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Abstract 

Data-driven learning based on shift reduce pars-
ing algorithms has emerged dependency parsing 
and shown excellent performance to many Tree-
banks. In this paper, we investigate the extension 
of those methods while considerably improved 
the runtime and training time efficiency via L2-
SVMs. We also present several properties and 
constraints to enhance the parser completeness in 
runtime. We further integrate root-level and bot-
tom-level syntactic information by using sequen-
tial taggers. The experimental results show the 
positive effect of the root-level and bottom-level 
features that improve our parser from 81.17% to 
81.41% and 81.16% to 81.57% labeled attach-
ment scores with modified Yamada’s and Nivre’s 
method, respectively on the Chinese Treebank. In 
comparison to well-known parsers, such as Malt-
Parser (80.74%) and MSTParser (78.08%), our 
methods produce not only better accuracy, but 
also drastically reduced testing time in 0.07 and 
0.11, respectively. 

1 Introduction 

With the late development of Chinese Treebank 
(Xue et al. 2005), parsing Chinese is still an ongo-
ing research issue. The goal of dependency parsing 
is to find the head-modifier (labeled) relations in 
texts. Though some of the parsing algorithms are 
language independent and show state-of-the-art per-
formance on multilingual dependency Treebanks 
(Nivre et al., 2007; Buchholz and Marsi, 2006), they 
are often too slow for online purpose. Therefore, to 
develop an efficient and effective dependency 
parser is indispensable. 

Over the past few years, several research studies 
had addressed the use of shift-reduce and edge-
factored-based approaches attend fairly accurate 
performance in Chinese (Cheng et al., 2005; Hall, 
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2005; Wang et al., 2006). The former (shift-reduce) 
is a linear time algorithm, while the latter involves 
n3 for decoding where n is the length of sentence. 
Even the shift-reduce approaches seems to be very 
efficient, most studies (Hall et al., 2007; Nivre et al., 
2006) yet employ nonlinear kernel methods such as 
polynomial kernel support vector machines (SVMs). 
Furthermore, there is no research work directly 
compare with the two methods with Chinese Tree-
bank. Nevertheless, the empirical training and test-
ing time comparisons of those methods has not been 
reported yet. 

In this paper, we present an efficient and robust 
parser for Chinese based on linear classifiers and 
shift-reduce parsing algorithms. We propose several 
useful properties to enhance the completeness of the 
two well-known shift-reduce algorithms, namely 
Nivre’s shift reduce (NSR) (Nivre, 2003) and 
Yamada’s shift reduce (YSR) (Yamada and 
Matsumoto, 2003) algorithms. To enhance the 
performance, we add root and bottom (neighbor) 
information by adopting sequential taggers. We also 
perform experiments on the Chinese Treebank and 
compare with two of the state-of-the-art parsers. 

2 Parsing Algorithms 

At the beginning, we briefly review the selected two 
parsing algorithm as follows. The NSR makes use 
of four parse actions to incrementally construct the 
dependency graph. By following the same notations 
as (Nivre, 2003), NSR initializes with (S, I, A) = (φ , 
W, φ ) where S is the stack (represented as a list), I 
is the queue initiated with all words, and A is the set 
of directed and labeled edges for the dependency 
graph. The stack is a list of words whose parent or 
child has not been found entirely. NSR incremen-
tally parses a pair of words (one is the top of the 
stack and the other is the first word of the queue) 
and uses four parse actions to construct the depend-
ency graph. The four parse actions are: {Left-Arc 
(LA), Right-Arc (RA), Shift, Reduce}. Both LA and 
RA could be parameterized with a dependence rela-
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tion type. By parsing a pair of words step-by-step, 
the parser terminates when the queue is empty. 

