
Coling 2010: Poster Volume, pages 445–453,
Beijing, August 2010

Morphological analysis can improve a CCG parser for English

Matthew Honnibal, Jonathan K. Kummerfeld and James R. Curran
School of Information Technologies

University of Sydney
{mhonn,jono,james}@it.usyd.edu.au

Abstract

Because English is a low morphology lan-
guage, current statistical parsers tend to
ignore morphology and accept some level
of redundancy. This paper investigates
how costly such redundancy is for a lex-
icalised grammar such as CCG.

We use morphological analysis to split
verb inflectional suffixes into separate to-
kens, so that they can receive their own
lexical categories. We find that this im-
proves accuracy when the splits are based
on correct POS tags, but that errors in gold
standard or automatically assigned POS

tags are costly for the system. This shows
that the parser can benefit from morpho-
logical analysis, so long as the analysis is
correct.

1 Introduction

English is a configurational language, so gram-
matical functions are mostly expressed through
word order and function words, rather than with
inflectional morphology. Most English verbs have
four forms, and none have more than five. Most of
the world’s languages have far richer inflectional
morphology, some with millions of possible in-
flection combinations.

There has been much work on addressing the
sparse data problems rich morphology creates, but
morphology has received little attention in the En-
glish statistical parsing literature. We suggest that
English morphology may prove to be an under-
utilised aspect of linguistic structure that can im-
prove the performance of an English parser. En-
glish also has a rich set of resources available, so
an experiment that is difficult to perform with an-
other language may be easier to conduct in En-
glish, and a technique that makes good use of En-

glish morphology may transfer well to a morpho-
logically rich language. under-exploited in En-
glish natural language

In this paper, we show how morphological
information can improve an English statistical
parser based on a lexicalised formalism, Com-
binatory Categorial Grammar (CCG, Steedman,
2000), using a technique suggested for Turkish
(Bozsahin, 2002) and Korean (Cha et al., 2002).
They describe how a morphologically rich lan-
guage can be analysed efficiently with CCG by
splitting off inflectional affixes as morphological
tokens. This allows the affix to receive a cate-
gory that performs the feature coercion. For in-
stance, sleeping would ordinarily be assigned the
category S [ng]\NP : a sentence with the [ng] fea-
ture requiring a leftward NP argument. We split
the word into two tokens:

sleep -ing
S [b]\NP (S [ng]\NP)\(S [b]\NP)

The additional token creates a separate space
for inflectional information, factoring it away
from the argument structure information.

Even with only 5 verb forms in English, we
found that accurate morphological analysis im-
proved parser accuracy. However, the system had
trouble recovering from analysis errors caused by
incorrect POS tags.

We then tested how inflection categories in-
teracted with hat categories, a linguistically-
motivated extension to the formalism, proposed
by Honnibal and Curran (2009), that introduces
some sparse data problems but improves parser
effiency. The parser’s accuracy improved by 0.8%
when gold standard POS tags were used, but not
with automatic POS tags. Our method addresses
problems caused by even low morphology, and
future work will make the system more robust to
POS tagging errors.

445

2 Combinatory Categorial Grammar

Combinatory Categorial Grammar (CCG, Steed-
man, 2000) is a lexicalised grammar, which means
that each word in the sentence is associated with
a category that specifies its argument structure
and the type and features of the constituent that
it heads. For instance, in might head a PP -typed
constituent with one NP -typed argument, written
as PP/NP . The / operator denotes an argument
to the right; \ denotes an argument to the left.
For example, a transitive verb is a function from
a rightward NP to and a leftward NP to a sen-
tence, (S\NP)/NP . The grammar consists of a
few schematic rules to combine the categories:

X /Y Y ⇒> X

Y X \Y ⇒< X

X /Y Y /Z ⇒
>B X /Z

Y \Z X \Y ⇒
<B X \Z

Y /Z X \Y ⇒
<B×

X /Z

CCGbank (Hockenmaier and Steedman, 2007)
extends this grammar with a set of type-changing
rules, designed to strike a better balance between
sparsity in the category set and ambiguity in the
grammar. We mark such productions TC.

