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Abstract

Empty categories represent an impor-
tant source of information in syntactic
parses annotated in the generative linguis-
tic tradition, but empty category recovery
has only started to receive serious atten-
tion until very recently, after substantial
progress in statistical parsing. This paper
describes a unified framework in recover-
ing empty categories in the Chinese Tree-
bank. Our results show that given skele-
tal gold standard parses, the empty cate-
gories can be detected with very high ac-
curacy. We report very promising results
for empty category recovery for automatic
parses as well.

1 Introduction

The use of empty categories to represent the syn-
tactic structure of a sentence is the hallmark of the
generative linguistics and they represent an im-
portant source of information in treebanks anno-
tated in this linguistic tradition. The use of empty
categories in the annotation of treebanks started
with the Penn Treebank (Marcus et al., 1993), and
this practice is continued in the Chinese Treebank
(CTB) (Xue et al., 2005) and the Arabic Tree-
bank, the Penn series of treebanks. Empty cat-
egories come in a few different varieties, serv-
ing different purposes. One use of empty cate-
gories is to mark the extraction site of an dislo-
cated phrase, thus effectively reconstructing the
canonical structure of a sentence, allowing easy
extraction of its predicate-argument structure. For
example, in Figure 1, the empty category*T*-
1 is coindexed with the dislocated topic NP宁

波 (“Ningbo”), indicating that the canonical po-
sition of this NP is next to the verb来 (“come”).
The empty category effectively localizes the syn-
tactic dependency between the verb and this NP,
making it easier to detect and extract this relation.

Marking the extraction site of a dislocated item
is not the only use of empty categories. For lan-
guages like Chinese, empty categories are also
used to represent dropped pronouns. Chinese is
a pro-drop language (Huang, 1989) and subject
pronouns are routinely dropped. Recovering these
elliptical elements is important to many natural
language applications. When translated into an-
other language, for example, these dropped pro-
nouns may have to be made explicit and replaced
with overt pronouns or noun phrases if the target
language does not allow dropped pronouns.

Although empty categories have been an inte-
gral part of the syntactic representation of a sen-
tence ever since the Penn Treebank was first con-
structed, it is only recently that they are starting
to receive the attention they deserve. Works on
automatic detection of empty categories started
to emerge (Johnson, 2002; Dienes and Dubey,
2003; Campbell, 2004; Gabbard et al., 2006) af-
ter substantial progress has been made in statis-
tical syntactic parsing. This progress has been
achieved after over a decade of intensive research
on syntactic parsing that has essentially left the
empty categories behind (Collins, 1999; Char-
niak, 2000). Empty categories were and still are
routinely pruned out in parser evaluations (Black
et al., 1991). They have been excluded from the
parser development and evaluation cycle not so
much because their importance was not under-
stood, but because researchers haven’t figured out
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Figure 1: A CTB tree with empty categories

a way to incorporate the empty category detection
in the parsing process. In fact, the detection of
empty categories relies heavily on the other com-
ponents of the syntactic representation, and as a
result, empty category recovery is often formu-
lated as postprocessing problem after the skeletal
structure of a syntactic parse has been determined.
As work on English has demonstrated, empty cat-
egory detection can be performed with high accu-
racy given high-quality skeletal syntactic parses as
input.

Because Chinese allows dropped pronouns and
thus has more varieties of empty categories than
languages like English, it can be argued that there
is added importance in Chinese empty category
detection. However, to our knowledge, there has
been little work in this area, and the work we
report here represents the first effort in Chinese
empty category detection. Our results are promis-
ing, but they also show that Chinese empty cat-
egory detection is a very challenging problem
mostly because Chinese syntactic parsing is dif-
ficult and still lags significantly behind the state
of the art in English parsing. We show that given
skeletal gold-standard parses (with empty cate-
gories pruned out), the empty detection can be
performed with a fairly high accuracy of almost
89%. The performance drops significantly, to
63%, when the output of an automatic parser is
used.