Similar to NSR, YSR constructs the dependency 
graph by incrementally parse a pair of no_head 
words. The original YSR algorithm (Yamada and 
Matsumoto, 2003) makes use of three parse actions 
to parse a sentence left-to-right and involves n2 
parser transitions. Recently, Chang et al. (2006) 
showed that by adding an extra parse action Wait-
Left and performing the “step-back” operation can 
accomplish parse in linear time. The step-back 
means that after an action determined, the parse pair 
moves back with except for Shift action. Wait-Left is 
mainly proposed to wait the next word until all its 
right children having attached to heads. In this paper, 
we employ such modification to form our basic 
YSR algorithm. 

2.1 Useful Properties 

We give more formal definitions of the dependency 
graph as follows.  

Let R = {r1, r2, r3,…, rN} be the finite set of de-
pendency arc labels with N types. A dependency 
graph G =(W, A) where W is the string of words W = 
w1, w2, w3, etc. and A is the set of directed labeled 
arcs (wx, r, wy) where r∈R, and wx, wy∈W. For a 
parse pair wx and wy in a sentence, we introduce the 
following notation: 

1. wx→wy: wx is the head of wy, and wx←wy: wy is 
the head of wx. 

2. wx < wy: word wx is on the left hand side of 
word wy in the sentence. 

3. (wx, r, wy): denotes the word wy is the head of 
wx with relation r. 

Definition 1: Valid dependency graph 
A dependency graph G is well formed and valid iff 
the following conditions are true. 
  1. G is connected 
  2. G is acyclic (cycle free) 
  3. G is projective 
  4. For each node in G, there is only one parent ex-

cept the root word 
  5. G is a single rooted graph 
Definition 2: Parse pair 
When the parsing algorithm considers a pair of 
word (wx, wy), we name the pair “parse pair”. 

Definition 1 gives the formal definition of a valid 
dependency graph. Condition 3 and condition 5 are 
not always true for all languages. For example, 
there are multiple roots in Arabic dependency Tree-
bank, while the dependency graph is usually non-
projective according to the linguistic characteristics. 
Fortunately the dependency graphs in Chinese are 
fully projective and single rooted and thus compati-
ble with Definition 1. 

However, we can not always assume the classi-
fier is perfect. During run-time, the classifier might 

make incorrect decision which leads to incorrect 
parse graph and even constructs an incomplete and 
invalid parse graph.  For example, for NSR it is usu-
ally retain more than two words that are not at-
tached to their heads in the stack. To solve it, we 
propose the following properties to enhance the 
completeness of the original NSR/YSR parsers. 
Definition 3: One word sentence 
If there is only one unparsed word, then it must be 
the root. 
Proposition 4: Constrained parsing I 
For a parse pair (wx, wy), if the head of wx is not 
found previously, then the parse action Reduce is 
invalid. 
Proof. The parse action Reduce will remove wx 
from the stack and leads to an unconnected and 
multiple roots dependency graph (violates definition 
1).  
Proposition 5: Unique pair parsing 
If there are only two unparsed words in G, then the 
parse action of this pair of words is limited to be 
{LA, RA}. 
Proof. Clearly if the parse action is Reduce, then it 
violates Proposition 4 (unconnected graph). Simi-
larly when applying Shift, the state does not change, 
i.e., there are still two unparsed words. Nonetheless, 
by applying either LA or RA, the two isolated words 
will be linked and gives a connected graph. 
Proposition 6: Constrained parsing II 
For a parse pair (wx, wy), if the head of wx is found, 
then the parse action RA is invalid. 
Proof. Assume the head of wx is wm. If the parser 
predicts RA, then it regards wy as the head of wx. 
Therefore it violates Definition 1 (for each word 
there should be at most one head in the sentence). 
On the other hand, actions Reduce and Shift do not 
change the structure of G and is intuitively valid 
parsing actions. In the case of LA, by adding the 
edge from wx to wy, the dependency graph does not 
violate definition 1. Thus, LA is also a valid action. 