In wide-coverage descriptions, categories are
generally modelled as typed feature structures
(Shieber, 1986), rather than atomic symbols. This
allows the grammar to include head indices, and
to unify under-specified features. In our nota-
tion features are annotated in square-brackets, e.g.
S [dcl]. Head-finding indices are annotated on
categories as subscripts, e.g. (NPy\NPy)/NPz .
We occasionally abbreviate S\NP as VP , and
S [adj]\NP as ADJ .

2.1 Statistical CCG parsing and morphology
In CCGbank, there are five features that are
largely governed by the inflection of the verb:

writes/wrote (S [dcl]\NP)/NP
(was) written (S [pss]\NP)/NP
(has) written (S [pt]\NP)/NP
(is) writing (S [ng]\NP)/NP
(to) write (S [b]\NP)/NP

The features are necessary for satisfactory anal-
yses. Without inflectional features, there is no

way to block over-generation like has running or
was ran. However, the inflectional features also
create a level of redundancy if the different in-
flected forms are treated as individual lexical en-
tries. The different inflected forms of a verb will
all share the same set of potential argument struc-
tures, so some way of grouping the entries to-
gether is desirable.

Systems like the PET HPSG parser (Oepen et al.,
2004) and the XLE LFG parser (Butt et al., 2006)
use a set of lexical rules that match morphologi-
cal operations with transformations on the lexical
categories. For example, a lexical rule is used to
ensure that an intransitive verb like sleeping re-
ceives the same argument structure as the base
form sleep, but with the appropriate inflectional
feature. This scheme works well for rule-based
parsers, but it is less well suited for statistical
parsers, as the rules propose categories but do not
help the model estimate their likelihood or assign
them feature weights.

Statistical parsers for lexicalised formalisms
such as CCG are very sensitive to the number of
categories in the lexicon and the complexity of
the mapping between words and categories. The
sub-task of assigning lexical categories, supertag-
ging (Bangalore and Joshi, 1999), is most of the
parsing task. Supertaggers mitigate sparse data
problems by using a label frequency threshold to
prune rare categories from the search space. Clark
and Curran (2007) employ a tag dictionary that re-
stricts the model to assigning word/category pairs
seen in the training data for frequent words.

The tag dictionary causes some level of under-
generation, because not all valid word/category
pairs will occur in the limited training data avail-
able. The morphological tokens we introduce help
to mitigate this, by bringing together what were
distinct verbs and argument structures, using lem-
matisation and factoring inflection away from ar-
gument structures. The tag dictionaries for the in-
flectional morphemes will have very high cover-
age, because there are only a few inflectional cat-
egories and a few inflectional types.

3 Inflectional Categories

We implement the morphemic categories that
have been discussed in the CCG literature

446

be −ing good and do −ing good

(S [b]\NP)/ADJ (S [ng]\NP)\(S [b]\NP) ADJ conj (S [b]\NP)/NP (S [ng]\NP)\(S [b]\NP) NP
<B× <B×

(S [ng]\NP)/ADJ (S [ng]\NP)/NP
> >

S [ng]\NP S [ng]\NP
<Φ>

(S [ng]\NP)\(S [ng]\NP)
<

S [ng]\NP

Figure 1: A single inflection category (in bold) can serve many different argument structures.
(Bozsahin, 2002; Cha et al., 2002). The inflected
form is broken into two morphemes, and each is
assigned a category. The category for the inflec-
tional suffix is a function from a category with the
bare-form feature [b] to a category that has an in-
flectional feature. This prevents verbal categories
from having to express their inflectional features
directly. Instead, their categories only have to ex-
press their argument structure.

The CCG combinators allow multiple argument
structures to share a single inflectional category.
For instance, the (S [ng]\NP)\(S [b]\NP) cate-
gory can supply the [ng] feature to all categories
that have one leftward NP argument and any
number of rightward arguments, via the gener-
alised backward composition combinator. Fig-
ure 1 shows this category transforming two dif-
ferent argument structures, using the backward
crossed composition rule (<B×).

Table 1 shows the most frequent inflection cat-
egories we introduce. The majority of inflected
verbs in the corpus have a subject and some num-
ber of rightward arguments, so we can almost
assign one category per feature. The most fre-
quent exceptions are participles that function as
pre-nominal modifiers and verbs of speech.