The rest of the paper is organized as follows.
In Section 2, we formulate the empty category de-

tection as a binary classification problem where
each word is labeled as either having a empty cat-
egory before it or not. This makes it possible to
use any standard machine learning technique to
solve this problem. The key is to find the appro-
priate set of features. Section 3 describes the fea-
tures we use in our experiments. We present our
experimental results in Section 4. There are two
experimental conditions, one with gold standard
treebank parses (stripped of empty categories) as
input and the other with automatic parses. Section
5 describes related work and Section 6 conclude
our paper.

2 Formulating the empty category
detection as a tagging problem

In the CTB, empty categories are marked in a
parse tree which represents the hierarchical struc-
ture of a sentence, as illustrated in Figure 1.
There are eight types of empty categories anno-
tated in the CTB, and they are listed in Table 1.
Among them, *pro* and *PRO* are used to rep-
resent nominal empty categories, *T* and *NP*
are used to represent traces of dislocated items,
*OP* is used to represent empty relative pronouns
in relative clauses, and *RNR* is used to repre-
sent pseudo attachment. The reader is referred to
the CTB bracketing manual (Xue and Xia, 2000)
for detailed descriptions and examples. As can
be seen from Table 1, the distribution of these
empty categories is very uneven, and many of
these empty categories do not occur very often.
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EC Type count Description
*pro* 2024 small pro

*PRO* 2856 big pro
*T* 4486 trace for extraction

*RNR* 217 right node raising
*OP* 879 operator

* 132 trace for raising

Table 1: Empty categories in CTB.

As a first step of learning an empty category
model, we treat all the empty categories as a uni-
fied type, and for each word in the sentence, we
only try to decide if there is an empty category
before it. This amounts to an empty category de-
tection task, and the objective is to first locate the
empty categories without attempting to determine
the specific empty category type. Instead of pre-
dicting the locations of the empty categories in a
parse tree and having a separate classifier for each
syntactic construction where an empty category is
likely to occur, we adopt a linear view of the parse
tree and treat empty categories, along with overt
word tokens, as leaves in the tree. This allows us
to identify the location of the empty categories in
relation to overt word tokens in the same sentence,
as illustrated in Example (1):

(1) 宁波 我 是 第三 次 来 *T* 。

In this representation, the position of the empty
category can be defined either in relation to the
previous or the next word, or both. To make
this even more amenable to machine learning ap-
proaches, we further reformulate the problem as a
tagging problem so that each overt word is labeled
either with EC, indicating there is an empty cate-
gory before this word, or NEC, indicating there is
no empty category. This reformulated representa-
tion is illustrated in Example (2):

(2) 宁 波/NEC 我/NEC 是/NEC 第 三/NEC
次/NEC来/NEC。/EC

In (2), the EC label attached to the final period
indicates that there is an empty category before
this punctuation mark. There is a small price to
pay with this representation: when there is more
than one empty category before a word, it is indis-
tinguishable from cases where there is only one

empty category. What we have gained is a sim-
ple unified representation for all empty categories
that lend itself naturally to machine learning ap-
proaches. Another advantage is that for natural
language applications that do not need the full
parse trees but only need the empty categories,
this representation provides an easy-to-use repre-
sentation for those applications. Since this linear-
lized representation is still aligned with its parse
tree, we still have easy access to the full hierar-
chical structure of this tree from which useful fea-
tures can be extracted.

3 Features

Having modeled empty category detection as a
machine learning task, feature selection is crucial
to successfully finding a solution to this problem.
The machine learning algorithm scans the words
in a sentence from left to right one by one and
determine if there is an empty category before it.
When the sentence is paired with its parse tree,
the feature space is all the surrounding words of
the target word as well as the syntactic parse for
the sentence. The machine learning algorithm also
has access to the empty category labels (EC or
NEC) of all the words before the current word.
Figure 2 illustrates the feature space for the last
word (a period) in the sentence.
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"Ningbo, this is the third time I came here."

Figure 2: Feature space of empty category detec-
tion

For purposes of presentation, we divide our
features into lexical and syntactic features. The
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lexical features are different combinations of the
words and their parts of speech (POS), while syn-
tactic features are the structural information gath-
ered from the nonterminal phrasal labels and their
syntactic relations.