Definition 3 is very common and intuitively seen 
in the case of one word parsing at the final stage. 
The Proposition 4 limits the parser actions that 
bring about a single-rooted dependency graph. 
Proposition 5 is particularly useful when there are 
only two unparsed words in the stack for the NSR. 
On the basis of the original NSR algorithm, the 
parse work is done when the input queue is empty. 
However, words will be shift and put onto the stack 
if their heads are not found currently. Finally if the 
queue is empty and these words are still retained in 
the stack, then it will produce multiple roots and 
lead to an unconnected graph. Proposition 6 is pro-
posed to avoid the case of multiple heads in the sen-
tence when there are two no-head words. To handle 
more than two words on the stack, the “step-back” 
operation is used.  
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Some of the above properties can also be applied 
to YSR with slightly modifications. We skip the 
details here owing to the space constraints. 
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Figure 1: An example of Chinese dependency graph 

3 Root and Neighbor Information 

In general, the shift-reduce parsing algorithm in-
crementally parse a pair of words until the final 
parse graph has built. However, it is usually the case 
that when an error decision made at earlier stage, 
the real heads of the following words will be mis-
attached. In particular the head is nearby the current 
pair of words. Similarly if the root word is misclas-
sified as a child of other word, then the all nodes 
immediately modified by the root will attached to 
the wrong root.  

One solution to improve this problem is to en-
hance the root and bottom (neighbor) information 
during parse. To obtain such information, we em-
ploy the sequential taggers to predict. That is one 
sequential tagger learns to determine whether the 
current word is the child of its left/right word or 
none of them while the other is to recognize the root 
word. For example, if the word is labeled as “left-
Mod”, then it means its left word is the head of it 
and the relation tag is “Mod”. 

Finding root in Chinese is even simpler, since 
there is only one root word in the same sentence in 
Chinese Treebank. Here, we adopt the same tech-
nology to label the root by using sequential taggers. 
Such solution had also been applied to English 
Treebank where a polynomial kernel SVM was used 
(Isozaki et al., 2004). However, there are two differ-
ences to our method. First, we enable our root tag-
ger to incorporate bottom-level features. More pre-
cisely, the two taggers are cascaded combined. Sec-
ond, to enhance the top-level syntactic information, 
our root tagger does not only recognize the root 
word, but also the words which belong to the im-
mediate child of it. We give the following property 
to prove that attaching all root children to the root 
still leads to a valid dependency graph.  
Proposition 7: Cycle-free for root tagger 
The dependency graph is a cycle-free graph by link-
ing root child to the root words. 
Proof. The minimum cycle length in a valid de-
pendency graph is two (two edges for two words by 
linked each other). Assume there are K children for 
a root. By attaching all children to the root, it leads 
to the out-degree of each child is 1, while the in-
degree of the root is K. According to the Definition 
1, the root word does not have any parent (out-

degree of the root is exactly zero) and will never 
attach to any word in the sentence (include its chil-
dren).  

 
Figure 2: Attaching neighbor relations with sequental 
taggers 

 
Figure 3: Attaching root words with sequential taggers 

 
The sequential tagger used in this paper is 

CRF++ (Kudo et al., 2004). One advantage of con-
ditional random fields (CRF) is that it is a structural 
learning method and can search optimal tag se-
quence with efficient Viterbi search algorithm. 
Features used for the two taggers include word, 
part-of-speech tag, and prefix/suffix Chinese char-
acters with context window = 3. Features that oc-
curs less than twice in the training data is removed. 
Figure 1 shows an example of Chinese dependency 
graph. Figure 2 illustrates the sample of attaching 
neighbors with CRF++ by using the same sentence 
as in Figure 1. Figure 3 shows the example of iden-
tifying root and its children with CRF++. 
 