Table 2 shows the inflectional token types we
introduce and which features they correspond to.
Our scheme largely follows the Penn Treebank
tag set (Bies et al., 1995), except we avoided dis-
tinguishing past participles from past tense (-en
vs -ed), because this distinction was a significant
source of errors for our morphological analysis
process, which relies on the part-of-speech tag.

3.1 Creating Training Data
We prepared a version of CCGbank (Hocken-
maier and Steedman, 2007) with inflectional to-
kens. This involved the following steps:

Correcting POS tags: Our morphological anal-

Freq. Category Example
32.964 (S [dcl]\NP)\(S [b]\NP) He ran
11,431 (S [pss]\NP)\(S [b]\NP) He was run down
11,324 (S [ng]\NP)\(S [b]\NP) He was running

4,343 (S [pt]\NP)\(S [b]\NP) He has run
3,457 (N /N)\(S [b]\NP) the running man
2,011 S [dcl]\S “..”, he says
1,604 (S [dcl]\S)\(S [b]\S) “..”, said the boy

169 (S [dcl]\ADJ)\(S [b]\ADJ) Here ’s the deal
55 (S [dcl]\PP)\(S [b]\PP) On it was a bee

Table 1: The inflectional categories introduced.
Token POS Feat Example

-es VBZ dcl He write -es letters
-e VBP dcl They write -e letters

-ed VBD dcl They write -ed letters
-ed VBN pt They have write -ed letters
-ed VBN pss Letters were write -ed
-ing VBG ng They are write -ing letters

Table 2: The inflectional token types introduced.

ysis relies on the part-of-speech tags provided
with CCGbank. We identified and corrected
words whose POS tags were inconsistent with their
lexical category, as discussed in Section 3.2.

Lemmatising verbs and removing features:
We used the morphy WordNet lemmatiser imple-
mented in NLTK1 to recover the lemma of the in-
flected verbs, identified by their POS tag (VBP,
VBG, VBN or VBZ). The verb’s categories were
updated by switching their features to [b].

Deriving inflectional categories: The gener-
alised backward composition rules allow a func-
tor to generalise over some sequence of ar-
gument categories, so long as they all share
the same directionality. For instance, a func-
tor (S\NP)\(S\NP) could backward cross-
compose into a category ((S\NP)/NP)/PP to
its left, generalising over the two rightward ar-
guments that were not specified by the functor’s
argument. It could not, however, compose into
a category like ((S\NP)\NP)/PP , because the
two arguments (NP and PP) have differing direc-

1http://www.nltk.org

447

Freq. From To Examples
1056 VBG IN including, according, following

379 VBN JJ involved, related, concerned
351 VBN IN compared, based, given
274 VBG NN trading, spending, restructuring
140 VBZ NN is, ’s, has
102 VB VBP sell, let, have

53 VBZ MD does, is, has
45 VBG JJ pending, missing, misleading
41 VBP MD do, are, have
40 VBD MD did, were, was

334 All others
2,815 Total

Table 3: The most frequent POS tag conversions.

tionalities (leftward and rightward).
Without this restriction, we would only require

one inflection category per feature, using inflec-
tional categories like S [ng]\S [b]. Instead, our in-
flectional categories must subcategorise for every
argument except the outermost directionally con-
sistent sequence. We discard this outermost con-
sistent sequence, remove all features, and use the
resulting category as the argument and result. We
then restore the result’s feature, and set the argu-
ment’s feature to [b].

Inserting inflectional tokens: Finally, the in-
flectional token is inserted after the verb, with a
new node introduced to preserve binarisation.

3.2 POS tag corrections
Hockenmaier and Steedman (2007) corrected sev-
eral classes of POS tag errors in the Penn Treebank
when creating CCGbank. We follow Clark and
Curran (2007) in using their corrected POS labels,
but found that there were still some words with in-
consistent POS tags and lexical categories, such as
building|NN|(S[dcl]\NP)/NP.