3.1 Lexical features

The lexical features are collected from a narrow
window of five words and their POS tags. If the
target word is a verb, the lexical features also in-
clude transitivity information of this verb, which
is gathered from the CTB. A transitivity lexicon is
induced from the CTB by checking whether a verb
has a right NP or IP sibling. Each time a verb is
used as a transitive verb (having a right NP or IP
sibling), its transitive count is incremented by one.
Conversely, each time a verb is used as an intran-
sitive verb (not having a right NP or IP sibling), its
intransitive use is incremented by one. The result-
ing transitivity lexicon after running through the
entire Chinese Treebank consists of a list of verbs
with frequencies of their transitive and intransitive
uses. A verb is considered to be transitive if its in-
transitive count in this lexicon is zero or if its tran-
sitive use is more than three times as frequent as
its intransitive use. Similarly, a verb is considered
to be intransitive if its transitive count is zero or
if its intransitive use is at least three times as fre-
quent as its transitive use. The full list of lexical
features is presented in Table 2.

3.2 Syntactic features

Syntactic features are gathered from the CTB
parses stripped of function tags and empty cate-
gories when the gold standard trees are used as
input. The automatic parses used as input to our
system are produced by the Berkeley parser. Like
most parsers, the Berkeley parser does not repro-
duce the function tags and empty categories in the
original trees in the CTB. Syntactic features cap-
ture the syntactic context of the target word, and
as we shall show in Section 4, the syntactic fea-
tures are crucial to the success of empty category
detection. The list of syntactic features we use in
our system include:

1. 1st-IP-child: True if the current word is the
first word in the lowest IP dominating this
word.

Feature Names Description
word(0) Current word
word(-1) Previous word
pos(0) POS of current word
pos(-1,0) POS of previous and cur-

rent word
pos(0, 1) POS of current and next

word
pos(0, 1, 2) POS of current & next

word, & word 2 after
pos(-2, -1) POS of previous word &

word 2 before
word(-1), pos(0) Previous word & POS of

current word
pos(-1),word(0) POS of previous word&

current word
trans(0) current word is transitive

or intransitive verb
prep(0) true if POS of current

word is a preposition

Table 2: Feature set.

2. 1st-word-in-subjectless-IP: True if the cur-
rent word starts an IP with no subject. Sub-
ject is detected heuristically by looking at left
sisters of a VP node. Figure 3 illustrates this
feature for the first word in a sentence where
the subject is a dropped pronoun.

3. 1st-word-in-subjectless-IP+POS: POS of
the current word if it starts an IP with no sub-
ject.

4. 1st-VP-child-after-PU: True if the current
word is the first terminal child of a VP fol-
lowing a punctuation mark.

5. NT-in-IP: True if POS of current word is NT,
and it heads an NP that does not have a sub-
ject NP as its right sister.

6. verb-in-NP/VP: True if the current word is a
verb in an NP/VP.

7. parent-label: Phrasal label of the parent of
the current node, with the current node al-
ways corresponding to a terminal node in the
parse tree.

8. has-no-object: True If the previous word is
a transitive verb and this verb does not take
an object.
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Figure 3: First word in a subject-less IP

Empty categories generally occur in clausal or
phrasal boundaries, and most of the features are
designed to capture such information. For exam-
ple, the five feature types,1st-IP-child, 1st-word-
in-subjectless-IP, 1st-word-in-subjectless-IP, 1st-
VP-child-after-PU andNT-in-IP all represent the
left edge of a clause (IP) with some level of gran-
ularity. parent label andverb-in-NP/VP represent
phrases within which empty categories typically
occur do not occur. Thehas-no-object feature is
intended to capture transitive uses of a verb when
the object is missing.

4 Experiments

Given that our approach is independent of specific
machine learning techniques, many standard ma-
chine learning algorithms can be applied to this
task. For our experiment we built a Maximum En-
tropy classifier with the Mallet toolkit1.

