knowledge, the baseline Moses achieves the low 
performance on the test set.  On the other hand, the Moses system with terminology back-off 
model eliminates most of the OOV problems and gets better performance.  The naïve integration 
system gives further improvement over the Moses+Terminology system by performing medical 
entity recognition on a source input before sending it to Moses.  Therefore, it can identify the 
multiword terminological units and the syntactic units during the identification step.  The system 
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with the STR framework achieves the best translation performance among the four systems 
measured by both BLEU and TER scores.  Comparing the translation results of the STR 
framework and the naïve integration system, we find the former gives better translations and 
reorderings on the general segments.  In summary, the experimental results and observations 
show that our simplification approach improves the baseline SMT systems by identifying specific 
segments with bilingual in-domain knowledge and modifying these special segments to better fit 
the background SMT model. 

 BLEU-4 TER 

Moses 14.35 64.911 

Moses+Terminology 20.56 55.712 

  Naïve Integration 26.29 47.683 

STR Framework 35.87 40.650 

TABLE 5 – Translation performances on medical summaries. 

Conclusion and Future Work 

This paper proposes a simplification-translation-restoration framework for cross-domain 
applications in SMT.  We integrate bilingual in-domain knowledge into a background out-
domain SMT system. That deals with the cross-domain and the data sparseness problems at the 
same time.  The in-domain text goes through identification, simplification, translation, and 
restoration steps.  Important issues are addressed and discussed for each step, including preparing 
bilingual in-domain knowledge, simplification with syntactic information, and different 
restoration strategies for extracting simplified phrases from the SMT results.  We evaluate the 
performance of our framework through a cast study of medical summary translation.  The 
empirical results show the effectiveness of our approach at each step of the framework.  For the 
end-to-end translation task, our method outperforms the background SMT system and the 
systems with different integration approaches. 

Currently, we apply a rule-based simplification approach to four common syntactic units, i.e., NP, 
VP, PP, and S.  The alternative is to simplify in-domain segments based on statistical evidence.   
Searching for a simplified form for a phrase in a more robust way will give more hints to aid the 
background SMT system.  That is worthy of further investigation.  Besides, to introduce a 
feedback mechanism to improve an STR-based MT system is also one of the research issues.  
Which parts, pre-processing (i.e., identification and simplification), translation, and post-
processing (i.e., restoration), have to be modified through the feedback and how they are 
modified are critical.  In our scenario, the doctors post-edit the MT results of English medical 
summaries and produce the correct Chinese medical summaries.  The editing logs can be 
analysed to improve identification, simplification, translation, and restoration steps for further 
domain adaptation. 
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