In order to make our morphological anal-
ysis more consistent, we identify and correct
such POS tagging errors as follows. We
use two regular expressions to identify ver-
bal lexical categories and verbal POS tags:
ˆ\(*S\[(dcl|pss|ng|pt|b)\] and
AUX|MD|V.. respectively. If a word has a
verbal lexical category and non-verbal POS, we
correct its POS tag with reference to its suffix and
its category’s inflectional feature. If a word has a
verbal POS tag and a non-verbal lexical category,
we select the POS tag that occurs most frequently
with its lexical category.

The only exception are verbs functioning as
nominal modifiers, such as running in the running
man, which are generally POS tagged VBG but re-
ceive a lexical category of N /N . We leave these
POS tagged as verbs, and instead analyse their
suffixes as performing a form-function transfor-
mation that turns them from S [b]\NP verbs into
N /N adjectives — (N /N)\(S [b]\NP).

Table 3 lists the most common before-and-
after POS tag pairs from our corrections, and the
words that most frequently exemplified the pair.
When compiling the table some clear errors came
to light, such as the ‘correction’ of is|VBZ to
is|NN. These errors may explain why the POS

tagger’s accuracy drops by 0.1% on the corrected
set, and suggest that the problem of aligning POS

tags and supertags is non-trivial.
In light of these errors, we experimented

with an alternate strategy. Instead of cor-
recting the POS tags, we introduced null
inflectional categories that compensated
for bad morphological tokenisation such as
accord|VBG|(S/S)/PP -ing|VIG|-.
The null inflectional category does not interact
with the rest of the derivation, much like a punc-
tuation symbol. This performed little better than
the baseline, showing that the POS tag corrections
made an important contribution, despite the
problems with our technique.

3.3 Impact on CCGbank Lexicon
Verbal categories in CCGbank (Hockenmaier and
Steedman, 2007) record both the valency and the
inflectional morphology of the verb they are as-
signed to. This means v × i categories are re-
quired, where v and i are the number of distinct ar-
gument structures and inflectional features in the
grammar respectively.

The inflectional tokens we propose allow in-
flectional morphology to be largely factored away
from the argument structure, so that roughly v+ i
verbal categories are required. A smaller category
set leads to lower category ambiguity, making the
assignment decision easier.

Table 4 summarises the effects of inflection cat-
egories on the lexicon extracted from CCGbank.
Clark and Curran (2007) extract a set of 425 cate-
gories from the training data (Sections 02-21) that

448

consists of all categories that occur at least 10
times. The frequency cut off is used because the
model will not have sufficient evidence to assign
the other 861 categories that occur at least once,
and their distribution is heavy tailed: together,
they only occur 1,426 times. We refer to the fre-
quency filtered set as the lexicon. The parser can-
not assign a category outside its lexicon, so gaps
in it cause under-generation.

The CCGbank lexicon includes 159 verbal cat-
egories. There are 74 distinct argument structures
and 5 distinct features among these verbal cate-
gories. The grammar Clark and Curran (2007)
learn therefore under-generates, because 211 of
the 370 (5 × 74) argument structure and feature
combinations are rare or unattested in the training
data. For instance, there is a (S [dcl]\NP)/PP
category, but no corresponding (S [b]\NP)/PP ,
making it impossible for the grammar to generate
a sentence like I want to talk to you, as the cor-
rect category for talk in this context is missing. It
would be trivial to add the missing categories to
the lexicon, but a statistical model would be un-
able to reproduce them. There are 8 occurrences
of such missing categories in Section 00, the de-
velopment data.

The reduction in data sparsity brought by the in-
flection categories causes 22 additional argument
structures to cross the frequency threshold into
the lexicon. A grammar induced from this cor-
pus is thus able to generate 480 (96×5) argument
structure and feature combinations, three times as
many as could be generated before.

We introduce 15 inflectional categories in the
corpus. The ten most frequent are shown in Table
1. The combinatory rules allow these 15 inflection
categories to serve 96 argument structures, reduc-
ing the number of verbal categories in the lexicon
from 159 to 89 (74 + 15).

The statistics at frequency 1 are less reliable,
because many of the categories may be linguisti-
cally spurious: they may be artefacts caused by
annotation noise in the Penn Treebank, or the
conversion heuristics used by Hockenmaier and
Steedman (2007).