4.1 Data

In our experiments, we use a subset of the CTB
6.0. This subset is further divided into train-
ing (files chtb0081 thorough chtb0900), devel-
opment (files chtb0041 through chtb0080) and
test sets (files chtb0001 through chtb0040, files
chtb 0901 through chtb0931). The reason for not
using the entire Chinese Treebank is that the data
in the CTB is from a variety of different sources
and the automatic parsing accuracy is very uneven
across these different sources.

1http://mallet.cs.umass.edu

4.2 Experimental conditions

Two different kinds of data sets were used in the
evaluation of our method: 1) gold standard parse
trees from the CTB; and 2) automatic parses pro-
duced by the Berkeley parser2 .

4.2.1 Gold standard parses

There are two experimental conditions. In our
first experiment, we use the gold standard parse
trees from the CTB as input to our classifier. The
version of the parse tree that we use as input to
our classifier is stripped of the empty category
information. What our system effectively does
is to restore the empty categories given a skele-
tal syntactic parse. The purpose of this experi-
ment is to establish a topline and see how accu-
rately the empty categories can be restored given
a“correct”parse.

4.2.2 Automatic parses

To be used in realistic scenarios, the parse trees
need to be produced automatically from raw text
using an automatic parser. In our experiments we
use the Berkeley Parser as a representative of the
state-of-the-art automatic parsers. The input to the
Berkeley parser is words that have already been
segmented in the CTB. Obviously, to achieve fully
automatic parsing, the raw text should be auto-
matically segmented as well. The Berkeley parser
comes with a fully trained model, and to make
sure that none of our test and development data is
included in the training data in the original model,
we retrained the parser with our training set and
used the resulting model to parse the documents
in the development and test sets.

When training our empty category model using
automatic parses, it is important that the quality
of the parses match between the training and test
sets. So the automatic parses in the training set
are acquired by first training the parser with 4/5
of the data and using the resulting model to parse
the remaining 1/5 of the data that has been held
out. Measured by the ParsEval metric (Black et
al., 1991), the parser accuracy stands at 80.3% (F-
score), with a precision of 81.8% and a recall of
78.8% (recall).

2http://code.google.com/p/berkeleyparser
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4.3 Evaluation metrics

We use precision, recall and F-measure as our
evaluation metrics for empty category detection.
Precision is defined as the number of correctly
identified Empty Categories (ECs) divided by the
total number of ECs that our system produced.
Recall is defined as the number of correctly iden-
tified ECs divided by the total number of EC la-
bels in the CTB gold standard data. F-measure
is defined as the geometric mean of precision and
recall.

R =
# of correctly detected EC
# of EC tagged in corpus

(1)

P =
# of correctly detected EC

# of EC reported by the system
(2)

F =
2

1/R + 1/P
(3)

4.4 Overall EC detection performance

We report our best result for the gold standard
trees and the automatic parses produced by the
Berkeley parser in Table 3. These results are
achieved by using all lexical and syntactic features
presented in Section 3.

Data Prec.(%) Rec.(%) F(%)
Gold 95.9 (75.3) 83.0 (70.5) 89.0 (72.8)
Auto 80.3 (57.9) 52.1 (50.2) 63.2 (53.8)

Table 3: Best results on the gold tree.

As shown in Table 3, our feature set works
well for the gold standard trees. Not surprisingly,
the accuracy when using the automatic parses is
lower, with the performance gap between using
the gold standard trees and the Berkeley parser
at 25.8% (F-score). When the automatic parser
is used, although the precision is 80.3%, the re-
call is only 52.1%. As there is no similar work in
Chinese empty category detection using the same
data set, for comparison purposes we established
a baseline using a rule-based approach. The rule-
based algorithm captures two most frequent loca-
tions of empty categories: the subject and the ob-
ject positions. Our algorithm labels the first word
within a VP with EC if the VP does not have a
subject NP. Similarly, it assigns the EC label to the