 Table 1: Feature set used for NSR and YSR 
Feature type Stack position Queue position 

Word
POS

BiWord
BiPOS

Neighbor (NSR)
Root (NSR)

Neighbor (YSR)
Root (YSR)

History
Child (Word)
Child (POS)

-1,0 
-1,0 

(-2,-1),(-1,0),(-2,0),(-1,+1) 
(-2,-1),(-1,0),(-2,0),(-1,+1) 

-2,-1,0 
-1,0 

0 
0 

-2,-1 
0 
0 

0,+1,+2,+3
0,+1,+2,+3

(0,1),(1,2),(2,3),(0,2),(1,3)
(0,1),(1,2),(2,3),(0,2),(1,3)

0,+1,+2

0

0
0

4 Experiments 

We randomly select 90% of the Chinese Treebank 
5.1 corpus for training and the remaining 10% is 
used for testing. Totally there are 0.45 million 
words in the training data and 50144 words for test-
ing. By following (Hall et al., 2006), we use the 
same headword table to convert the CTB into de-
pendency structure. The gold-tagged POS tags are 
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used in the experiments. All experimental results 
are evaluated by LAS (label attachment score), UAS 
(unlabeled attachment score), and root accuracy. 

4.1 Settings 

In this paper, we employ the MSTParser (McDon-
ald et al., 2006) and MaltParser (Nivre, 2003) for 
comparison. We adopt the best settings for Malt-
Parser with SVM and MBL learners as reported by 
(Hall et al., 2006)2. For MSTParser, the Eisner’s 
decoding algorithm is used. 

The learner we used in this paper is L2-SVM with 
linear kernel (Keerthi and DeCoste, 2005). The one-
versus-all (OVA) strategy is applied to handle mul-
ticlass problems. Features that appear less than 
twice are removed from the feature set. Table 4 lists 
the feature set for the NSR and YSR. 

4.2 Results 

Table 2 summarizes overall experimental results. 
The final two rows list the entire training and testing 
time of the corresponding methods. From this table, 
we can see that our method (both NSR and YSR) 
achieve the best and second best parsing accuracy in 
terms of LAS, UAS, and root accuracy. For testing 
time efficiency, both our NSR and YSR also outper-
form the other methods. Meanwhile there is no sig-
nificant difference between NSR and YSR from the 
aspect of run time efficiency view. In comparison to 
MaltParser, NSR yields 14 times faster in parsing 
speed.  

Next, we analyze the effect of the two sequential 
taggers. The pure system performance of the 
neighbor tagger is 88.54 in F(β) rate, while the root 
tagger only achieves 61.67 F(β) score. The entire 
training time of the two taggers takes about 10 
hours. Table 3 shows the compared results. It is 
clear that adding the two taggers leads better pars-
ing accuracy than pure NSR and YSR. For example, 
it enhances the LAS score from 81.17 to 81.41 for 
NSR. Furthermore, the pure NSR and YSR still 
produce better parsing accuracy than MaltParser and 
MSTParser.  

5 Conclusion 

This paper presents an efficient and robust Chinese 
dependency parsing based on shift reduce parsing 
algorithms. We employ two sequential taggers to 
label the root and neighbor information as features. 
Experimental results show that our methods outper-
form two top-performed parsers, MaltParser and 
MSTParser in both accuracy and run-time efficiency. 
In the future, we will to investigate the effect of full 
parsing Chinese by applying shift-reduce-like ap-
proaches. 
                                                 
2 http://w3.msi.vxu.se/~nivre/research/chiMaltSVM.html 

 
Table 2: Parsing accuracy of each parsing algorithm 

this paper Evaluation
Metrics 

MaltParser
(SVM) 

MaltParser 
(MBT) MST 

NSR YSR
LAS 80.74 73.53 78.08 81.41 81.57 
UAS 81.98 75.40 79.53 82.60 82.76 
LAC 91.28 86.26 89.21 92.26 92.37 
Root  
A

65.88 69.36 73.71 74.93 77.61 
Sentence  
A

33.12 25.67 24.07 32.85 33.44 
TrainTime 6.74hr 3.42min 7.51hr 2.76hr 2.24hr
TestTime 15.92min 3.22min 10.15min 1.12min 1.15min

Table 3: Effective of the additional root and neighbor 
information 

Improvement rate NSR YSR 
LAS 81.17→81.41 81.16→81.57 
UAS 82.33→82.60 82.37→82.76 
LAC 92.07→92.26 92.15→92.37 
Root_ Accuracy 74.14→74.93 76.24→77.61 
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