≥ CCGbank +Inflect
Inflection categories 10 0 15
Argument structures 10 74 96
Verb categories generated 10 159 480
All categories 10 425 375
Inflection categories 1 0 31
Argument structures 1 283 283
Verbs categories generated 1 498 1415
All categories 1 1285 1120

Table 4: Effect of inflection tokens on the category set for
categories with frequency ≥ 10 and ≥ 1

3.4 Configuration of parsing experiments
We conducted two sets of parsing experiments,
comparing the impact of inflectional tokens on
CCGbank (Hockenmaier and Steedman, 2007)
and hat CCGbank (Honnibal and Curran, 2009).
The experiments allow us to gauge the impact of
inflectional tokens on versions of CCGbank with
differing numbers of verbal categories.

We used revision 1319 of the C&C parser2

(Clark and Curran, 2007), using the best-
performing configuration they describe, which
used the hybrid dependency model. The most
important hyper-parameters in their configuration
are the β and K values, which control the work-
flow between the supertagger and parser. We use
the Honnibal and Curran (2009) values of these
parameters in our hat category experiments, de-
scribed in Section 5.

Accuracy was evaluated using labelled depen-
dency F -scores (LF). CCG dependencies are la-
belled by the head’s lexical category and the ar-
gument slot that the dependency fills. We evalu-
ated the baseline and inflection parsers on the un-
modified dependencies, to allow direct compari-
son. For the inflection parsers, we pre-processed
the POS-tagged input to introduce inflection to-
kens, and post-processed it to remove them.

We follow Clark and Curran (2007) in not
evaluating accuracy over sentences for which the
parser returned no analysis. The percentage of
sentences analysed is described as the parser’s
coverage (C). Speed (S) figures refer to sentences
parsed per second (including failures) on a dual-
CPU Pentium 4 Xeon with 4GB of RAM.

2http://trac.ask.it.usyd.edu.au/candc

449

4 Parsing Results on CCGbank

Table 5 compares the performance of the parser
on Sections 00 and 23 with and without inflection
tokens. Section 00 was used for development ex-
periments to test different approaches, and Section
23 is the test data. Similar effects were observed
on both evaluation sections.

The inflection tokens had no significant impact
on speed or coverage, but did improve accuracy
by 0.49% F -measure when gold standard POS

tags were used, compared to the baseline. How-
ever, some of the accuracy improvement can be
attributed to the POS tag corrections described in
Section 3.2, so the improvement from the inflec-
tion tokens alone was 0.39%.

The POS tag corrections caused a large drop in
performance when automatic POS tags were used.
We attribute this to the imperfections in our cor-
rection strategy. The inflection tokens improved
the accuracy by 0.39%, but this was not large
enough to correct for the drop in accuracy caused
by the POS changes.

Another possibility is that our morphological
analysis makes POS tagger errors harder to re-
cover from. Instead of an incorrect feature value,
POS tag errors can now induce poor morphologi-
cal splits such as starl|VBG -ing|VIG. POS

tagging errors are already problematic for the C&C

parser, because only the highest ranked tag is
forwarded to the supertagger as a feature. Our
morphological analysis strategy seems to exacer-
bate this error propagation problem. Curran et al.
(2006) showed that using a beam of POS tags as
features in the supertagger and parser mitigated
the loss of accuracy from POS tagging errors. Un-
fortunately, with our morphological analysis strat-
egy, POS tag variations change the tokenisation
of a sentence, making parsing more complicated.
Perhaps the best solution would be to address the
tagging errors in the treebank more thoroughly,
and reform the annotation scheme to deal with
particularly persistant error cases. This might im-
prove POS tag accuracy to a level where errors are
rare enough to be unproblematic.