word immediately following a transitive verb if it
does not have an NP or IP object. Since the miss-
ing subjects and objects account for most of the
empty categories in Chinese, this baseline covers
most of the empty categories. The baseline results
are also presented in Table 3 (in brackets). The
baseline results using the gold standard trees are
75.3% (precision), 70.5% (recall), and 72.8% (F-
score). Using the automatic parses, the results are
57.9% (precision), 50.2% (recall), and 53.8% (F-
score) respectively. It is clear from our results that
our machine learning model beats the rule-based
baseline by a comfortable margin in both exper-
imental conditions. Table 4 breaks down our re-
sults by empty category types. Notice that we did
not attempt to predict the specific empty category
type. This only shows the percentage of empty
categories our model is able to recover (recall) for
each type. As our model does not predict the spe-
cific empty category type, only whether there is an
empty category before a particular word, we can-
not compute the precision for each empty category
type. Nevertheless, this breakdown gives us a
sense of which empty category is easier to recover.
For both experimental conditions, the empty cate-
gory that can be recovered with the highest accu-
racy is*PRO*, an empty category often used in
subject/object control constructions.*pro* seems
to be the category that is most affected by parsing
accuracy. It has the widest gap between the two
experimental conditions, at more than 50%.

EC Type Total Correct Recall(%)
*pro* 290 274/125 94.5/43.1

*PRO* 299 298/196 99.7/65.6
*T* 578 466/338 80.6/58.5

*RNR* 32 22/20 68.8/62.5
*OP* 134 53/20 40.0/14.9

* 19 9/5 47.4/26.3

Table 4: Results of different types of empty cate-
gories.

4.5 Comparison of feature types

To investigate the relative importance of lexical
and syntactic features, we experimented with us-
ing just the lexical or syntactic features under
both experimental conditions. The results are pre-
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sented in Table 5. Our results show that when
using only the lexical features, the drop in accu-
racy is small when automatic parses are used in
place of gold standard trees. However, when us-
ing only the syntactic features, the drop in accu-
racy is much more dramatic. In both experimental
conditions, however, syntactic features are more
effective than the lexical features, indicating the
crucial importance of high-quality parses to suc-
cessful empty category detection. This makes in-
tuitive sense, given that all empty categories oc-
cupy clausal and phrasal boundaries that can only
defined in syntactic terms.

Data Prec.(%) Rec.(%) F(%)
Lexical 79.7/77.3 47.6/39.9 59.6/52.7

Syntactic 95.9/78.0 70.0/44.5 81.0/56.7

Table 5: Comparison of lexical and syntactic fea-
tures.

4.6 Comparison of individual features

Given the importance of syntactic features, we
conducted an experiment trying to evaluate the
impact of each individual syntactic feature on the
overall empty category detection performance. In
this experiment, we kept the lexical feature set
constant, and switched off the syntactic features
one at a time. The performance of the different
syntactic features is shown in Table 6. The re-
sults here assume that automatic parses are used.
The first row is the result of using all features
(both syntactic and lexical) while the last row is
the result of using only the lexical features. It
can be seen that syntactic features contribute more
than 10% to the overall accuracy. The results also
show that features (e.g.,1st-IP-child) that capture
clause boundary information tend to be more dis-
criminative and they occupy the first few rows of
a table that sorted based on feature performance.

5 Related work

The problem of empty category detection has been
studied both in the context of reference resolution
and syntactic parsing. In the reference resolution
literature, empty category detection manifests it-
self in the form of zero anaphora (or zero pronoun)

Feature Name Prec.(%) Rec.(%) F(%)
all 80.3 52.1 63.2
1st-IP-child 79.8 49.2 60.8
1st-VP-child-
after-PU

79.7 50.5 61.8

NT-in-IP 79.4 50.8 61.9
1st-word-in-
subjectless-
IP+Pos

79.5 51.1 62.2

has-no-object 80.0 51.1 62.4
1st-word-in-
subjectless-IP

79.4 51.5 62.5

verb-in-NP/VP 79.9 52.0 63.0
parent-label 79.4 52.4 63.1
only lexical 77.3 39.9 52.7

Table 6: Performance for individual syntactic fea-
tures with automatic parses.

detection and resolution. Zero anaphora resolu-
tion has been studied as a computational prob-
lem for many different languages. For example,
(Ferrández and Peral, 2000) describes an algo-
rithm for detecting and resolving zero pronouns
in Spanish texts. (Seki et al., 2002) and (Lida et
al., 2007) reported work on zero pronoun detec-
tion and resolution in Japanese.