Despite the limited morphology in English, the
inflectional tokens improved the parser’s accuracy
when gold standard POS tags were supplied. We

Gold POS Auto POS
LF S C LF S C

Baseline 00 87.19 22 99.22 85.28 24 99.11
+POS 00 87.46 24 99.16 85.04 23 99.05
+Inflect 00 87.81 24 99.11 85.33 23 98.95
Baseline 23 87.69 36 99.63 85.50 36 99.58
+POS 23 87.79 36 99.63 85.06 36 99.50
+Inflect 23 88.18 36 99.58 85.42 33 99.34

Table 5: Effect of POS changes and inflection tokens on
accuracy (LF), speed (S) and coverage (C) on 00 and 23.

attribute the increase in accuracy to the more ef-
ficient word-to-category mapping caused by re-
placing inflected forms with lemmas, and feature-
bearing verb categories with ones that only refer to
the argument structure. We examined this hypoth-
esis by performing a further experiment, to inves-
tigate how inflection tokens interact with hat cat-
egories, which introduce additional verbal cate-
gories that represent form-function discrepancies.

5 Inflection Tokens and Hat Categories

Honnibal and Curran (2009) introduce an exten-
sion to the CCG formalism, hat categories, as an
alternative way to solve the modifier category pro-
liferation (MCP) problem. MCP is caused when
a modifier is itself modified by another modi-
fier. For instance, in the sentence he was in-
jured running with scissors, with modifies run-
ning, which modifies injured. This produces the
category ((VP\VP)\(VP\VP))/NP for with, a
rare category that is sensitive to too much of the
sentence’s structure.

Hockenmaier and Steedman (2007) address
MCP by adding type-changing rules to CCGbank.
These type-changing rules transform specific cat-
egories. They are specific to the analyses in the
corpus, unlike the standard combinators, which
are schematic and language universal. Honnibal
and Curran’s (2009) contribution is to extend the
formalism to allow these type-changing rules to
be lexically specified, restoring universality to the
grammar — but at the cost of sparse data problems
in the lexicon. Figure 2 shows how a reduced rel-
ative clause is analysed using hat categories. The
hat category (S [pss]\NP)NP\NP is subject to the
unhat rule, which unarily replaces it with its hat,
NP\NP , allowing it to function as a modifier.

Hat categories have a practical advantage for a
parser that uses a supertagging phase (Bangalore

450

The company bought by Google last year is profitable

NP/N N (S [pss]\NP)NP\NP (VP\VP)/NP NP NPVP\VP/N N (S [dcl]\NP)/ADJ ADJ
> > > >

NP VP\VP NPVP\VP S [dcl]\NP
<

(S [pss]\NP)NP\NP

<

(S [pss]\NP)NP\NP

H
NP\NP

<
NP

<
S [dcl]

Figure 2: CCG derivation showing hat categories and the unhat rule.

The company buy −ed by Google last year

NP/N N S [b]\NP (S [pss]\NP)NP\NP\(S [b]\NP) (VP\VP)/NP NP NPVP\VP/N N
> < > >

NP (S [pss]\NP)NP\NP VP\VP NPVP\VP

< H

(S [pss]\NP)NP\NP VP\VP
<

(S [pss]\NP)NP\NP

H
NP\NP

<
NP

Figure 3: CCG derivation showing how inflectional tokens interact with hat categories.
and Joshi, 1999), such as the C&C system (Clark
and Curran, 2007). By replacing type-changing
rules with additional lexical categories, more of
the work is shifted to the supertagger. The su-
pertagging phase is much more efficient than the
chart parsing stage, so redistribution of labour
makes the parser considerably faster.

Honnibal and Curran (2009) found that the
parser was 37% faster on the test set, at a cost
of 0.5% accuracy. They attribute the drop in ac-
curacy to sparse data problems for the supertag-
ger, due to the increase in the number of lexical
categories. We hypothesised that inflectional cate-
gories could address this problem, as the two anal-
yses interact well.

5.1 Analyses with inflectional hat categories
Using hat categories to lexicalise type-changing
rules offers attractive formal properties, and some
practical advantages. However, it also misses
some generalisations. A type-changing operation
such as S [ng]\NP → NP\NP must be avail-
able to any VP. If we encounter a new word, The
company is blagging its employees, we can gen-
eralise to the reduced relative form, She works for
that company blagging its employees with no ad-
ditional information.

This property could be preserved with some

form of lexical rule, but a novel word-category
pair is difficult for a statistical model to assign.
Inflection tokens offer an attractive solution to this
problem, as shown in Figure 3. Assigning the hat
category to the suffix makes it available to any
verb the suffix follows — it is just another func-
tion the inflectional suffix can perform. This gen-
erality also makes it much easier to learn, because
it does not matter whether the training data hap-
pens to contain examples of a given verb perfom-
ing that grammatical function.

We prepared a version of the Honnibal and
Curran (2009) hat CCGbank, moving hats on to
inflectional categories wherever possible. The
hat CCGbank’s lexicon contained 105 hat cate-
gories, of which 77 were assigned to inflected
verbs. We introduced 33 inflection hat cate-
gories in their place, reducing the number of
hat categories by 27.9%. Fewer hat categories
were required because different argument struc-
tures could be served by the same inflection cat-
egory. For instance, the (S [ng]\NP)NP\NP and
(S [ng]\NP)NP\NP/NP categories were both re-
placed by the (S [ng]\NP)NP\NP\(S [b]\NP)
category. Table 6 lists the most frequent inflection
hat categories we introduce.

451

Freq. Category

3332 (S [pss]\NP)NP\NP\(S [b]\NP)

1518 (S [ng]\NP)NP\NP\(S [b]\NP)

1231 (S [ng]\NP)(S\NP)\(S\NP)\(S [b]\NP)

360 ((S [dcl]\NP)/NP)NP\NP\((S [b]\NP)/NP)
316 (S [ng]\NP)NP\(S [b]\NP)

234 ((S [dcl]\NP)/S)S/S\((S [b]\NP)/S)

209 (S [ng]\NP)S/S\(S [b]\NP)

162 (S [dcl]NP\NP\NP)\(S [b]\NP)

157 ((S [dcl]\NP)/S)VP/VP\((S [b]\NP)/S)

128 (S [pss]\NP)S/S\(S [b]\NP)

Table 6: The most frequent inflection hat categories.

5.2 Parsing results
Table 7 shows the hat parser’s performance with
and without inflectional categories. We used the
values for the β and K hyper-parameters de-
scribed by Honnibal and Curran (2009). These
hyper-parameters were tuned on Section 00, and
some over-fitting seems apparent. We also fol-
lowed their dependency conversion procedure, to
allow evaluation over the original CCGbank de-
pendencies and thus direct comparison with Table
5. We also merged the parser changes they de-
scribed into the development version of the C&C

parser we are using, for parse speed comparison.
Interestingly, incorporating the hat changes into

the current version has increased the advantage
of the hat categories. Honnibal and Curran re-
port a 37% improvement in speed for the hybrid
model (which we are using) on Section 23, using
gold standard POS tags. With our version of the
parser, the improvement is 86% (36 vs. 67 sen-
tences parsed per second).

With gold standard POS tags, the inflection to-
kens improved the hat parser’s accuracy by 0.8%,
but decreased its speed by 24%. We attribute
the decrease in speed to the increase in sentence
length coupled with the new uncertainty on the
inflectional tokens. Coverage increased slightly
with gold standard POS tags, but decreased with
automatic POS tags. We attribute this to the fact
that POS tagging errors lead to morphological
analysis errors.

The accuracy improvement on the hat corpus
was more robust to POS tagging errors than the
CCGbank results, however. This may be be-
cause POS tagging errors are already quite prob-
lematic for the hat category parser. POS tag fea-

Gold POS Auto POS
LF S C LF S C

Hat baseline 00 87.08 32 99.53 84.67 34 99.32
Hat inflect 00 87.85 37 99.63 84.99 30 98.95
Hat baseline 23 87.26 67 99.50 84.93 53 99.58
Hat inflect 23 88.06 54 99.63 85.25 43 99.38

Table 7: Effect of inflection tokens on accuracy (LF),
speed (S) and coverage (C) on Sections 00 and 23.

tures are more important for the supertagger than
the parser, and the supertagger performs more of
the work for the hat parser.