Zero anaphora detection and resolution for
Chinese has been studied as well. Converse
(2006) studied Chinese pronominal anaphora res-
olution, including zero anaphora resolution, al-
though there is no attempt to automatically de-
tect the zero anaphors in text. Her work only
deals with anaphora resolution, assuming the zero
anaphors have already been detected. Chinese
zero anaphora identification and resolution have
been studied in a machine learning framework-
ing in (Zhao and Ng, 2007) and (Peng and Araki,
2007).

The present work studies empty category re-
covery as part of the effort to fully parse natural
language text and as such our work is not lim-
ited to just recovering zero anaphors. We are
also interested in other types of empty categories
such as traces. Our work is thus more closely re-
lated to the work of (Johnson, 2002), (Dienes and
Dubey, 2003), (Campbell, 2004) and (Gabbard et
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al., 2006).
Johnson (2002) describes a pattern-matching

algorithm for recovering empty nodes from phrase
structure trees. The idea was to extract minimal
connected tree fragments that contain an empty
node and its antecedent(s), and to match the ex-
tracted fragments against an input tree. He eval-
uated his approach both on Penn Treebank gold
standard trees stripped of the empty categories and
on the output of the Charniak parser (Charniak,
2000).

(Dienes and Dubey, 2003) describes an empty
detection method that is similar to ours in that it
treats empty detection as a tagging problem. The
difference is that the tagging is done without ac-
cess to any syntactic information so that the iden-
tified empty categories along with word tokens in
the sentence can then be fed into a parser. The suc-
cess of this approach depends on strong local cues
such as infinitive markers and participles, which
are non-existent in Chinese. Not surprisingly, our
model yields low accuracy if only lexical features
are used.

Cambell (2004) proposes an algorithm that uses
linguistic principles in empty category recovery.
He argues that a rule-based approach might per-
form well for this problem because the locations
of the empty categories, at least in English, are in-
serted by annotators who follow explicit linguistic
principles.

Yuqing(2007) extends (Cahill et al., 2004) ’s
approach for recovering English non-local depen-
dencies and applies it to Chinese. This paper pro-
poses a method based on the Lexical-Functional
Grammar f-structures, which differs from our ap-
proach. Based on parser output trees including
610 files from the CTB, the authors of this pa-
per claimed they have achieved 64.71% f-score for
trace insertion and 54.71% for antecedent recov-
ery.

(Gabbard et al., 2006) describes a more recent
effort to fully parse the Penn Treebank, recovering
both the function tags and the empty categories.
Their approach is similar to ours in that they treat
empty category recovery as a post-processing pro-
cess and use a machine learning algorithm that
has access to the skeletal information in the parse
tree. Their approach is different from ours in that

they have different classifiers for different types of
empty categories.

Although generally higher accuracies are re-
ported in works on English empty category re-
covery, cross-linguistic comparison is difficult be-
cause both the types of empty categories and
the linguistic cues that are accessible to machine
learning algorithms are different. For example,
there are no empty complementizers annotated in
the CTB while English does not allow dropped
pronouns.

6 Conclusion and future work

We describe a unified framework to recover empty
categories for Chinese given skeletal parse trees as
input. In this framework, empty detection is for-
mulated as a tagging problem where each word
in the sentence receives a tag indicating whether
there is an empty category before it. This ad-
vantage of this approach is that it is amenable to
learning-based approaches and can be addressed
with a variety of machine learning algorithms.
Our results based on a Maximum Entropy model
show that given skeletal gold standard parses,
empty categories can be recovered with very high
accuracy (close to 90%). We also report promis-
ing results (over 63%). when automatic parses
produced by an off-the-shelf parser is used as in-
put.

Detecting empty categories is only the first step
towards fully reproducing the syntactic represen-
tation in the CTB, and the obvious next step is to
also classify these empty categories into different
types and wherever applicable, link the empty cat-
egories to their antecedent. This is the line of re-
search we intend to pursue in our future work.
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