6 Conclusion

Lexicalised formalisms like CCG (Steedman,
2000) and HPSG (Pollard and Sag, 1994) have
led to high-performance statistical parsers of En-
glish, such as the C&C CCG parser (Clark and
Curran, 2007) and the ENJU HPSG (Miyao and
Tsuji, 2008) parser. The performance of these
parsers can be partially attributed to their theoret-
ical foundations. This is particularly true of the
C&C parser, which exploits CCG’s lexicalisation
to divide the parsing task between two integrated
models (Clark and Curran, 2004).

We have followed this formalism-driven ap-
proach by exploiting morphology for English syn-
tactic parsing, using a strategy designed for mor-
phologically rich languages. Combining our tech-
nique with hat categories leads to a 20% improve-
ment in efficiency, with a 0.25% loss of accuracy.
If the POS tag error problem were addressed, the
two strategies combined would improve efficiency
by 50%, and improve accuracy by 0.37%. These
results illustrate that linguistically motivated solu-
tions can produce substantial practical advantages
for language technologies.

Acknowledgments

We would like to thank the anonymous reviewers
for their feedback, and the members of the CCG-
technicians mailing list for discussion about some
of our analyses. Matthew Honnibal was supported
by Australian Research Council (ARC) Discovery
Grant DP0665973. James Curran was supported
by ARC Discovery grant DP1097291 and the Cap-
ital Markets Cooperative Research Centre.

452

References

Srinivas Bangalore and Aravind Joshi. 1999. Su-
pertagging: An approach to almost parsing.
Computational Linguistics, 25(2):237–265.

Ann Bies, Mark Ferguson, Karen Katz, and
Robert MacIntyre. 1995. Bracketing guidelines
for Treebank II style Penn Treebank project.
Technical report, MS-CIS-95-06, University of
Pennsylvania, Philadelphia, PA, USA.

Cem Bozsahin. 2002. The combinatory mor-
phemic lexicon. Computational Linguistics,
28(2):145–186.

Miriam Butt, Mary Dalrymple, and Tracy H.
King, editors. 2006. CSLI Publications, Stan-
ford, CA.

Jeongwon Cha, Geunbae Lee, and Jonghyeok
Lee. 2002. Korean Combinatory Categorial
Grammar and statistical parsing. Computers
and the Humanities, 36(4):431–453.

Stephen Clark and James R. Curran. 2004. The
importance of supertagging for wide-coverage
CCG parsing. In Proceedings of 20th Interna-
tional Conference on Computational Linguis-
tics, pages 282–288. Geneva, Switzerland.

Stephen Clark and James R. Curran. 2007. Wide-
coverage efficient statistical parsing with CCG
and log-linear models. Computational Linguis-
tics, 33(4):493–552.

James R. Curran, Stephen Clark, and David
Vadas. 2006. Multi-tagging for lexicalized-
grammar parsing. In Proceedings of the Joint
Conference of the International Committee on
Computational Linguistics and the Association
for Computational Linguistics, pages 697–704.
Sydney, Austrailia.

Julia Hockenmaier and Mark Steedman. 2007.
CCGbank: a corpus of CCG derivations
and dependency structures extracted from the
Penn Treebank. Computational Linguistics,
33(3):355–396.

Matthew Honnibal and James R. Curran. 2009.
Fully lexicalising CCGbank with hat cate-
gories. In Proceedings of the 2009 Conference
on Empirical Methods in Natural Language
Processing, pages 1212–1221. Singapore.

Yusuke Miyao and Jun’ichi Tsuji. 2008. Feature
forest models for probabilistic HPSG parsing.
Computational Linguistics, 34(1):35–80.

Stepan Oepen, Daniel Flickenger, Kristina
Toutanova, and Christopher D. Manning. 2004.
LinGO Redwoods. a rich and dynamic treebank
for HPSG. Research on Language and Compu-
tation, 2(4):575–596.

Carl Pollard and Ivan Sag. 1994. Head-Driven
Phrase Structure Grammar. The University of
Chicago Press, Chicago.

Stuart M. Shieber. 1986. An Introduction to
Unification-Based Approaches to Grammar,
volume 4 of CSLI Lecture Notes. CSLI Pub-
lications, Stanford, CA.

Mark Steedman. 2000. The Syntactic Process.
The MIT Press, Cambridge, MA, USA.

453

